Volatilomic and Sensorial Profiles of Cabernet Sauvignon Wines Fermented with Different Commercial Yeasts
Abstract
1. Introduction
2. Materials and Methods
2.1. Cabernet Sauvignon Young Wines
2.2. Volatilome Analysis
2.2.1. Data Acquisition (HS-SPME-GC-qTOF/MS)
2.2.2. Quality Control
2.2.3. Data Processing/Mining and Identification
2.2.4. Data Analysis and Interpretation
2.3. Sensory Analysis
2.4. Tasting Panel
3. Results
3.1. Volatilome
3.2. Sensory Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HS-SPME | Head Space Solid Phase Microextraction |
GC-qTOF-MS | Gas Chromatography quadrupole Time-Of-Flight Mass Spectrometry |
LC-qTOF-MS | Liquid Chromatography quadrupole Time-Of-Flight Mass Spectrometry |
TSS | Total Soluble Solids |
AF | Alcoholic Fermentation |
PFM | Post-Fermentation Maceration |
RT | Retention Time |
RI | Retention Index |
QC | Quality Control |
PW | Pooled Wine |
PWS | Pooled Spiked Wine |
PCA | Principal Component Analysis |
ANOVA | Analysis of Variance |
CS | Cabernet Sauvignon |
PNQ | Probabilistic Quotient Normalization |
References
- Carpena, M.; Fraga-Corral, M.; Otero, P.; Nogueira, R.A.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Secondary Aroma: Influence of Wine Microorganisms in Their Aroma Profile. Foods 2020, 10, 51. [Google Scholar] [CrossRef]
- Francis, I.L.; Newton, J.L. Determining Wine Aroma from Compositional Data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Santos, A.; Moreno-Arribas, M. Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef]
- Prusova, B.; Humaj, J.; Sochor, J.; Baron, M. Formation, Losses, Preservation and Recovery of Aroma Compounds in the Winemaking Process. Fermentation 2022, 8, 93. [Google Scholar] [CrossRef]
- Chávez-Márquez, A.; Gardea, A.A.; González-Rios, H.; Vazquez-Moreno, L. Characterization of Cabernet Sauvignon Wines by Untargeted HS-SPME GC-QTOF-MS. Molecules 2022, 27, 1726. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Chen, J.; Philipp, C.; Zhao, X.; Wang, J.; Liu, Y.; Suo, R. Effect of Commercial Yeast Starter Cultures on Cabernet Sauvignon Wine Aroma Compounds and Microbiota. Foods 2022, 11, 1725. [Google Scholar] [CrossRef]
- Tarko, T.; Duda, A. Volatilomics of Fruit Wines. Molecules 2024, 29, 2457. [Google Scholar] [CrossRef]
- Gu, Z.; Rao, J.; Chen, B. Application of Flavoromics Approach to Evaluate Aroma Characteristics in Malts: Current Trends and Future Outlooks. Trends Food Sci. Technol. 2025, 156, 104878. [Google Scholar] [CrossRef]
- Marín-San Román, S.; Rubio-Bretón, P.; Pérez-Álvarez, E.P.; Garde-Cerdán, T. Advancement in Analytical Techniques for the Extraction of Grape and Wine Volatile Compounds. Food Res. Int. 2020, 137, 109712. [Google Scholar] [CrossRef]
- Álvarez, R.; Garces, F.; Louis, E.J.; Dequin, S.; Camarasa, C.; Beyond, S. Cerevisiae for Winemaking: Fermentation-Related Trait Diversity in the Genus Saccharomyces. Food Microbiol. 2023, 113, 104270. [Google Scholar] [CrossRef]
- Berbegal, C.; Ferrer, S.; Polo, L.; Pardo, I.; García-Esparza, M.J.; Andrés, L.; Álvarez, I.; Lizama, V. Diversity of Indigenous Saccharomyces cerevisiae Yeast Strains in Cabernet Sauvignon Fermentations from Utiel-Requena Region (Spain) as a Resource to Improve Wine Distinctiveness. Fermentation 2023, 9, 654. [Google Scholar] [CrossRef]
- Bordet, F.; Roullier-Gall, C.; Ballester, J.; Vichi, S.; Quintanilla-Casas, B.; Gougeon, R.D.; Julien-Ortiz, A.; Kopplin, P.S.; Alexandre, H. Different Wines from Different Yeasts? “Saccharomyces cerevisiae Intraspecies Differentiation by Metabolomic Signature and Sensory Patterns in Wine”. Microorganisms 2021, 9, 2327. [Google Scholar] [CrossRef]
