Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (236)

Search Parameters:
Keywords = commercial refrigeration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1143 KiB  
Article
Development and Characterization of Pistachio Yogurt Analog: A Healthy, Sustainable, and Innovative Plant-Based Alternative
by Inés M. Ramos, Samuel Rodríguez García and Justa M. Poveda
Fermentation 2025, 11(8), 467; https://doi.org/10.3390/fermentation11080467 - 15 Aug 2025
Viewed by 105
Abstract
Plant-based yogurts are increasingly recognized as sustainable and health-conscious alternatives to dairy-based products, driven by environmental, ethical, and nutritional motivations. Pistachio milk, derived from an efficient and resilient crop, emerges as a promising raw material for yogurt production, offering unique sensory qualities and [...] Read more.
Plant-based yogurts are increasingly recognized as sustainable and health-conscious alternatives to dairy-based products, driven by environmental, ethical, and nutritional motivations. Pistachio milk, derived from an efficient and resilient crop, emerges as a promising raw material for yogurt production, offering unique sensory qualities and a dense nutritional profile. Rich in unsaturated fatty acids, bioactive compounds, and essential nutrients, pistachios are ideal for fermentation with lactic acid bacteria (LAB). In this study, a novel pistachio-based yogurt analog (PBYA) was developed using lactic acid fermentation, with a yogurt commercial starter, of pistachio milk. The production process was optimized to create an additive-free, clean-label formulation without the use of stabilizers or thickeners. The physicochemical, microbiological, and sensory properties of the PBYA were evaluated over refrigerated storage. The final product exhibited high levels of protein (5.6%), fat (5.4–6.8%), and total solids (20.5–21.4%), along with desirable texture and flavor characteristics. Notably, PBYA presented significantly higher concentrations of total free amino acids (754 mg/L) compared to commercial soy (557 mg/L) and cow’s milk yogurts (390 mg/L), particularly in essential amino acids such as lysine, methionine, and tryptophan. This enhanced free amino acid profile contributes to the product’s functional and nutritional value. Sensory analysis revealed good acceptance of the product, with improvements in viscosity and firmness over time, likely due to microbial exopolysaccharide production. Overall, the findings highlight the feasibility and commercial potential of PBYA as a clean-label, plant-based fermented product that meets current consumer demands for sustainability, nutrition, and sensory quality. Full article
Show Figures

Figure 1

14 pages, 2432 KiB  
Article
Charge Reduction and Performance Analysis of a Heat Pump Water Heater Using R290 as a Refrigerant—A Field Study
by Ahmed Elatar, Joseph Rendall, Jian Sun, Jamieson Brechtl and Kashif Nawaz
Energies 2025, 18(14), 3661; https://doi.org/10.3390/en18143661 - 10 Jul 2025
Viewed by 487
Abstract
Heat pump water heaters (HPWHs) are a proven technology for water heating that has been commercialized. The adoption of HPWHs for domestic and commercial water heating is growing rapidly because of their superior performance compared with alternative water heating methods. Whereas most existing [...] Read more.
Heat pump water heaters (HPWHs) are a proven technology for water heating that has been commercialized. The adoption of HPWHs for domestic and commercial water heating is growing rapidly because of their superior performance compared with alternative water heating methods. Whereas most existing systems use R-134a as a working refrigerant, R290 has gained major attention owing to its superior thermodynamic properties. The goal of the current study is to assess the performance of residential HPWH with R290 as a direct refrigerant replacement for R134a. Two units of a 50 gal HPWH were used in this experimental study. A baseline unit contained R134a refrigerant, and a prototype unit contained R290 refrigerant. The prototype unit was developed through the modification of a commercially available HPWH unit to achieve a low charge of R290 refrigerant. Another major modification was the replacement of the baseline compressor with a compressor designed for R290. Tests were conducted in a field environment (a research and demonstration house) using programmed drawn profiles daily. The prototype that reduced the charge by 43–47% provided displayed performance comparable to the baseline unit regarding first-hour rating (FHR) and the uniform energy factor (UEF). Full article
(This article belongs to the Special Issue Heat Transfer and Fluid Flows for Industry Applications)
Show Figures

Figure 1

15 pages, 1871 KiB  
Article
A Gelatin-Based Film with Acerola Pulp: Production, Characterization, and Application in the Stability of Meat Products
by Vitor Augusto dos Santos Garcia, Giovana de Menezes Rodrigues, Victória Munhoz Monteiro, Rosemary Aparecida de Carvalho, Camila da Silva, Cristiana Maria Pedroso Yoshida, Silvia Maria Martelli, José Ignacio Velasco and Farayde Matta Fakhouri
Polymers 2025, 17(13), 1882; https://doi.org/10.3390/polym17131882 - 6 Jul 2025
Viewed by 514
Abstract
The objective of this work was to produce and characterize active gelatin–acerola packaging films based on gelatin incorporated with different concentrations of acerola pulp and applied to evaluate the stability of meat products in packaging. The active films were produced by casting using [...] Read more.
The objective of this work was to produce and characterize active gelatin–acerola packaging films based on gelatin incorporated with different concentrations of acerola pulp and applied to evaluate the stability of meat products in packaging. The active films were produced by casting using gelatin (5%), sorbitol (0,1%), and acerola pulp (60, 70, 80, and 90%). The characterization of the acerola pulp was carried out. Visual aspects, thickness, pH, water vapor permeability, and total phenolic compounds were characterized in the films. The commercial acerola pulp presented the characteristics within the identity and quality standards. A good film formation capacity was obtained in all formulations, presenting the color parameters tending to red coloration, characteristic of the acerola pulp. The total phenolic compounds content ranged from 2.88 ± 70.24 to 3.94 ± 96.05 mg GAE/100 g, with 90 g of acerola pulp per 100 g of filmogenic solution. This film formulation was selected to apply in a vacuum pack of beef and chicken samples, analyzing the weight loss, color parameters, pH, water holding capacity, shear strength after 9 days of refrigeration storage, and soil biodegradability. Additionally, beef and chicken (in nature) were stored under the same conditions without using the wrapping film. The beef and chicken samples showed greater water retention capacity and color maintenance over the storage period compared to the control (without film addition). This way, active gelatin–acerola films can be considered a sustainable packaging alternative to preserve meat products. Full article
Show Figures

