Production of Indole-3-Acetic Acid and Degradation of 2,4-D by Yeasts Isolated from Pollinating Insects
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of Yeasts
2.2. Cellular Growth Assays and Indole-3-Acetic Acid Production
2.3. Cellular Growth Assays in the Presence of Synthetic Herbicides
2.4. Analysis of 2,4-D Degradation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maggi, F.; la Cecilia, D.; Tang, F.H.M.; McBratney, A. The Global Environmental Hazard of Glyphosate Use. Sci. Total Environ. 2020, 717, 137167. [Google Scholar] [CrossRef] [PubMed]
- Maggi, F.; Tang, F.H.M.; la Cecilia, D.; McBratney, A. PEST-CHEMGRIDS, Global Gridded Maps of the Top 20 Crop-Specific Pesticide Application Rates from 2015 to 2025. Sci. Data 2019, 6, 170. [Google Scholar] [CrossRef] [PubMed]
- Badani, H.; Djadouni, F.; Haddad, F.Z. Effects of the Herbicide Glyphosate [n-(Phosphonomethyl) Glycine] on Biodiversity and Organisms in the Soil. Eur. J. Environ. Sci. 2023, 13, 5–14. [Google Scholar] [CrossRef]
- Ruuskanen, S.; Fuchs, B.; Nissinen, R.; Puigbò, P.; Rainio, M.; Saikkonen, K.; Helander, M. Ecosystem Consequences of Herbicides: The Role of Microbiome. Trends Ecol. Evol. 2023, 38, 35–43. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Hua, X.; Müller, K.; Wang, H.; Yang, T.; Wang, Q.; Peng, X.; Wang, M.; Pang, Y.; et al. Glyphosate Application Increased Catabolic Activity of Gram-Negative Bacteria but Impaired Soil Fungal Community. Environ. Sci. Pollut. Res. Int. 2018, 25, 14762–14772. [Google Scholar] [CrossRef]
- Vázquez, M.B.; Moreno, M.V.; Amodeo, M.R.; Bianchinotti, M.V. Effects of Glyphosate on Soil Fungal Communities: A Field Study. Rev. Argent. Microbiol. 2021, 53, 349–358. [Google Scholar] [CrossRef]
- Jacquemyn, H.; Pozo, M.I.; Álvarez-Pérez, S.; Lievens, B.; Fukami, T. Yeast–Nectar Interactions: Metacommunities and Effects on Pollinators. Curr. Opin. Insect Sci. 2021, 44, 35–40. [Google Scholar] [CrossRef]
- Fenner, E.D.; Scapini, T.; da Costa Diniz, M.; Giehl, A.; Treichel, H.; Álvarez-Pérez, S.; Alves, S.L. Nature’s Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms. J. Fungi 2022, 8, 984. [Google Scholar] [CrossRef]
- Malassigné, S.; Minard, G.; Vallon, L.; Martin, E.; Moro, C.V.; Luis, P. Diversity and Functions of Yeast Communities Associated with Insects. Microorganisms 2021, 9, 1552. [Google Scholar] [CrossRef]
- Brochado, M.G.d.S.; Mielke, K.C.; de Paula, D.F.; Laube, A.F.S.; Alcántara-de la Cruz, R.; Gonzatto, M.P.; Mendes, K.F. Impacts of Dicamba and 2,4-D Drift on ‘Ponkan’ Mandarin Seedlings, Soil Microbiota and Amaranthus retroflexus. J. Hazard. Mater. Adv. 2022, 6, 100084. [Google Scholar] [CrossRef]
- Pritsch, E.J.P.; Schutz, D.; de Oliveira, C.G.; Camargo, A.F.; Cabrera, L.C.; dos Santos, A.A.; Mossi, A.J.; Treichel, H.; Alves, S.L. A Two-Way Street: How Are Yeasts Impacted by Pesticides and How Can They Help Solve Agrochemical Contamination Problems? Processes 2024, 12, 2555. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal, 6th ed.; Artmed: Porto Alegre, Brazil, 2016. [Google Scholar]
- Millan, A.F.-S.; Farran, I.; Larraya, L.; Ancin, M.; Arregui, L.M.; Veramendi, J. Plant Growth-Promoting Traits of Yeasts Isolated from Spanish Vineyards: Benefits for Seedling Development. Microbiol. Res. 2020, 237, 126480. [Google Scholar] [CrossRef]