- Wang, X.; Fan, G.; Peng, Y.; Xu, N.; Xie, Y.; Zhou, H.; Liang, H.; Zhan, J.; Huang, W.; You, Y. Mechanisms and Effects of Non-Saccharomyces Yeast Fermentation on the Aromatic Profile of Wine. J. Food Compos. Anal. 2023, 124, 105660. [Google Scholar] [CrossRef]
- Maicas, S.; Mateo, J.J. The Life of Saccharomyces and Non-Saccharomyces Yeasts in Drinking Wine. Microorganisms 2023, 11, 1178. [Google Scholar] [CrossRef]
- Guzzon, R.; Paolini, M.; Malacarne, M.; Roman, T.; Naselli, V.; Francesca, N.; Larcher, R. Use of Non-Saccharomyces Yeasts in the Pris de Mousse of Lambrusco. Microbial Evolution through Alcoholic Fermentation and Effect on Wine Volatile Profile. OENO One 2024, 58, 3. [Google Scholar] [CrossRef]
- Stój, A.; Czernecki, T.; Sosnowska, B.; Niemczynowicz, A.; Matwijczuk, A. Impact of Grape Variety, Yeast and Malolactic Fermentation on Volatile Compounds and Fourier Transform Infrared Spectra in Red Wines. Pol. J. Food Nutr. Sci. 2022, 72, 38–55. [Google Scholar] [CrossRef]
- Paramithiotis, S.; Patra, J.K.; Kotseridis, Y.; Dimopoulou, M. Fermented Beverages Revisited: From Terroir to Customized Functional Products. Fermentation 2024, 10, 74. [Google Scholar] [CrossRef]
- Giovannucci, D.; Josling, T.; Kerr, W.; O’Connor, B.; Yeung, M.T. Linking Products and Their Origins. SSRN Electron. J. 2009. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Van Der Lelie, D.; Zarraonaindia, I. Microbial Terroir for Wine Grapes. Proc. Natl. Acad. Sci. USA 2014, 111, 5–6. [Google Scholar] [CrossRef]
- Pons, A.; Allamy, L.; Schüttler, A.; Rauhut, D.; Thibon, C.; Darriet, P. What Is the Expected Impact of Climate Change on Wine Aroma Compounds and Their Precursors in Grape? OENO One 2017, 51, 141. [Google Scholar] [CrossRef]
- Gerbi, V.; De Paolis, C. The Effects of Climate Change on Wine Composition and Winemaking Processes. Ital. J. Food Sci. 2025, 37, 246–260. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Collins, T.S.; Masarweh, C.; Allen, G.; Heymann, H.; Ebeler, S.E.; Mills, D.A. Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics. mBio 2016, 7, e00631-16. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Geng, H.; Chai, R.; Wu, T.; Huang, W.; You, Y.; Zhan, J. Fungal Community Composition and Its Relationship with Volatile Compounds during Spontaneous Fermentation of Cabernet Sauvignon from Two Chinese Wine-Growing Regions. Foods 2023, 13, 106. [Google Scholar] [CrossRef] [PubMed]
- Pickering, G.J.; Spink, M.; Kotseridis, Y.; Inglis, D.; Brindle, I.D.; Sears, M.; Beh, A.-L. Yeast Strain Affects 3-Isopropyl-2-Methoxypyrazine Concentration and Sensory Profile in Cabernet Sauvignon Wine. Aust. J. Grape Wine Res. 2008, 14, 230–237. [Google Scholar] [CrossRef]
- Gao, J.; Wu, T.; Geng, H.; Chai, R.; Huang, W.; You, Y.; Zhan, J. Elucidating the Relationship between Microbial Communities and the Formation of Flavour Metabolites in Cabernet Sauvignon Wine through Metagenomic Analysis. LWT Food Sci. Technol. 2024, 213, 11707076. [Google Scholar] [CrossRef]
- Tong, W.; Zhai, H.; Qi, M.; Hua, Y.; Shi, T.; Shang, H.; Shi, Y.; Duan, C.; Lan, Y. Characterization of Chemical and Sensory Properties of Cabernet Sauvignon and Marselan Wines Made by Flash Détente Technique. Food Res. Int. 2024, 184, 114229. [Google Scholar] [CrossRef]
- Song, X.; Ling, M.; Li, D.; Zhu, B.; Shi, Y.; Duan, C.; Lan, Y. Volatile Profiles and Sensory Characteristics of Cabernet Sauvignon Dry Red Wines in the Sub-Regions of the Eastern Foothills of Ningxia Helan Mountain in China. Molecules 2022, 27, 8817. [Google Scholar] [CrossRef]
