Metabolic Alterations in Crassostrea Gigas After Feeding Selenium-Enriched Yeast Based on Transcriptomic Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. RNA Extraction, Library Construction, and Sequencing
2.3. Differential Gene Identification
2.4. Enrichment Analysis of DEGs
2.5. Analysis of Protein–Protein Interaction Networks
2.6. Quantitative RT-PCR Verification
3. Results
3.1. Sequencing Quality
3.2. Differential Gene Expression Analysis
3.3. Functional Enrichment Analysis
3.4. PPI Network Analysis
3.5. Quantitative Validation of DEGs
4. Discussion
4.1. Expression Analysis of DEGs
4.2. Functional Enrichment Analysis of DEGs
4.3. Functional Analysis of Key DEGs
4.3.1. Glutathione Metabolism During Selenium Supplementation
4.3.2. Collagen Family
4.3.3. Analysis of Hub Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
C. gigas | Crassostrea gigas |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
DEGs | Differentially expressed genes |
qRT-PCR | quantitative Reverse Transcription Polymerase Chain Reaction |
PPI | Protein–Protein Interaction |
References
- Oropeza-Moe, M.; Wisløff, H.; Bernhoft, A. Selenium deficiency associated porcine and human cardiomyopathies. J. Trace. Elem. Med. Biol. 2015, 31, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Zhang, H.; Liu, Z.; Lei, L.; Feng, Z.; Zhang, D.; Ren, Y.; Zhao, S. Comparative study of yeast selenium vs. sodium selenite on growth performance, nutrient digestibility, anti-inflammatory and anti-oxidative activity in weaned piglets challenged by Salmonella typhimurium. Innate. Immun. 2020, 26, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Pecoraro, B.M.; Leal, D.F.; Frias-De-Diego, A.; Browning, M.; Odle, J.; Crisci, E. The health benefits of selenium in food animals: A review. J. Animal. Sci. Biotechnol. 2022, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Tan, H.Y.; Li, S.; Xu, Y.; Guo, W.; Feng, Y. Supplementation of Micronutrient Selenium in Metabolic Diseases: Its Role as an Antioxidant. Oxid. Med. Cell. Longev. 2017, 2017, 7478523. [Google Scholar] [CrossRef] [PubMed]
- White, P.J. Selenium accumulation by plants. Ann. Bot. 2016, 117, 217–235. [Google Scholar] [CrossRef] [PubMed]
- Avery, J.; Hoffmann, P. Selenium, Selenoproteins, and immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jia, L.; Deng, Z.; Sun, X.; Zhang, H.; Li, H. The effects of selenium on the growth and bone development in the weaned rats. Food Biosci. 2023, 55, 103018. [Google Scholar] [CrossRef]
- Wells, M.; Basu, P.; Stolz, J.F. The physiology and evolution of microbial selenium metabolism. Metallomics 2021, 13, mfab024. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, J.; Yan, L.; Cao, J.; Li, D.; Huang, G.Y.; Shi, W.J.; Dong, W.; Zha, J.; Ying, G.G.; et al. Subchronic effects of dietary selenium yeast and selenite on growth performance and the immune and antioxidant systems in Nile tilapia Oreochromis niloticus. Fish Shellfish Immunol. 2020, 97, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zhang, Y.; Zhu, R.; Wu, Y.; Liu, X.; Wang, X. Red elemental selenium (Se0) improves the immunoactivities of EPC cells, crucian carp and zebrafish against spring viraemia of carp virus. J. Fish Biol. 2021, 98, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Gul, F.; Ahmad, B.; Afzal, S.; Ullah, A.; Khan, S.; Aman, K.; Khan, M.T.; Hadi, F.; Kiran, K.; Zahra, M.; et al. Comparative analysis of various sources of selenium on the growth performance and antioxidant status in broilers under heat stress. Braz. J. Biol. 2021, 83, e251004. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, L.; Cattaneo, D.M.I.R.; Abbate, R.; Manoni, M.; Ottoboni, M.; Luciano, A.; von Holst, C.; Pinotti, L. Advances in selenium supplementation: From selenium-enriched yeast to potential selenium-enriched insects, and selenium nanoparticles. Anim. Nutr. 2023, 14, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Mo, A.; Wang, X.; Yuan, Y.; Liu, C.; Wang, J. Effects of waterborne exposure to environmentally relevant concentrations of selenite on reproductive function of female zebrafish: A life cycle assessment. Environ. Pollut. 2021, 270, 116–237. [Google Scholar] [CrossRef] [PubMed]
