A Metalless and Fungicide-Free Material Against Candida: Glass-Loaded Hydrogels
Abstract
1. Introduction
2. Experimental Section
2.1. Borophosphate Glass Synthesis and Glass-Loaded Hydrogel Formulation
2.2. Analysis of the Yeast Growth Curves
2.3. Antifungal Assays
2.4. Scanning Electron Microscopy (SEM)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022; p. 48. [Google Scholar]
- Du, H.; Bing, J.; Hu, T.; Ennis, C.L.; Nobile, C.J.; Huang, G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020, 16, e1008921. [Google Scholar] [CrossRef]
- Lewis, M.A.O.; Williams, D.W. Diagnosis and management of oral candidosis. Br. Dent. J. 2017, 223, 675–681. [Google Scholar] [CrossRef]
- Ottonelli Stopiglia, C.D.; Mezzomo Collares, F.; Aulo Ogliari, F.; Piva, E.; Borges Fortes, C.B.; Werner Samuel, S.M.; Scroferneker, M.L. Antimicrobial activity of [2-(methacryloyloxy)ethyl]trimethylammonium chloride against Candida spp. Rev. Iberoam. De Micol. 2012, 29, 20–23. [Google Scholar] [CrossRef]
- Branco, J.; Miranda, I.M.; Rodrigues, A.G. Candida parapsilosis Virulence and Antifungal Resistance Mechanisms: A Comprehensive Review of Key Determinants. J. Fungi 2023, 9, 80. [Google Scholar] [CrossRef]
- Carmo, P.H.F.d.; Garcia, M.T.; Figueiredo-Godoi, L.M.A.; Lage, A.C.P.; Silva, N.S.d.; Junqueira, J.C. Metal Nanoparticles to Combat Candida albicans Infections: An Update. Microorganisms 2023, 11, 138. [Google Scholar] [CrossRef]
- Lamoth, F. Novel Therapeutic Approaches to Invasive Candidiasis: Considerations for the Clinician. Infect. Drug Resist. 2023, 16, 1087–1097. [Google Scholar] [CrossRef]
- Dahiya, S.; Chhillar, A.K.; Sharma, N.; Choudhary, P.; Punia, A.; Balhara, M.; Kaushik, K.; Parmar, V.S. Candida auris and Nosocomial Infection. Curr. Drug Targets 2020, 21, 365–373. [Google Scholar] [CrossRef]
- Ordaya, E.E.; Clement, J.; Vergidis, P. The Role of Novel Antifungals in the Management of Candidiasis: A Clinical Perspective. Mycopathologia 2023, 188, 937–948. [Google Scholar] [CrossRef]
- Kaur, J.; Nobile, C.J. Antifungal drug-resistance mechanisms in Candida biofilms. Curr. Opin. Microbiol. 2023, 71, 102237. [Google Scholar] [CrossRef]
- Lass-Flörl, C.; Steixner, S. The changing epidemiology of fungal infections. Mol. Asp. Med. 2023, 94, 101215. [Google Scholar] [CrossRef]
- Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L.E. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem. Rev. 2020, 121, 3390–3411. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidis, I.; Tragiannidis, A.; Munchen, S.; Groll, A.H. Clinical hepatotoxicity associated with antifungal agents. Expert Opin. Drug Saf. 2016, 16, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.A.; Winkelmayer, W.C.; Rubin, R.H.; Avorn, J. The Hepatotoxicity of Antifungal Medications in Bone Marrow Transplant Recipients. Clin. Infect. Dis. 2005, 41, 301–307. [Google Scholar] [CrossRef]
- Regidor, P.A.; Thamkhantho, M.; Chayachinda, C.; Palacios, S. Miconazole for the treatment of vulvovaginal candidiasis. In vitro, in vivo and clinical results. Review of the literature. J. Obstet. Gynaecol. 2023, 43, 2195001. [Google Scholar] [CrossRef]
- Lam, P.L.; Wong, M.M.; Hung, L.K.; Yung, L.H.; Tang, J.C.O.; Lam, K.H.; Chung, P.Y.; Wong, W.Y.; Ho, Y.W.; Wong, R.S.M.; et al. Miconazole and terbinafine induced reactive oxygen species accumulation and topical toxicity in human keratinocytes. Drug Chem. Toxicol. 2020, 45, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.H.A. Miconazole genotoxicity in mice. J. Appl. Toxicol. 1997, 17, 313–319. [Google Scholar] [CrossRef]