- Welke, J.E.; Hernandes, K.C.; Lago, L.O.; Silveira, R.D.; Marques, A.T.B.; Zini, C.A. Flavoromic Analysis of Wines Using Gas Chromatography, Mass Spectrometry and Sensory Techniques. J. Chromatogr. A 2024, 1734, 465264. [Google Scholar] [CrossRef]
- Tao, Y.; Li, H.; Wang, H.; Zhang, L. Volatile Compounds of Young Cabernet Sauvignon Red Wine from Changli County (China). J. Food Compos. Anal. 2008, 21, 689–694. [Google Scholar] [CrossRef]
- Carpena, M.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Wine Aging Technology: Fundamental Role of Wood Barrels. Foods 2020, 9, 1160. [Google Scholar] [CrossRef]
- Baumann, S.; Conjelko, T.; Aronova, S.; Lafond, S.; David, F.; Ebeler, S.E. Accurate Mass Retention Time Locked Flavor Database by GC-TOF. In Proceedings of the American Society for Mass Spectrometry Annual Conference, Minneapolis, MN, USA, 9–13 June 2013; p. MP-685. [Google Scholar]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed Minimum Reporting Standards for Chemical Analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Alonso, I.; Pérez, F.; Aguado, M.; Egea, J.; Atxiaga, M.; Estanga, E.; Saila, E.T.A.E. Guía Para La Evaluación Sensorial de La Calidad de Los Vinos Tintos de Rioja Alavesa; Servicio Central de Publicaciones: Gobierno Vasco, Spain, 2007; ISBN 978-84-457-2563-4. [Google Scholar]
- Linstrom, P.J.; Mallard, W.G. NIST Standard Reference Database Number 69. In NIST Chemistry WebBook; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022. [Google Scholar]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative Determination of the Odorants of Young Red Wines from Different Grape Varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Liu, Y.; Rousseaux, S.; Tourdot-Maréchal, R.; Sadoudi, M.; Gougeon, R.; Schmitt-Kopplin, P.; Alexandre, H. Wine Microbiome: A Dynamic World of Microbial Interactions. Crit. Rev. Food Sci. Nutr. 2017, 57, 856–873. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.J.; Bakker, J. Wine Flavour Chemistry; Blackwell Publishing: Oxford, UK, 2007; ISBN 978-1-4051-0530-9. [Google Scholar]
- Pérez-Jiménez, M.; Sherman, E.; Pozo-Bayón, M.A.; Pinu, F.R. Application of Untargeted Volatile Profiling and Data Driven Approaches in Wine Flavoromics Research. Food Res. Int. 2021, 145, 110392. [Google Scholar] [CrossRef] [PubMed]
- MacNeil, K. The Wine Bible, 2nd ed.; Workman Publishing: New York, NY, USA, 2015; ISBN 978-0-7611-8715-8. [Google Scholar]
- Niimi, J.; Boss, P.K.; Bastian, S.E.P. Sensory Profiling and Quality Assessment of Research Cabernet Sauvignon and Chardonnay Wines; Quality Discrimination Depends on Greater Differences in Multiple Modalities. Food Res. Int. 2018, 106, 304–316. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, J.; Sun, Y. Influence and Metabolomic Basis of an Indigenous Yeast CECA, from Ningxia Wine Region of China, on the Aroma and Flavor of Cabernet Sauvignon Wines. Food Chem. X 2024, 23, 101525. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Zhang, F.; Zhang, J. Impact of Biodynamic and Organic Vineyard Management on the Microorganism Community and Aroma Characteristics of Cabernet Sauvignon Wine. J. Clean. Prod. 2024, 467, 142929. [Google Scholar] [CrossRef]
- Cameleyre, M.; Lytra, G.; Tempere, S.; Barbe, J.-C. Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution. J. Agric. Food Chem. 2015, 63, 9777–9788. [Google Scholar] [CrossRef]
- de-la-Fuente-Blanco, A.; Sáenz-Navajas, M.-P.; Ferreira, V. On the Effects of Higher Alcohols on Red Wine Aroma. Food Chem. 2016, 210, 107–114. [Google Scholar] [CrossRef]