- Olgun, O.; Yıldız, A.; Cufadar, Y. The effects of eggshell and oyster shell supplemental as calcium sources on performance, eggshell quality and mineral excretion in laying hens. Indian J. Anim. Res. 2015, 49, 205–209. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Jia, Z.; Xu, T.; Wang, Y.; Sun, M.; Han, S.; Wang, X.; Qiu, L. Regulation of apoptosis by Pacific oyster Crassostrea gigas reveals acclimation strategy to CO2 driven acidification. Ecotoxicol. Environ. Saf. 2021, 217, 112235. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wu, F.; Wang, L.; Li, L.; Zhang, G. Integrated application of transcriptomics and metabolomics provides insights into condition index difference mechanisms in the Pacific oyster (Crassostrea gigas). Genomics 2022, 114, 110413. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Wang, W.; Chen, X.; Feng, Y.; Xu, X.; Sun, G.; Li, B.; Liu, X.; Li, Z.; Yang, J. Exploration of immune response mechanisms in cadmium and copper co-exposed juvenile golden cuttlefish (Sepia esculenta) based on transcriptome profiling. Front. Immunol. 2022, 13, 963931. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Wang, W.; Yuan, T.; Li, Y.; Chen, X.; Liu, X.; Xu, X.; Sun, G.; Li, B.; Yang, J.; et al. Transcriptome profiling based on larvae at different time points after hatching provides a core set of gene resource for understanding the immune response mechanisms of the egg protecting behavior against Vibrio anguillarum infection in Amphioctopus fangsiao. Fish Shellfish Immunol. 2022, 124, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bao, X.; Wang, W.; Xu, X.; Liu, X.; Li, Z.; Yang, J.; Yuan, T. Exploration of anti-stress mechanisms in high temperature exposed juvenile golden cuttlefish (Sepia esculenta) based on transcriptome profiling. Front. Physiol. 2023, 14, 1189375. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Zhao, L.; Chang, Y.; Zhao, W.; Du, Z.; Hao, Z. Transcriptome sequencing and characterization of Japanese scallop Patinopecten yessoensis from different shell color lines. PLoS ONE 2015, 10, e0116406. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lei, Y.; Xu, W.; Zhang, Y.; Zhou, H.; Zhang, W.; Mai, K. Protective effects of dietary selenium on abalone Haliotis discus hannai against the toxicity of waterborne cadmium. Aquac. Res. 2018, 49, 3237–3244. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Zhao, H.; Wang, Y.; Jiang, L.; Zhang, E.; Feng, Y.; Wang, X.; Qu, J.; Yang, J.; et al. Transcriptome profiling of triploid Crassostrea gigas gills indicates the host immune mechanism against bacterial infection. Comp. Biochem. Physiol. Part D Genom. Proteom. 2025, 54, 101392. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome. Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chang, D.; Zheng, Y.; Zhang, Y.; Wang, Y.; Bao, X.; Sun, G.; Feng, Y.; Li, Z.; Liu, X.; et al. Comparative transcriptome analysis reveals differences in immune responses to copper ions in Sepia esculenta under high-temperature conditions. BMC Genom. 2025, 26, 262. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, Z.; Li, Q.; Bao, X.; Jiang, L.; Yang, J. Acute exposure to polystyrene nanoplastics induced oxidative stress in Sepia esculenta Larvae. Aquac. Rep. 2024, 35, 102004. [Google Scholar] [CrossRef]