- Won, K.J.; Lin, H.Y.; Jung, S.; Cho, S.M.; Shin, H.C.; Bae, Y.M.; Lee, S.H.; Kim, H.J.; Jeon, B.H.; Kim, B. Antifungal Miconazole Induces Cardiotoxicity Via Inhibition of APE/Ref-1-Related Pathway in Rat Neonatal Cardiomyocytes. Toxicol. Sci. 2012, 126, 298–305. [Google Scholar] [CrossRef]
- Vitiello, A.; Ferrara, F.; Boccellino, M.; Ponzo, A.; Cimmino, C.; Comberiati, E.; Zovi, A.; Clemente, S.; Sabbatucci, M. Antifungal Drug Resistance: An Emergent Health Threat. Biomedicines 2023, 11, 1063. [Google Scholar] [CrossRef]
- Esteban-Tejeda, L.; Prado, C.; Cabal, B.; Sanz, J.; Torrecillas, R.; Moya, J.S. Antibacterial and Antifungal Activity of ZnO Containing Glasses. PLoS ONE 2015, 10, e0132709. [Google Scholar] [CrossRef]
- dos Santos, V.R.; Campos, T.M.B.; Anselmi, C.; Thim, G.P.; Bottino, M.C.; Borges, A.L.S.; Trichês, E.d.S. Effect of Co, Cu, and Zn ions on the bioactivity and antibacterial properties of a borate bioactive glass. J. Non-Cryst. Solids 2023, 622, 122643. [Google Scholar] [CrossRef]
- Ahmed, I.; Ready, D.; Wilson, M.; Knowles, J. Antimicrobial effect of silver-doped phosphate-based glasses. J. Biomed. Mater. Res. Part A 2006, 79A, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2024, 99, 153–209. [Google Scholar] [CrossRef]
- Brow, R.K. Nature of Alumina in Phosphate Glass: I, Properties of Sodium Aluminophosphate Glass. J. Am. Ceram. Soc. 1993, 76, 913–918. [Google Scholar] [CrossRef]
- Motta, R.J.B.; Almeida, A.Z.F.; de Lima, B.L.B.; Schneider, R.; Balaban, R.d.C.; van Duijneveldt, J.S.; de Oliveira, R.J. Polyphosphates can stabilize but also aggregate colloids. Phys. Chem. Chem. Phys. 2020, 22, 15–19. [Google Scholar] [CrossRef]
- Saracini, J.; de Assis, I.C.; Peiter, G.C.; Busso, C.; de Oliveira, R.J.; Felix, J.F.; Bini, R.A.; Schneider, R. Borophosphate glasses as active agents for antimicrobial hydrogels. Int. J. Pharm. 2023, 644, 123323. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Anjum, S.; Arora, A.; Alam, M.S.; Gupta, B. Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int. J. Pharm. 2016, 508, 92–101. [Google Scholar] [CrossRef]
- Pristov, K.; Ghannoum, M. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef]
- Anastasopoulou, M.; Vasilopoulos, K.C.; Anagnostopoulos, D.; Koutselas, I.; Papayannis, D.K.; Karakassides, M.A. Structural and Theoretical Study of Strontium Borophosphate Glasses Using Raman Spectroscopy and ab Initio Molecular Orbital Method. J. Phys. Chem. B 2017, 121, 4610–4619. [Google Scholar] [CrossRef] [PubMed]
- Freudenberger, P.T.; Blatt, R.L.; Brow, R.K. Dissolution rates of borophosphate glasses in deionized water and in simulated body fluid. J. Non-Cryst. Solids X 2023, 18, 100181. [Google Scholar] [CrossRef]
- Estevez-Fregoso, E.; Farfán-García, E.D.; García-Coronel, I.H.; Martínez-Herrera, E.; Alatorre, A.; Scorei, R.I.; Soriano-Ursúa, M.A. Effects of boron-containing compounds in the fungal kingdom. J. Trace Elem. Med. Biol. 2021, 65, 126714. [Google Scholar] [CrossRef]
- De Seta, F.; Schmidt, M.; Vu, B.; Essmann, M.; Larsen, B. Antifungal mechanisms supporting boric acid therapy of Candida vaginitis. J. Antimicrob. Chemother. 2008, 63, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Usach, I.; Martínez-Álvarez, P.; Peris, J.E. Topical delivery systems containing clotrimazole for the management of candidiasis: Effect of different excipients and enhanced antifungal activity of nanovesicles. Int. J. Pharm. 2023, 644, 123287. [Google Scholar] [CrossRef] [PubMed]