- Gallone, B.; Steensels, J.; Prahl, T.; Soriaga, L.; Saels, V.; Herrera-Malaver, B.; Merlevede, A.; Roncoroni, M.; Voordeckers, K.; Miraglia, L.; et al. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. Cell 2016, 166, 1397–1410.e16. [Google Scholar] [CrossRef]
- Bindon, K.A.; Kassara, S.; Solomon, M.; Bartel, C.; Smith, P.A.; Barker, A.; Curtin, C. Commercial Saccharomyces cerevisiae Yeast Strains Significantly Impact Shiraz Tannin and Polysaccharide Composition with Implications for Wine Colour and Astringency. Biomolecules 2019, 9, 466. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Liu, N.; Sun, J.; Yao, R.; Shi, F.; Li, J.; Jiang, W.; Li, H.; Zhang, Q.; et al. Chemical and Sensory Properties of Young Cabernet Sauvignon and Marselan Wines from Subregions on the Eastern Foothills of Helan Mountains in Ningxia, China: Terroir Effect. Food Chem. X 2025, 25, 102191. [Google Scholar] [CrossRef] [PubMed]
- Knight, S.; Klaere, S.; Fedrizzi, B.; Goddard, M.R. Regional Microbial Signatures Positively Correlate with Differential Wine Phenotypes: Evidence for a Microbial Aspect to Terroir. Sci. Rep. 2015, 5, 14233. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Trinh, C.T. Microbial Biosynthesis of Lactate Esters. Biotechnol. Biofuels 2019, 12, 226. [Google Scholar] [CrossRef]
- Tan, J.; Ji, M.; Gong, J.; Chitrakar, B. The Formation of Volatiles in Fruit Wine Process and Its Impact on Wine Quality. Appl. Microbiol. Biotechnol. 2024, 108, 420. [Google Scholar] [CrossRef] [PubMed]
- Saerens, S.M.G.; Delvaux, F.R.; Verstrepen, K.J.; Thevelein, J.M. Production and Biological Function of Volatile Esters in Saccharomyces cerevisiae. Microb. Biotechnol. 2010, 3, 165–177. [Google Scholar] [CrossRef]
- Suárez, R.; Suárez-Lepe, J.A.; Morata, A.; Calderón, F. The Production of Ethylphenols in Wine by Yeasts of the Genera Brettanomyces and Dekkera: A Review. Food Chem. 2007, 102, 10–21. [Google Scholar] [CrossRef]
- Rankine, B.C.; PococK, K.F. SS-Phenethanol and n-Hexanol in Wines: Influence of Yeast Starin, Grape Variety and Other Factors; and Taste Thresholds. Vitis 1969, 8, 23–27. [Google Scholar]
- Izquierdo Cañas, P.M.; García Romero, E.; Gómez-Alonso, S.; Palop Herreros, M.L.L. Changes in the Aromatic Composition of Tempranillo Wines during Spontaneous Malolactic Fermentation. J. Food Compos. Anal. 2008, 21, 724–730. [Google Scholar] [CrossRef]
- López-Cordón, E.N. Brettanomyces/Dekkera Control y detección en bodegas. ACE Rev. Enol. 2007, 78. [Google Scholar]
- Oelofse, A.; Pretorius, I.S.; Du Toit, M. Significance of Brettanomyces and Dekkera during Winemaking: A Synoptic Review. S. Afr. J. Enol. Vitic. 2016, 29, 128–144. [Google Scholar] [CrossRef]
- Li, N.; Li, G.; Guan, X.; Li, A.; Tao, Y. Volatile Aroma Compound-Based Decoding and Prediction of Sweet Berry Aromas in Dry Red Wine. Food Chem. 2025, 463, 141248. [Google Scholar] [CrossRef] [PubMed]
- Goulioti, E.; Jeffery, D.W.; Gialouris, P.-L.; Nastou, E.; Dasenaki, M.; Kontoudakis, N.; Thomaidis, N.; Kotseridis, Y. Effect of Terroir on Aroma and Sensory Characteristics of Xinomavro (Vitis vinifera L. cv.) Red Wines from Different Greek Protected Designations of Origin. Food Chem. 2025, 486, 144507. [Google Scholar] [CrossRef] [PubMed]
- Crucello, J.; Miron, L.F.O.; Ferrer, V.H.C.; Nan, H.; Marques, M.O.M.; Ritschel, P.S.; Zanus, M.C.; Anderson, J.L.; Poppi, R.J.; Hantao, L.W. Characterization of the Aroma Profile of Novel Brazilian Wines by Solid-Phase Microextraction Using Polymeric Ionic Liquid Sorbent Coatings. Anal. Bioanal. Chem. 2018, 410, 4749–4762. [Google Scholar] [CrossRef]