- Oliveira, T.B.; Rodolfo, B.J.; Luana, G.S.; Marcia, M.R.-M. Rhizosphere Yeast Torulaspora globosa with Plant Growth Promotion Traits and Improvement of the Development of Tomato Seedlings under Greenhouse Conditions. Afr. J. Agric. Res. 2019, 14, 935–942. [Google Scholar] [CrossRef]
- Nutaratat, P.; Srisuk, N.; Arunrattiyakorn, P.; Limtong, S. Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol. 2014, 118, 683–694. [Google Scholar] [CrossRef]
- Bright, J.P.; Karunanadham, K.; Maheshwari, H.S.; Karuppiah, E.A.A.; Thankappan, S.; Nataraj, R.; Pandian, D.; Ameen, F.; Poczai, P.; Sayyed, R.Z. Seed-Borne Probiotic Yeasts Foster Plant Growth and Elicit Health Protection in Black Gram (Vigna mungo L.). Sustainability 2022, 14, 4618. [Google Scholar] [CrossRef]
- Marques, A.R.; Resende, A.A.; Gomes, F.C.O.; Santos, A.R.O.; Rosa, C.A.; Duarte, A.A.; de Lemos-Filho, J.P.; dos Santos, V.L. Plant Growth–Promoting Traits of Yeasts Isolated from the Tank Bromeliad vriesea Minarum L.B. Smith and the Effectiveness of Carlosrosaea vrieseae for Promoting Bromeliad Growth. Braz. J. Microbiol. 2021, 52, 1417–1429. [Google Scholar] [CrossRef]
- Viegas, C.A.; Cabral, M.G.; Teixeira, M.C.; Neumann, G.; Heipieper, H.J.; Sá-Correia, I. Yeast Adaptation to 2,4-Dichlorophenoxyacetic Acid Involves Increased Membrane Fatty Acid Saturation Degree and Decreased OLE1 Transcription. Biochem. Biophys. Res. Commun. 2005, 330, 271–278. [Google Scholar] [CrossRef]
- Cabral, M.G.; Viegas, C.A.; Teixeira, M.C.; Sá-Correia, I. Toxicity of Chlorinated Phenoxyacetic Acid Herbicides in the Experimental Eukaryotic Model Saccharomyces cerevisiae: Role of PH and of Growth Phase and Size of the Yeast Cell Population. Chemosphere 2003, 51, 47–54. [Google Scholar] [CrossRef]
- Teixeira, M.C.; Telo, J.P.; Duarte, N.F.; Sá-Correia, I. The Herbicide 2,4-Dichlorophenoxyacetic Acid Induces the Generation of Free-Radicals and Associated Oxidative Stress Responses in Yeast. Biochem. Biophys. Res. Commun. 2004, 324, 1101–1107. [Google Scholar] [CrossRef]
- Braconi, D.; Possenti, S.; Laschi, M.; Geminiani, M.; Lusini, P.; Bernardini, G.; Santucci, A. Oxidative Damage Mediated by Herbicides on Yeast Cells. J. Agric. Food Chem. 2008, 56, 3836–3845. [Google Scholar] [CrossRef]
- Dinep-Schneider, O.; Appiah, E.; Dapper, A.; Patterson, S.; Vermulst, M.; Gout, J.-F. Effects of the Glyphosate-Based Herbicide Roundup on C. elegans and S. cerevisiae Mortality, Reproduction, and Transcription Fidelity. Environ. Pollut. 2024, 356, 124203. [Google Scholar] [CrossRef] [PubMed]
- Stoyanova, K.; Gerginova, M.; Peneva, N.; Dincheva, I.; Alexieva, Z. Biodegradation and Utilization of the Pesticides Glyphosate and Carbofuran by Two Yeast Strains. Processes 2023, 11, 3343. [Google Scholar] [CrossRef]
- Han, L.; Zhao, D.; Li, C. Isolation and 2,4-D-Degrading Characteristics of Cupriavidus campinensis BJ71. Braz. J. Microbiol. 2015, 46, 433–441. [Google Scholar] [CrossRef]
- Castrejón-Godínez, M.L.; Tovar-Sánchez, E.; Valencia-Cuevas, L.; Rosas-Ramírez, M.E.; Rodríguez, A.; Mussali-Galante, P. Glyphosate Pollution Treatment and Microbial Degradation Alternatives, a Review. Microorganisms 2021, 9, 2322. [Google Scholar] [CrossRef]