- Wang, J.; Medina Torres, I.; Shang, M.; Al-Armanazi, J.; Dilawar, H.; Hettiarachchi, D.U.; Paladines-Parrales, A.; Chambers, B.; Pottle, K.; Soman, M.; et al. Direct and pleiotropic effects of antimicrobial peptide transgene integration on reproductive, growth regulating, and non-coding loci in channel catfish (Ictalurus punctatus). Agric. Commun. 2024, 2, 100044. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Xu, X.; Yang, J.; Liu, X.; Sun, G.; Li, Z. Weighted Gene Co-Expression Network Analysis Based on Stimulation by Lipopolysaccharides and Polyinosinic:polycytidylic Acid Provides a Core Set of Genes for Understanding Hemolymph Immune Response Mechanisms of Amphioctopus fangsiao. Animals 2023, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhao, C.; Zhang, T. Selenium transformation and selenium-rich foods. Food Biosci. 2021, 40, 100875. [Google Scholar] [CrossRef]
- Qiu, L.; Chen, H.; Zhou, Z.; Zhang, H.; Liu, R.; Yi, Q.; Yang, C.; Gao, L.; Wang, L. Transcriptomic profile of oyster Crassostrea gigas hemocyte after short-term cadmium exposure and bacteria stimulation. Fish Shellfish Immunol. 2020, 98, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.A.; Su, W.; Chapman, N.M.; Chi, H. Lipid metabolism in T cell signaling and function. Nat. Chem. Biol. 2022, 18, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Koenderman, L.; Buurman, W.; Daha, M.R. The innate immune response. Immunol. Lett. 2014, 162 Pt. B, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. Toll-like receptor and RIG-I-like receptor signaling. Ann. N. Y. Acad. Sci. 2008, 1143, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Ahmed, I.; Fatma, S.; Peres, H. Role of branched-chain amino acids on growth, physiology and metabolism of differentfish species: A review. Aquacult. Nutr. 2021, 27, 1270–1289. [Google Scholar] [CrossRef]
- Chandhini, S.; Trumboo, B.; Jose, S.; Varghese, T.; Rajesh, M.; Kumar, V.J.R. Insulin-like growth factor signalling and its significance as a biomarker in fish and shellfish research. Fish Physiol. Biochem. 2021, 47, 1011–1031. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bao, X.; Liu, X.; Li, Y.; Cui, M.; Liu, X.; Li, B.; Feng, Y.; Xu, X.; Sun, G.; et al. Transcriptome profiling based on protein-protein interaction networks provides a set of core genes for understanding the immune response mechanisms of the egg-protecting behavior in Octopus ocellatus. Fish Shellfish Immunol. 2021, 117, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Majeed, A.; Mukhtar, S. Protein-Protein Interaction Network Exploration Using Cytoscape. Methods. Mol. Biol. 2023, 2690, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta 2012, 1830, 3143–3153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Forman, H.J. Glutathione synthesis and its role in redox signaling. Semin. Cell. Dev. Biol. 2012, 23, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Averill-Bates, D.A. The antioxidant glutathione. Vitam. Horm. 2023, 121, 109–141. [Google Scholar] [CrossRef] [PubMed]
- Beer, S.M.; Taylor, E.R.; Brown, S.E.; Dahm, C.C.; Costa, N.J.; Runswick, M.J.; Murphy, M.P. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: Implications for mitochondrial redox regulation and antioxidant DEFENSE. J. Biol. Chem. 2004, 279, 47939–47951. [Google Scholar] [CrossRef] [PubMed]
- Hurd, T.R.; Costa, N.J.; Dahm, C.C.; Beer, S.M.; Brown, S.E.; Filipovska, A.; Murphy, M.P. Glutathionylation of mitochondrial proteins. Antioxid. Redox. Signal 2005, 7, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Resende, A.C.; Mauro Carneiro Pereira, D.; Cristina Schleger, I.; Dmengeon Pedreiro de Souza, M.R.; Alvez Neundorf, A.K.; Romão, S.; Herrerias, T.; Donatti, L. Effects of heat shock on energy metabolism and antioxidant defence in a tropical fish species Psalidodon bifasciatus. J. Fish Biol. 2022, 100, 1245–1263. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Alfaro, A.C.; Merien, F.; Lulijwa, R.; Young, T. Copper-induced immunomodulation in mussel (Perna canaliculus) haemocytes. Metallomics 2018, 10, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.M.; Gentile, P.; Chiono, V.; Ciardelli, G. Collagen for bone tissue regeneration. Acta Biomater. 2012, 8, 3191–3200. [Google Scholar] [CrossRef] [PubMed]
- Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef] [PubMed]
- Siadat, S.M.; Ruberti, J.W. Mechanochemistry of collagen. Acta Biomater. 2023, 163, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Gelse, K.; Pöschl, E.; Aigner, T. Collagens—Structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 2003, 55, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.K.; Hahn, R.A. Collagens. Cell Tissue Res. 2010, 339, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Mienaltowski, M.J.; Birk, D.E. Structure, physiology, and biochemistry of collagens. Adv. Exp. Med. Biol. 2014, 802, 5–29. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Timpl, R. The collagen superfamily. Int. Arch. Allergy Immunol. 1995, 107, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Myllyharju, J.; Kivirikko, K.I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004, 20, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid. Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed]
- Fhu, C.W.; Ali, A. Fatty Acid Synthase: An Emerging Target in Cancer. Molecules 2020, 25, 3935. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Xu, W.; Hong, M.; Yang, T.; Shi, Y.; Jiao, Y.; Nie, J.; Cui, F.; Cao, J.; Zhang, S. Proteomic and miRNA profiling of radon-induced skin damage in mice: FASN regulated by miRNAs. J. Radiat. Res. 2022, 63, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Günenc, A.N.; Graf, B.; Stark, H.; Chari, A. Fatty Acid Synthase: Structure, Function, and Regulation. Subcell. Biochem. 2022, 99, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.F.; Infante, J.R. Molecular Pathways: Fatty Acid Synthase. Clin. Cancer Res. 2015, 21, 5434–5438. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Niihori, T.; Narumi, Y.; Kure, S.; Matsubara, Y. The RAS/MAPK syndromes: Novel roles of the RAS pathway in human genetic disorders. Hum. Mutat. 2008, 29, 992–1006. [Google Scholar] [CrossRef] [PubMed]
- Fabris, L.; Berton, S.; Pellizzari, I.; Segatto, I.; D’Andrea, S.; Armenia, J.; Bomben, R.; Schiappacassi, M.; Gattei, V.; Philips, M.R.; et al. p27kip1 controls H-Ras/MAPK activation and cell cycle entry via modulation of MT stability. Proc. Natl. Acad. Sci. USA 2015, 112, 13916–13921. [Google Scholar] [CrossRef] [PubMed]
- Molven, A.; Søvik, O.; von der Lippe, C.; Steine, S.J.; Njølstad, P.R.; Houge, G.; Prescott, T.E. Mutasjonsdiagnostikk ved syndromer knyttet til RAS/MAPK-signalveien [Molecular genetic diagnostics in syndromes associated with the RAS/MAPK signalling pathway]. Tidsskr. Nor. Laegeforen 2009, 129, 2358–2361. [Google Scholar] [CrossRef] [PubMed]
- Denning, G.M.; Figard, P.H.; Kaduce, T.L.; Spector, A.A. Role of triglycerides in endothelial cell arachidonic acid metabolism. J. Lipid. Res. 1983, 24, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Wunderling, K.; Zurkovic, J.; Zink, F.; Kuerschner, L.; Thiele, C. Triglyceride cycling enables modification of stored fatty acids. Nat. Metab. 2023, 5, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Graf, G.A.; Yu, L.; Li, W.P.; Gerard, R.; Tuma, P.L.; Cohen, J.C.; Hobbs, H.H. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J. Biol. Chem. 2003, 278, 48275–48282. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.H.; Qian, K.; Jiang, N.; Zheng, X.L.; Cayabyab, F.S.; Tang, C.K. ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin. Chim. Acta 2014, 428, 82–88. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Forward Primer (5′–3′) | TM (°C) | Reverse Primer (5′–3′) | TM (°C) | Amplicon Length (bp) |
---|---|---|---|---|---|
ABCG5 | ACCGCTTCCTTCACAACCTGAC | 60 | CTGCCACATTCTTCAAACCCATCTC | 58 | 141 |
ABCG8 | CCCTACTTTACCTCCATTGGCTACC | 59 | TTTCGTCTCCCGCTCTGTTTCG | 60 | 114 |