- Umano, K.; Hagi, Y.; Nakahara, K.; Shoji, A.; Shibamoto, T. Volatile Constituents of Green and Ripened Pineapple (Ananas comosus [L.] Merr.). J. Agric. Food Chem. 1992, 40, 599–603. [Google Scholar] [CrossRef]
- Ramirez-Gaona, M.; Marcu, A.; Pon, A.; Guo, A.C.; Sajed, T.; Wishart, N.A.; Karu, N.; Djoumbou Feunang, Y.; Arndt, D.; Wishart, D.S. YMDB 2.0: A Significantly Expanded Version of the Yeast Metabolome Database. Nucleic Acids Res. 2017, 45, D440–D445. [Google Scholar] [CrossRef]
- Sunghwan, K.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2025 Update. Nucleic Acids Res. 2025, 53, D1516–D1525. [Google Scholar] [CrossRef]
Tank | Harvest TSS | Yeast | AF (Days) | AF T (°C) | PFM (Days) |
---|---|---|---|---|---|
1 (69 hL) | 22.5 °Brix | WLP740 | 12 | 20 | 3 |
2 (107 hL) | 22.2 °Brix | ICVD80 | 12 | 21 | 6 |
3 (25 hL) | 23.0 °Brix | ICVD254 | 12 | 22 | 6 |
Panelist | Expertise (Years) | Age (Years) | GQ1 | GQ2 | GQ (SD) | RSD |
---|---|---|---|---|---|---|
1 | 6 | 40 | 4.52 | 4.00 | 4.26 (0.37) | 8.63 |
2 | 44 | 68 | 3.35 | 4.13 | 3.74 (0.55) | 14.75 |
3 | 45 | 62 | 5.80 | 5.35 | 5.57 (0.32) | 5.71 |
4 * | 30 | 65 | 5.10 | 3.55 | 4.32 (1.10) | 25.34 |
5 | 6 | 47 | 4.76 | 4.66 | 4.71 (0.07) | 1.50 |
6 | 25 | 66 | 2.76 | 2.30 | 2.53 (0.33) | 12.86 |
ICVD254 | ICVD80 | WLP740 | |||||||
---|---|---|---|---|---|---|---|---|---|
# | RI | Compound | Ab | %Ab | Ab | %Ab | Ab | %Ab | Aromatic Descriptors |
1 | 873 | Ethyl formate | 4.5 × 106 c | 0.081 | 3.7 × 106 b | 0.100 | 2.9 × 106 a | 0.070 | Like grapes, cognac, and melon |
2 | 907 | Ethyl acetate | 4.9 × 108 | 8.844 | 7.2 a × 108 | 19.466 | 8.7 × 108 | 20.996 | Anise, balsam, ethereal, fruity |
3 | 913 | Methyl alcohol | 1.2 × 107 | 0.213 | 1.3 × 107 | 0.350 | 1.5 × 107 | 0.366 | Alcoholic, sweet, pungent |
4 | 965 | Ethyl propanoate | 5.6 × 106 | 0.101 | 4.6 × 106 | 0.124 | 3.4 × 106 | 0.084 | Sweet, fruity, rum, juicy, grape |
5 | 972 | Ethyl isobutyrate | 1.6 × 107 | 0.286 | 1.6 × 107 | 0.441 | ND | ND | Fruity, sweet, ethereal |
6 | 1021 | Isobutyl acetate | 8.1 × 106 | 0.147 | 7.4 × 106 | 0.202 | 7.7 × 106 | 0.188 | Apple, banana, bitter |
7 | 1043 | Ethyl butyrate | 4.4 × 107 a | 0.802 | 6.2 × 107 b | 1.678 | 7.3 × 107 b | 1.764 | Apple, banana, cognac |
8 | 1047 | 1-Propanol | 5.4 × 107 | 0.983 | 4.4 × 107 | 1.196 | 4.7 × 107 | 1.143 | Alcoholic, fermented, musty |
9 | 1051 | Methyl thiolacetate | ND | ND | 7.3 × 105 | 0.020 | 6.5 × 105 | 0.016 | Sulfurous, eggy, cheese, dairy |
10 | 1061 | Ethyl 2-methylbutyrate | 1.8 × 106 | 0.033 | 4.1 × 106 | 0.110 | 2.5 × 106 | 0.061 | Sharp, sweet, green, apple |
11 | 1062 | 2,3-Pentanedione (3) | ND | ND | ND | ND | 1.0 × 106 | 0.025 | Butter, caramel, cheese, cream |
12 | 1067 | Ethyl 3-methylbutyrate | 2.6 × 106 a | 0.048 | 7.2 × 106 b | 0.197 | 3.7 × 106 a | 0.089 | Fruity, sweet, apple, pineapple |
13 | 1109 | Isobutyl alcohol | 4.4 × 108 a | 8.037 | 1.3 × 108 b | 3.610 | 9.1 × 107 b | 2.205 | Bitter, ether, solvent, wine |
14 | 1128 | Isoamyl acetate | 1.6 × 108 a | 2.954 | 4.3 × 108 b | 11.799 | 4.4 × 108 b | 10.756 | Banana, bitter, fruity, solvent |
15 | 1161 | 1-Butanol | 9.1 × 106 | 0.166 | 8.9 × 106 | 0.241 | 1.03 × 107 | 0.250 | Fruity, fusel, medicine, oil |
16 | 1181 | Isoamyl propionate (2) | ND | ND | 2.2 × 106 | 0.061 | ND | ND | Sweet, banana, pineapple, ripe |
17 | 1184 | Methyl hexanoate (3) | ND | ND | ND | ND | 9.7 × 105 | 0.023 | Ethereal, pineapple, apricot |
18 | 1188 | D-Limonene (1) | 4.0 × 105 | 0.007 | ND | ND | ND | ND | Lemon, orange |
19 | 1212 | Unknown 1212 (1) | 1.7 × 109 | 30.594 | ND | ND | ND | ND | N/A |