- Chen, S.-F.; Chen, W.-J.; Song, H.; Liu, M.; Mishra, S.; Ghorab, M.A.; Chen, S.; Chang, C. Microorganism-Driven 2,4-D Biodegradation: Current Status and Emerging Opportunities. Molecules 2024, 29, 3869. [Google Scholar] [CrossRef]
- Stosiek, N.; Terebieniec, A.; Ząbek, A.; Młynarz, P.; Cieśliński, H.; Klimek-Ochab, M. N-Phosphonomethylglycine Utilization by the Psychrotolerant Yeast Solicoccozyma terricola M 3.1.4. Bioorg Chem. 2019, 93, 102866. [Google Scholar] [CrossRef]
- Fenner, E.D.; Bressan, S.K.; Santos, A.A.d.; Giehl, A.; Minussi, G.d.A.; Teixeira, E.A.A.; Diniz, M.d.C.; Werlang, L.; Fogolari, O.; Rosa, C.A.; et al. Ethanol and 2-Phenylethanol Production by Bee-Isolated Meyerozyma caribbica Strains. Prep. Biochem. Biotechnol. 2025, 55, 359–369. [Google Scholar] [CrossRef]
- Tadioto, V.; Milani, L.M.; Barrilli, É.T.; Baptista, C.W.; Bohn, L.; Dresch, A.; Harakava, R.; Fogolari, O.; Mibielli, G.M.; Bender, J.P.; et al. Analysis of Glucose and Xylose Metabolism in New Indigenous Meyerozyma caribbica Strains Isolated from Corn Residues. World J. Microbiol. Biotechnol. 2022, 38, 35. [Google Scholar] [CrossRef]
- Albarello, M.L.R.; Giehl, A.; Tadioto, V.; dos Santos, A.A.; Milani, L.M.; Bristot, J.C.S.; Tramontin, M.A.; Treichel, H.; Bernardi, O.; Stambuk, B.U.; et al. Analysis of the Holocellulolytic and Fermentative Potentials of Yeasts Isolated from the Gut of Spodoptera frugiperda Larvae. Bioenergy Res. 2023, 16, 2046–2057. [Google Scholar] [CrossRef]
- Barrilli, É.T.; Tadioto, V.; Milani, L.M.; Deoti, J.R.; Fogolari, O.; Müller, C.; Barros, K.O.; Rosa, C.A.; dos Santos, A.A.; Stambuk, B.U.; et al. Biochemical analysis of cellobiose catabolism in Candida pseudointermedia strains isolated from rotten wood. Arch. Microbiol. 2020, 202, 1729–1739. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Fu, S.-F.; Sun, P.-F.; Lu, H.-Y.; Wei, J.-Y.; Xiao, H.-S.; Fang, W.-T.; Cheng, B.-Y.; Chou, J.-Y. Plant Growth-Promoting Traits of Yeasts Isolated from the Phyllosphere and Rhizosphere of Drosera spatulata Lab. Fungal Biol. 2016, 120, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Stefanini, I. Yeast-insect Associations: It Takes Guts. Yeast 2018, 35, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Arrey, G.; Li, G.; Murphy, R.; Guimaraes, L.; Alizadeh, S.; Poulsen, M.; Regenberg, B. Isolation, Characterization, and Genome Assembly of Barnettozyma botsteinii Sp. Nov. and Novel Strains of Kurtzmaniella quercitrusa Isolated from the Intestinal Tract of the Termite Macrotermes bellicosus. G3 2021, 11, jkab342. [Google Scholar] [CrossRef] [PubMed]
- Agarbati, A.; Gattucci, S.; Canonico, L.; Ciani, M.; Comitini, F. Yeast Communities Related to Honeybees: Occurrence and Distribution in Flowers, Gut Mycobiota, and Bee Products. Appl. Microbiol. Biotechnol. 2024, 108, 175. [Google Scholar] [CrossRef]
- Morais, C.G.; Cadete, R.M.; Uetanabaro, A.P.T.; Rosa, L.H.; Lachance, M.-A.; Rosa, C.A. D-Xylose-Fermenting and Xylanase-Producing Yeast Species from Rotting Wood of Two Atlantic Rainforest Habitats in Brazil. Fungal Genet. Biol. 2013, 60, 19–28. [Google Scholar] [CrossRef]
- Navarro, H.M.C.; Félix, C.R.; Tavares, V.D.F.S.; de Sousa, F.M.P.; Santos, A.R.O.; Morais, P.B.; Rosa, C.A.; Valente, P.; Landell, M.F. Tremella ananatis Sp. Nov. and Tremella lamprococci Sp. Nov., Two Yeast Species Associated with Bromeliads. Int. J. Syst. Evol. Microbiol. 2022, 72, 005261. [Google Scholar] [CrossRef]