COL11A1 | TTACACCGCTGCCTACCATAACTC | 59 | CCCTCCACCAACTGCCATTCC | 62 | 94 |
COL14A1 | CTTGAGCCCGACCAGACCATAAG | 60 | AACCCAGTGTCCCATCCCAATAAC | 59 | 87 |
COL22A1 | TGGACGGGACCTAATTTCACTGAC | 59 | TTCGGAGACCATTGTACGGCTTC | 59 | 139 |
COL6A6 | ACGGAGCTGTACGCCATTGC | 61 | ACCGATGCTTGGATCTAACTTGAGG | 59 | 120 |
CYP2J5 | GCGGCTCAGTTTACAAACAGACC | 59 | ACGGACCTTCTTCCAATGCTCTC | 59 | 111 |
CYP2J6 | GGAACAGAGACCACCGCAACC | 61 | ACTTCTCGCCCTAACCCAACAAC | 59 | 119 |
DGKB | GATTGCTCGGGTCAGAGTTCATTTC | 58 | CATACACTTGGCGTGGATTCAGAAG | 58 | 148 |
FASN | AGCCTTAGTGGACCTATTGAGAAGC | 58 | GTCAGGGAGCCATCAGCATACC | 60 | 102 |
GPAM | AGAGACCAGCAGCGATACCAATG | 59 | CCACCTGACTGACGGGCATAC | 61 | 147 |
HRAS | CTATGCGAGACCAGTACATGAGGAC | 59 | ACCCACCAACACCATAGGAACTTC | 59 | 149 |
Sample | Total Reads | Total Map | Raw Reads | Clean Reads | Error Rate | Q20 | Q30 |
---|---|---|---|---|---|---|---|
THNP_1 | 43,508,618 | 29,437,606 (67.66%) | 46,061,122 | 43,508,618 | 0.02 | 98.24 | 94.59 |
THNP_2 | 39,963,598 | 29,136,484 (72.91%) | 42,560,702 | 39,963,598 | 0.03 | 97.88 | 94.04 |
THNP_3 | 40,757,216 | 28,651,116 (70.30%) | 42,621,702 | 40,757,216 | 0.02 | 97.97 | 94.21 |
THMP_1 | 45,389,286 | 31,569,508 (69.55%) | 47,526,686 | 45,389,286 | 0.03 | 97.28 | 92.24 |
THMP_2 | 44,102,584 | 29,583,679 (67.08%) | 46,221,506 | 44,102,584 | 0.03 | 95.91 | 89.45 |
THMP_3 | 44,125,492 | 31,220,930 (70.75%) | 46,475,360 | 44,125,492 | 0.03 | 97.37 | 92.46 |
THHP_1 | 45,734,110 | 31,778,440 (69.49%) | 48,218,282 | 45,734,110 | 0.03 | 97.42 | 92.57 |
THHP_2 | 43,037,580 | 32,118,082 (74.63%) | 44,728,006 | 43,037,580 | 0.02 | 97.98 | 94.24 |
THHP_3 | 42,060,542 | 30,535,558 (72.60%) | 43,134,446 | 42,060,542 | 0.03 | 97.83 | 93.85 |
Network Stats | |
---|---|
Number of nodes | 67 |
Number of edges | 439 |
Average node degree | 13.1 |
Clustering coefficient | 0.531 |
Expected number of edges | 199 |
PPI enrichment p-value | 1 × 10−16 |
Gene ID | Gene Name | Node Degrees of PPI | Number of KEGG |
---|---|---|---|
ABCG5 | ATP binding cassette subfamily G member 5 | 25 | 1 |
ABCG8 | ATP binding cassette subfamily G member 8 | 23 | 1 |
COL11A1 | collagen type XI alpha 1 chain | 8 | 2 |
COL14A1 | collagen type XIV alpha 1 chain | 9 | 1 |
COL22A1 | collagen type XXII alpha 1 chain | 10 | 2 |
COL6A6 | collagen type VI alpha 6 chain | 8 | 2 |
CYP2J5 | cytochrome P450, family 2, subfamily j, polypeptide 5 | 15 | 2 |
CYP2J6 | cytochrome P450, family 2, subfamily j, polypeptide 6 | 12 | 3 |
DGKB | diacylglycerol kinase beta | 12 | 1 |
FASN | fatty acid synthase | 39 | 1 |
GPAM | glycerol-3-phosphate acyltransferase, mitochondrial | 13 | 1 |
HRAS | HRas proto-oncogene, GTPase | 30 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Jiang, X.; Jiang, L.; Wang, Y.; Cui, C.; Liu, X.; Li, Z.; Wang, W.; Yang, J. Metabolic Alterations in Crassostrea Gigas After Feeding Selenium-Enriched Yeast Based on Transcriptomic Analysis. Biology 2025, 14, 898. https://doi.org/10.3390/biology14070898
Zhao Y, Jiang X, Jiang L, Wang Y, Cui C, Liu X, Li Z, Wang W, Yang J. Metabolic Alterations in Crassostrea Gigas After Feeding Selenium-Enriched Yeast Based on Transcriptomic Analysis. Biology. 2025; 14(7):898. https://doi.org/10.3390/biology14070898
Chicago/Turabian StyleZhao, Yancheng, Xiaojing Jiang, Liming Jiang, Yongjie Wang, Cuiju Cui, Xiumei Liu, Zan Li, Weijun Wang, and Jianmin Yang. 2025. "Metabolic Alterations in Crassostrea Gigas After Feeding Selenium-Enriched Yeast Based on Transcriptomic Analysis" Biology 14, no. 7: 898. https://doi.org/10.3390/biology14070898
APA StyleZhao, Y., Jiang, X., Jiang, L., Wang, Y., Cui, C., Liu, X., Li, Z., Wang, W., & Yang, J. (2025). Metabolic Alterations in Crassostrea Gigas After Feeding Selenium-Enriched Yeast Based on Transcriptomic Analysis. Biology, 14(7), 898. https://doi.org/10.3390/biology14070898