20 | 1216 | 2-Methyl-1-butanol | 8.7 × 105 | 0.016 | 4.0 × 105 | 0.011 | 4.2 × 105 | 0.010 | Malt |
21 | 1236 | Ethyl hexanoate | 5.7 × 108 | 10.291 | 2.8 × 108 | 7.645 | 8.3 × 108 | 20.133 | Apple peel, banana, green |
22 | 1263 | Styrene (1) | 1.1 × 106 | 0.020 | ND | ND | ND | ND | Balsamic, floral, gasoline, plastic |
23 | 1267 | 1-Pentanol (1) | 4.0 × 106 | 0.072 | ND | ND | ND | ND | Balsam, fusel, oil, sweet |
24 | 1273 | Isoamyl butyrate (3) | ND | ND | ND | ND | 1.1 × 106 | 0.027 | Fruity, green, apricot, pear |
25 | 1282 | Hexyl acetate( | 9.7 × 106 | 0.175 | 1.0 × 107 | 0.282 | 1.60 × 107 | 0.387 | Apple, banana, bitter, green |
26 | 1310 | Acetoin | 1.6 × 106 a | 0.030 | 2.6 × 106 a,b | 0.072 | 5.0 × 106 b | 0.121 | Sweet, buttery, creamy, dairy |
27 | 1303 | Isopentyl 3-methylbutyrate (3) | ND | ND | ND | ND | 1.3 × 106 | 0.032 | Apple, green, mango, ripe, sweet |
28 | 1307 | Ethyl 3-hexanoate (1) | 1.0 × 106 | 0.018 | ND | ND | ND | ND | Fresh, fruity, green, metallic |
29 | 1335 | Hexyl formate | 2.7 × 106 | 0.049 | 5.3 × 106 | 0.145 | 3.2 × 106 | 0.079 | Nutty |
30 | 1348 | 4-Methyl-1-pentanol | 5.0 × 106 a | 0.091 | 1.5 × 107 b | 0.412 | 9.4 × 106 b | 0.229 | Apple, plum, banana, sweet |
31 | 1349 | Ethyl heptanoate | 7.4 × 106 b | 0.134 | 2.2 × 106 a | 0.059 | 1.3 × 106 a | 0.031 | Balsam, creamy, fruity, milky |
32 | 1358 | Ethyl 2-hexanoate (1) | 3.7 × 106 | 0.068 | ND | ND | ND | ND | Fruity, green, juicy, rum, sweet |
33 | 1359 | Ethyl lactate | 1.1 × 108 | 2.065 | 1.2 × 108 | 3.333 | 8.2 × 107 | 1.985 | Butter, butterscotch, fruit, sharp |
34 | 1373 | 1-Hexanol | 3.2 × 108 c | 5.861 | 2.0 × 108 b | 5.442 | 1.3 × 108 a | 3.076 | Alcoholic, ethereal, floral, fruity |
35 | 1384 | trans-3-Hexen-1-ol | 2.9 × 106 b | 0.052 | 1.7 × 106 a,b | 0.046 | 1.1 × 106 a | 0.027 | Green, cortex, leafy, floral, petal |
36 | 1394 | 3-Ethoxy-1-propanol (1) | 1.1 × 106 | 0.020 | ND | ND | ND | ND | Fruit |
37 | 1403 | cis-3-Hexen-1-ol (1) | 2.3 × 106 | 0.042 | ND | ND | ND | ND | Green, leafy |
38 | 1404 | Methyl octanoate | 2.0 × 106 | 0.036 | 2.2 × 106 | 0.060 | 1.7 × 106 | 0.042 | Aldehydic, green, herbal, orange |
39 | 1410 | 3-Octanol | 1.5 × 106 | 0.027 | ND | ND | 1.2 × 106 | 0.028 | Earthy, mushroom, dairy, musty |
40 | 1423 | Unknown 1423 (1) | 3.8 × 105 | 0.007 | ND | ND | ND | ND | N/A |
41 | 1434 | Unknown 1434 (1) | 5.6 × 105 | 0.010 | ND | ND | ND | ND | N/A |
42 | 1436 | Unknown 1436 | 8.5 × 105 | 0.015 | 8.7 × 105 | 0.024 | ND | ND | N/A |
43 | 1444 | Unknown 1444 | 8.7 × 105 | 0.016 | 7.4 × 105 | 0.020 | 1.4 × 106 | 0.033 | N/A |
44 | 1453 | Ethyl octanoate | 5.9 × 108 b | 10.745 | 5.1 × 106 a | 0.140 | 5.1 × 108 b | 12.319 | Apricot, banana, brandy, fat, fruity |
45 | 1460 | 1,3-Dichlorobenzene | 1.1 × 106 | 0.019 | 9.3 × 105 | 0.025 | 9.2 × 105 | 0.022 | N/A |
46 | 1466 | 1-Octen-3-ol | 4.1 × 106 b | 0.073 | 4.0 × 106 b | 0.107 | 2.8 × 106 a | 0.069 | Earthy, fishy, fungal, green |
47 | 1474 | 1-Heptanol (3) | ND | ND | ND | ND | 5.5 × 106 | 0.133 | Chemical, coconut, green, herbal |
48 | 1475 | Isoamyl hexanoate (2) | ND | ND | 2.0 × 106 | 0.053 | ND | ND | Apple, banana, green, pineapple |
49 | 1478 | Acetic acid | 1.1 × 108 | 2.074 | 8.4 × 107 | 2.290 | 5.7 × 107 | 1.390 | Pungent, sharp, sour, vinegar |
50 | 1482 | Unknown 1482 | 1.02 × 106 | 0.019 | 4.8 × 105 | 0.013 | 5.5 × 105 | 0.013 | N/A |
51 | 1505 | 2-Ethyl-1-hexanol | 5.2 × 105 a | 0.009 | 3.8 × 106 b | 0.102 | 3.7 × 106 b | 0.089 | Citrus, floral, fresh, green, oily |
52 | 1521 | Unknown 1521 (1) | 6.1 × 105 | 0.011 | ND | ND | ND | ND | N/A |