- Suh, S.O.; McHugh, J.V.; Pollock, D.D.; Blackwell, M. The Beetle Gut: A Hyperdiverse Source of Novel Yeasts. Mycol. Res. 2005, 109, 261–265. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Zhang, L.; Mu, J.; Jiang, Y.; Fu, H.; Zhang, Y.; Cui, H.; Yu, X.; Ye, Z. Biosynthetic Pathways and Functions of Indole-3-Acetic Acid in Microorganisms. Microorganisms 2023, 11, 2077. [Google Scholar] [CrossRef]
- Barton, M.D.; Delneri, D.; Oliver, S.G.; Rattray, M.; Bergman, C.M. Evolutionary Systems Biology of Amino Acid Biosynthetic Cost in Yeast. PLoS ONE 2010, 5, e11935. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Chen, H.-W.; Chou, J.-Y. Variation in Indole-3-Acetic Acid Production by Wild Saccharomyces cerevisiae and S. paradoxus Strains from Diverse Ecological Sources and Its Effect on Growth. PLoS ONE 2016, 11, e0160524. [Google Scholar] [CrossRef]
- Wang, K.; Sipilä, T.P.; Overmyer, K. The Isolation and Characterization of Resident Yeasts from the Phylloplane of Arabidopsis thaliana. Sci. Rep. 2016, 6, 39403. [Google Scholar] [CrossRef] [PubMed]
- Amprayn, K.; Rose, M.T.; Kecskés, M.; Pereg, L.; Nguyen, H.T.; Kennedy, I.R. Plant Growth Promoting Characteristics of Soil Yeast (Candida tropicalis HY) and Its Effectiveness for Promoting Rice Growth. Appl. Soil Ecol. 2012, 61, 295–299. [Google Scholar] [CrossRef]
- Mestre, M.C.; Langenheim, M.E.; Severino, M.E.; Fontenla, S. Do Psychrotolerant Patagonian Soil Yeasts Produce 3-Indole Acetic Acid? Rev. Argent. Microbiol. 2025, in press. [CrossRef] [PubMed]
- Sun, P.-F.; Fang, W.-T.; Shin, L.-Y.; Wei, J.-Y.; Fu, S.-F.; Chou, J.-Y. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L. PLoS ONE 2014, 9, e114196. [Google Scholar] [CrossRef]
- Nassar, A.H.; El-Tarabily, K.A.; Sivasithamparam, K. Promotion of Plant Growth by an Auxin-Producing Isolate of the Yeast Williopsis saturnus Endophytic in Maize (Zea mays L.) Roots. Biol. Fertil. Soils 2005, 42, 97–108. [Google Scholar] [CrossRef]
- Barney, J.B.; Winans, M.J.; Blackwood, C.B.; Pupo, A.; Gallagher, J.E.G. The Yeast Atlas of Appalachia: Species and Phenotypic Diversity of Herbicide Resistance in Wild Yeast. Diversity 2020, 12, 139. [Google Scholar] [CrossRef]
- Ravishankar, A.; Cumming, J.R.; Gallagher, J.E.G. Mitochondrial Metabolism Is Central for Response and Resistance of Saccharomyces cerevisiae to Exposure to a Glyphosate-Based Herbicide. Environ. Pollut. 2020, 262, 114359. [Google Scholar] [CrossRef]
- Tavares, D.S.; Mueller, L.P.; do Socorro Mascarenhas Santos, M.; Batistote, M. The Toxological Profile of the Agrotoxic Acid 2,4 Dichlophenoxyacetic in Fleischmann® Yeast. Front. J. Soc. Technol. Environ. Sci. 2022, 11, 141–149. [Google Scholar] [CrossRef]
- Gilliam, M.; Wickerham, L.J.; Morton, H.L.; Martin, R.D. Yeasts isolated from honey bees, Apis mellifera, fed 2,4-D and antibiotics. J. Invertebr. Pathol. 1974, 24, 349–356. [Google Scholar] [CrossRef]
- Wang, R.; Yang, B.; Jia, S.; Dai, Y.; Lin, X.; Ji, C.; Chen, Y. The Antioxidant Capacity and Flavor Diversity of Strawberry Wine Are Improved Through Fermentation with the Indigenous Non-Saccharomyces Yeasts Hanseniaspora uvarum and Kurtzmaniella quercitrusa. Foods 2025, 14, 886. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Dao, A.T.N.; Dang, H.T.C.; Koekkoek, J.; Brouwer, A.; de Boer, T.E.; van Spanning, R.J.M. Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D) and 2,4,5-Trichlorophenoxyacetic Acid (2,4,5-T) by Fungi Originating from Vietnam. Biodegradation 2022, 33, 301–316. [Google Scholar] [CrossRef]