- Campos, L.M.; de Oliveira Lemos, A.S.; de Lima Paula, P.; da Rocha, V.N.; de Freitas Araújo, M.G.; Tavares, G.D.; Barradas, T.N.; Nascimento, W.W.G.; Denadai, A.M.L.; de Oliveira, L.F.C.; et al. Exploring the antifungal potential of Annona muricata leaf extract-loaded hydrogel in treating vulvovaginal candidiasis. Colloids Surfaces B Biointerfaces 2024, 238, 113919. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, E.S.; Ferreira, L.M.; Denardi, L.B.; Sari, M.H.M.; Cervi, V.F.; Nogueira, C.W.; Alves, S.H.; Cruz, L. Mucoadhesive gellan gum hydrogel containing diphenyl diselenide-loaded nanocapsules presents improved anti-candida action in a mouse model of vulvovaginal candidiasis. Eur. J. Pharm. Sci. 2021, 167, 106011. [Google Scholar] [CrossRef]
- Dananjaya, S.; Kumar, R.S.; Yang, M.; Nikapitiya, C.; Lee, J.; De Zoysa, M. Synthesis, characterization of ZnO-chitosan nanocomposites and evaluation of its antifungal activity against pathogenic Candida albicans. Int. J. Biol. Macromol. 2018, 108, 1281–1288. [Google Scholar] [CrossRef]
- Panáček, A.; Kolář, M.; Večeřová, R.; Prucek, R.; Soukupová, J.; Kryštof, V.; Hamal, P.; Zbořil, R.; Kvítek, L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 2009, 30, 6333–6340. [Google Scholar] [CrossRef]
Yeast | Agent (a) | CMG (b) | Borophosphate Glass Concentration (c) | |||
---|---|---|---|---|---|---|
2% | 15% | 7% | 5% | 3% | ||
C. albicans | CMG | - | - | - | - | |
2P1B | - | - | - | |||
1P2B | - | - | - | |||
1P1B | - | - | - | |||
C. tropicalis | CMG | - | - | - | ||
2P1B | - | - | - | |||
1P2B | - | - | - | |||
1P1B | - | - | - | |||
C. krusei | CMG | - | - | - | - | |
2P1B | - | - | - | |||
1P2B | - | - | - | |||
1P1B | - | - | - | |||
C. glabrata | CMG | - | - | - | - | |
2P1B | - | - | - | |||
1P2B | - | - | - | |||
1P1B | - | - | - |
Agent | C. albicans | C. tropicalis | C. krusei | C. grablata | ||||
---|---|---|---|---|---|---|---|---|
MIC a | MFC b | MIC | MFC | MIC | MFC | MIC b | MFC | |
CMG 2% c | < | < | < | < | < | < | < | < |
2P1B 7% | 8.7 | 17.5 | 8.7 | 17.0 | 2.1 | 4.3 | < | < |
2P1B 15% | 9.3 | 18.7 | 9.3 | 18.7 | 2.3 | 4.6 | < | < |
1P1B 3% | 3.7 | 7.5 | 7.5 | > | 0.9 | 1.8 | < | < |
1P1B 7% | 8.7 | 17.5 | 4.3 | 17.5 | 2.1 | 4.3 | < | < |
1P2B 3% | 1.8 | 7.5 | 3.7 | 7.5 | 0.9 | 1.8 | < | < |
1P2B 5% | 1.5 | 12.5 | 3.1 | 12.5 | 0.7 | 1.5 | < | < |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peiter, G.C.; Salvador, E.d.S.; Ayma, F.C.; Teixeira, K.N.; Jaerger, S.; Bini, R.A.; Busso, C.; Oliveira, R.J.d.; Schneider, R. A Metalless and Fungicide-Free Material Against Candida: Glass-Loaded Hydrogels. Pharmaceutics 2025, 17, 836. https://doi.org/10.3390/pharmaceutics17070836
Peiter GC, Salvador EdS, Ayma FC, Teixeira KN, Jaerger S, Bini RA, Busso C, Oliveira RJd, Schneider R. A Metalless and Fungicide-Free Material Against Candida: Glass-Loaded Hydrogels. Pharmaceutics. 2025; 17(7):836. https://doi.org/10.3390/pharmaceutics17070836
Chicago/Turabian StylePeiter, Gabrielle Caroline, Elane da Silva Salvador, Fabián Ccahuana Ayma, Kádima Nayara Teixeira, Silvia Jaerger, Rafael A. Bini, Cleverson Busso, Rodrigo José de Oliveira, and Ricardo Schneider. 2025. "A Metalless and Fungicide-Free Material Against Candida: Glass-Loaded Hydrogels" Pharmaceutics 17, no. 7: 836. https://doi.org/10.3390/pharmaceutics17070836
APA StylePeiter, G. C., Salvador, E. d. S., Ayma, F. C., Teixeira, K. N., Jaerger, S., Bini, R. A., Busso, C., Oliveira, R. J. d., & Schneider, R. (2025). A Metalless and Fungicide-Free Material Against Candida: Glass-Loaded Hydrogels. Pharmaceutics, 17(7), 836. https://doi.org/10.3390/pharmaceutics17070836