53 | 1527 | Unknown 1527 | 2.7 × 106 c | 0.048 | 1.5 × 106 b | 0.040 | 1.0 × 106 a | 0.025 | N/A |
54 | 1535 | 2-Nonanol | 2.2 × 106 | 0.041 | 2.8 × 106 | 0.078 | ND | ND | Cheese, citrus, creamy, cucumber |
55 | 1547 | Unknown 1547 (1) | 1.10 × 106 | 0.020 | ND | ND | ND | ND | N/A |
56 | 1549 | Unknown 1549 | ND | ND | 1.3 × 106 | 0.037 | 6.8 × 105 | 0.017 | N/A |
57 | 1549 | Ethyl nonanoate | 1.5 × 106 | 0.026 | 2.0 × 106 | 0.053 | ND | ND | Fruity, natural, rose, rum, tropical |
58 | 1557 | 2,3-Butanediol | 5.3 × 107 | 0.955 | 4.7 × 107 | 1.275 | 3.9 × 107 | 0.948 | Buttery, creamy, fruit, onion |
59 | 1559 | Ethyl dl-2-hydroxycaproate | 1.6 × 106 a | 0.029 | 2.7 × 106 b | 0.073 | 1.2 × 106 a | 0.028 | N/A |
60 | 1562 | beta-Linalool | 1.3 × 106 | 0.023 | 1.5 × 106 | 0.042 | 1.1 × 106 | 0.026 | Blueberry, citrus, floral, flower |
61 | 1574 | 1-Octanol | 6.3 × 106 a | 0.113 | 8.0 × 106 b | 0.219 | 5.1 × 106 a | 0.124 | Aldehyde, burnt, chemical, green |
62 | 1585 | Isoamyl lactate | 1.9 × 106 a | 0.035 | 3.5 × 106 b | 0.094 | 1.3 × 106 a | 0.032 | Fruity, creamy, nutty |
63 | 1593 | Propylene Glycol | 1.8 × 107 | 0.323 | 1.7 × 107 | 0.453 | 1.1 × 107 | 0.261 | Alcoholic, odorless |
64 | 1611 | Unknown 1611 | 1.8 × 106 | 0.033 | 2.6 × 106 | 0.072 | ND | ND | N/A |
65 | 1610 | Methyl decanoate (3) | ND | ND | ND | ND | 3.6 × 105 | 0.009 | Floral, fruity, oily, wine |
66 | 1633 | Unknown 1633 | 6.3 × 105 | 0.011 | 6.2 × 105 | 0.017 | ND | ND | N/A |
67 | 1637 | Ethyl 2-furoate | 1.5 × 105 | 0.003 | 1.6 × 105 | 0.004 | 1.5 × 105 | 0.004 | Fruity, floral |
68 | 1646 | Oxolan-2-one | 1.6 × 106 | 0.029 | 1.6 × 106 | 0.044 | 1.1 × 106 | 0.026 | Creamy, oily, fatty, caramel |
69 | 1649 | Ethyl methylbutanedionate (1) | 2.90 × 105 | 0.005 | ND | ND | ND | ND | No flavor nor odor reported |
70 | 1657 | Ethyl decanoate | 2.2 × 107 a | 0.394 | 2.0 × 108 b | 5.560 | 1.2 × 108 a | 2.814 | Apple, brandy, fruity, grape, oily |
71 | 1676 | 1-nonanol | 4.5 × 106 a,b | 0.081 | 6.4 × 106 b | 0.174 | 3.5 × 106 a | 0.086 | Bitter, clean, dusty, fatty, floral |
72 | 1676 | Ethyl benzoate | 4.5 × 105 | 0.008 | 3.3 × 105 | 0.009 | ND | ND | Fruity, dry, musty, sweet |
73 | 1691 | Diethyl succinate | 2.1 × 108 b | 3.761 | 3.1 × 108 c | 8.321 | 1.5 × 108 a | 3.522 | Apple, apricot, chocolate, cooked |
74 | 1702 | 3-Nonen-1-ol (1) | 2.8 × 105 | 0.005 | ND | ND | ND | ND | Fresh, waxy, green, melon rind |
75 | 1707 | Ethyl 9-decenoate | 1.9 × 106 a | 0.035 | 7.8 × 106 b | 0.212 | 8.0 × 106 b | 0.194 | Fruity, fatty (1) |
76 | 1715 | alpha-Terpineol | 2.7 × 105 | 0.005 | 3.2 × 105 | 0.009 | 1.8 × 105 | 0.004 | Anise, citrus, floral, minty, pine |
77 | 1735 | 3-(methylthio)-1-propanol | 1.3 × 106 a | 0.024 | 4.0 × 106 b | 0.108 | 1.8 × 106 a | 0.044 | Onion, potato, soup, sulfurous |
78 | 1738 | Unknown 1738 | 2.6 × 105 | 0.005 | 2.3 × 105 | 0.006 | 2.3 × 105 | 0.005 | N/A |
79 | 1758 | Unknown 1758 | 2.7 × 105 | 0.005 | ND | ND | 1.8 × 105 | 0.004 | N/A |
80 | 1768 | Unknown 1768 | 3.9 × 106 | 0.071 | 9.6 × 106 | 0.260 | 4.4 × 106 | 0.107 | N/A |
81 | 1777 | 1-Decanol | 1.1 × 106 | 0.020 | 1.4 × 106 | 0.037 | 9.1 × 105 | 0.022 | Clean, fat, fatty, floral, orange |
82 | 1781 | Citronellol | 4.2 × 105 | 0.008 | 5.6 × 105 | 0.015 | 3.0 × 105 | 0.007 | Citrus, floral, geranium, leather |
83 | 1795 | Methyl salicylate | 2.0 × 105 b | 0.004 | 2.4 × 105 b | 0.006 | 1.5 × 105 a | 0.004 | Wintergreen, minty |
84 | 1806 | Ethyl phenylacetate | 4.5 × 105 b | 0.008 | 4.4 × 105 b | 0.012 | 2.4 × 105 a | 0.006 | Sweet, floral, honey, rose, cocoa |