Strains | Source of Isolation | Reference |
---|---|---|
CHAP-223 | Angora beetle (species Astylus variegatus) | This study |
CHAP-224 | Angora beetle (species Astylus variegatus) | This study |
CHAP-237 | Angora beetle (species Astylus variegatus) | This study |
CHAP-239 | Angora beetle (species Astylus variegatus) | This study |
CHAP-242 | Stingless bees (species Scaptotrigona postica) | Fenner et al. [28] |
CHAP-245 | Stingless bees (species Tetragonisca angustula) | This study |
CHAP-248 | Stingless bees (species Scaptotrigona postica) | Fenner et al. [28] |
Strains | Percent Identity Relative to: | ||
---|---|---|---|
Papiliotrema rajasthanensis | Papiliotrema odontotermitis | Papiliotrema laurentii | |
CHAP-223 | 99.05% | 96.39% | 95.63% |
Tremella shuangheensis | Teunia tronadorensis | Teunia globosa | |
CHAP-224 | 94.27% | 86.71% | 85.99% |
Kurtzmaniella quercitrusa | Kurtzmaniella hittingeri | Danielozyma litseae | |
CHAP-237 | 98.01% | 94.66% | 93.20% |
Papiliotrema siamensis | Papiliotrema perniciosa | Papiliotrema nemorosa | |
CHAP-239 | 99.34% | 98.03% | 96.71% |
Meyerozyma caribbica | Meyerozyma carpophila | Meyerozyma guilliermondii | |
CHAP-245 | 99.66% | 99.49% | 98.99% |
Residual Concentration of 2,4-D in Cultures That Started with: | |||
---|---|---|---|
Strains | 1.51 g/L | 3.02 g/L | 6.045 g/L |
Kurtzmaniella sp. CHAP-237 | 1.48 ± 0.46 | 1.96 ± 0.07 | 4.05 ± 0.34 |
Meyerozyma caribbica CHAP-242 | 1.46 ± 0.01 | 2.98 ± 0.14 | 3.99 ± 0.95 |
Meyerozyma caribbica CHAP-245 | 1.65 ± 0.13 | 1.80 ± 0.04 | 4.20 ± 0.23 |
Meyerozyma caribbica CHAP-248 | 1.50 ± 0.53 | 1.88 ± 0.20 | 3.24 ± 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, C.G.d.; Santos, A.A.d.; Pritsch, E.J.P.; Bressan, S.K.; Giehl, A.; Fogolari, O.; Mossi, A.J.; Treichel, H.; Alves, S.L., Jr. Production of Indole-3-Acetic Acid and Degradation of 2,4-D by Yeasts Isolated from Pollinating Insects. Microorganisms 2025, 13, 1492. https://doi.org/10.3390/microorganisms13071492
Oliveira CGd, Santos AAd, Pritsch EJP, Bressan SK, Giehl A, Fogolari O, Mossi AJ, Treichel H, Alves SL Jr. Production of Indole-3-Acetic Acid and Degradation of 2,4-D by Yeasts Isolated from Pollinating Insects. Microorganisms. 2025; 13(7):1492. https://doi.org/10.3390/microorganisms13071492
Chicago/Turabian StyleOliveira, Camila G. de, Angela Alves dos Santos, Eduardo J. P. Pritsch, Stéfany K. Bressan, Anderson Giehl, Odinei Fogolari, Altemir J. Mossi, Helen Treichel, and Sérgio L. Alves, Jr. 2025. "Production of Indole-3-Acetic Acid and Degradation of 2,4-D by Yeasts Isolated from Pollinating Insects" Microorganisms 13, no. 7: 1492. https://doi.org/10.3390/microorganisms13071492
APA StyleOliveira, C. G. d., Santos, A. A. d., Pritsch, E. J. P., Bressan, S. K., Giehl, A., Fogolari, O., Mossi, A. J., Treichel, H., & Alves, S. L., Jr. (2025). Production of Indole-3-Acetic Acid and Degradation of 2,4-D by Yeasts Isolated from Pollinating Insects. Microorganisms, 13(7), 1492. https://doi.org/10.3390/microorganisms13071492