85 | 1807 | Unknown 1807 | 5.4 × 105 b | 0.010 | 6.9 × 105 b | 0.019 | 2.5 × 105 a | 0.006 | N/A |
86 | 1816 | Unknown 1816 | 2.0 × 106 | 0.037 | 3.3 × 106 | 0.089 | 2.3 × 106 | 0.055 | N/A |
87 | 1825 | Phenethyl acetate | 1.7 × 106 a | 0.031 | 5.3 × 106 b | 0.144 | 4.9 × 106 a,b | 0.120 | Floral, fruity, honey, rose, sweet |
88 | 1830 | beta-Damascenone | 3.7 × 105 | 0.007 | 7.0 × 105 | 0.019 | 7.6 × 105 | 0.019 | Apple, honey, rose, smoky, sweet |
89 | 1841 | Ethyl dodecanoate | 4.9 × 105 a | 0.009 | 4.1 × 106 b | 0.112 | 3.1 × 106 a,b | 0.075 | Clean, floral, leafy, soapy, sweet |
90 | 1854 | 3-Methylbutyl decanoate (2) | ND | ND | 2.0 × 105 | 0.005 | ND | ND | Waxy, banana, fruity, sweet |
91 | 1864 | Benzyl alcohol | 3.8 × 106 b | 0.070 | 5.5 × 106 c | 0.149 | 2.6 × 106 a | 0.062 | Balsamic, cherry, floral, flower |
92 | 1879 | Ethyl isopentyl succinate (1) | 2.0 × 106 a | 0.036 | 6.4 × 106 b | 0.173 | 2.2 × 106 a | 0.053 | Found in wine and beer |
93 | 1887 | Unknown 1887 | 2.5 × 105 | 0.005 | ND | ND | ND | ND | N/A |
94 | 1887 | 2-Phenylethanol | 4.5 × 108 a | 8.103 | 7.9 × 108 b | 21.388 | 5.2 × 108 a | 12.571 | Rose, honey, sweet berry, hyacinth |
95 | 2006 | 4-Ethylguaiacol (1) | 4.3 × 105 | 0.008 | ND | ND | ND | ND | Bacon, clove, phenolic, smoky |
96 | 2123 | Unknown 2123 | 7.5 × 106 | 0.135 | ND | ND | 1.6 × 107 | 0.401 | N/A |
97 | 2093 | Octanoic acid (2) | ND | ND | 2.8 × 107 | 0.762 | ND | ND | Cheese, cheesy, fatty, oily, rancid |
98 | 2197 | 4-Ethylphenol | 3.2 × 106 c | 0.057 | 4.8 × 105 b | 0.013 | 3.1 × 105 a | 0.007 | Phenolic, castoreum, smoky |
99 | 2313 | Unknown 2313 (2) | ND | ND | 3.2 × 105 | 0.009 | ND | ND | N/A |
100 | 2323 | 2,4-Di-tert-butylphenol | 1.7 × 105 | 0.003 | 2.7 × 105 | 0.007 | 2.0 × 105 | 0.005 | Phenolic |
Parameters (Values) | WLP740 (RelAb) | ICVD80 (RelAb) | ICVD254 (RelAb) |
---|---|---|---|
Nose Parameters (30%) | |||
RQ odor intensity (12%) | 0.50 | 0.45 | 0.41 |
RQ odor complexity (18%) | 0.81 | 0.63 | 0.68 |
Mouthfeel parameters (60%) | |||
RQ aromatic intensity (10%) | 0.47 | 0.45 | 0.38 |
RQ aromatic complexity (15%) | 0.71 | 0.56 | 0.48 |
RQ balance and body (25%) | 1.12 | 0.94 | 0.75 |
RQ aromatic persistency (10%) | 0.52 | 0.37 | 0.32 |
Appearance parameters (10%) | |||
RQ color (6%) | 0.36 | 0.34 | 0.31 |
RQ color intensity (4%) | 0.24 | 0.21 | 0.18 |
Global Quality | 4.75 a High | 3.96 a,b Medium | 3.52 b Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chávez-Márquez, A.; Gardea, A.A.; González-Rios, H.; Robles-Burgueño, M.d.R.; Vázquez-Moreno, L. Volatilomic and Sensorial Profiles of Cabernet Sauvignon Wines Fermented with Different Commercial Yeasts. Fermentation 2025, 11, 485. https://doi.org/10.3390/fermentation11080485
Chávez-Márquez A, Gardea AA, González-Rios H, Robles-Burgueño MdR, Vázquez-Moreno L. Volatilomic and Sensorial Profiles of Cabernet Sauvignon Wines Fermented with Different Commercial Yeasts. Fermentation. 2025; 11(8):485. https://doi.org/10.3390/fermentation11080485
Chicago/Turabian StyleChávez-Márquez, Alejandra, Alfonso A. Gardea, Humberto González-Rios, Maria del Refugio Robles-Burgueño, and Luz Vázquez-Moreno. 2025. "Volatilomic and Sensorial Profiles of Cabernet Sauvignon Wines Fermented with Different Commercial Yeasts" Fermentation 11, no. 8: 485. https://doi.org/10.3390/fermentation11080485
APA StyleChávez-Márquez, A., Gardea, A. A., González-Rios, H., Robles-Burgueño, M. d. R., & Vázquez-Moreno, L. (2025). Volatilomic and Sensorial Profiles of Cabernet Sauvignon Wines Fermented with Different Commercial Yeasts. Fermentation, 11(8), 485. https://doi.org/10.3390/fermentation11080485