Figure 1

21 pages, 3340 KiB  
Article
Influence of Operating Conditions on the Energy Consumption of CO2 Supermarket Refrigeration Systems
by Ionuț Dumitriu and Ion V. Ion
Processes 2025, 13(7), 2138; https://doi.org/10.3390/pr13072138 - 4 Jul 2025
Viewed by 490
Abstract
Integrating ejectors into CO2 transcritical refrigeration systems to reduce energy consumption has been performed successfully throughout the industry in recent years. The objective of the present work is to investigate the effect of indoor and outdoor operating conditions on the energy efficiency [...] Read more.
Integrating ejectors into CO2 transcritical refrigeration systems to reduce energy consumption has been performed successfully throughout the industry in recent years. The objective of the present work is to investigate the effect of indoor and outdoor operating conditions on the energy efficiency of ejector expansion supermarket refrigeration plants. The analysis uses the measured energy consumptions and loads for two supermarket refrigeration plants operating in two cities in the Republic of Moldova (Chisinau and Balti). A model for the prediction of the plant’s annual energy consumption and the loads of the refrigeration and freezing compressors is developed using experimental results. Although there are theoretical and experimental analyses of the investigated systems in the specialized literature, no studies were found in the specialized literature regarding energy consumption increase due to pressure losses through the pipe route in transcritical CO2 refrigeration installations with an ejector for supermarkets. The results indicate that refrigeration compressors have a greater increase in energy consumption than freezing compressors with increases in the outdoor temperature. The study shows that the additional drop in evaporating pressure at the compressor rack due to incorrect sizing of the pipe route leads to higher energy consumption compared to what the same plant would consume if the pipe route were correctly sized and executed. For every one-degree increase in temperature loss due to additional pressure drop through the pipeline, the entire plant consumes around 1.5% more energy. Knowledge of these performance data of real systems provides designers and manufacturers with clues to understand the importance of the correct design of the pipe route to obtain maximum energy efficiency. Full article
(This article belongs to the Topic Sustainable Energy Technology, 2nd Edition)
Show Figures

Figure 1

18 pages, 6497 KiB  
Article
Characterization of HFE 7500 Refrigerant Suspensions Containing Oxide and Nitride Nanoparticles: Thermal, Rheological, and Electrokinetic Insights
by Serdar Ozturk and Keagan Schmidt
ChemEngineering 2025, 9(4), 65; https://doi.org/10.3390/chemengineering9040065 - 24 Jun 2025
Viewed by 417
Abstract
Nanofluids—engineered suspensions of nanometer-sized particles—have attracted significant attention due to their reportedly enhanced thermal properties, making them promising candidates for advanced heat transfer applications. However, despite extensive studies, uncertainties remain regarding the magnitude and origin of these effects, limiting their practical implementation. To [...] Read more.
Nanofluids—engineered suspensions of nanometer-sized particles—have attracted significant attention due to their reportedly enhanced thermal properties, making them promising candidates for advanced heat transfer applications. However, despite extensive studies, uncertainties remain regarding the magnitude and origin of these effects, limiting their practical implementation. To address this, we present a comprehensive study on nanofluid formulations based on the commercial refrigerant HFE-7500, incorporating surfactant-stabilized dispersions of several metal oxide and nitride nanoparticles. We measured key physicochemical properties, including zeta potential, particle size, viscosity, and thermal conductivity. Our results show that while the nanofluids exhibited high stability, their particle sizes in suspension were significantly larger than the primary nanoparticle sizes measured by TEM. Notably, alumina-based suspensions demonstrated the greatest enhancement, exhibiting approximately 10–15% increases in thermal conductivity as a function of volume percentage. These surpassed the 5–10% improvements observed with other metal oxides, an effect that may be linked to their comparatively larger particle sizes. However, the observed enhancements were lower than some previously reported values that claimed anomalously high thermal conductivity increases. Furthermore, steady shear viscosity increased with particle concentration, showing enhancements of 10–20%, which suggests a potential trade-off for practical implementation. Our findings refine the understanding of nanofluid behavior in refrigerants and establish a foundation for optimizing their performance in thermal management applications. However, viscosity increases must be carefully considered when designing next-generation nanofluids for real-world use. Full article
Show Figures

Figure 1

22 pages, 1852 KiB  
Review
State-of-the-Art Methodologies for Self-Fault Detection, Diagnosis and Evaluation (FDDE) in Residential Heat Pumps
by Francesco Pelella, Adelso Flaviano Passarelli, Belén Llopis-Mengual, Luca Viscito, Emilio Navarro-Peris and Alfonso William Mauro
Energies 2025, 18(13), 3286; https://doi.org/10.3390/en18133286 - 23 Jun 2025
Viewed by 328
Abstract
The European Union’s 2050 targets for decarbonization and electrification are promoting the widespread integration of heat pumps for space heating, cooling, and domestic hot water in buildings. However, their energy and environmental performance can be significantly compromised by soft faults, such as refrigerant [...] Read more.
The European Union’s 2050 targets for decarbonization and electrification are promoting the widespread integration of heat pumps for space heating, cooling, and domestic hot water in buildings. However, their energy and environmental performance can be significantly compromised by soft faults, such as refrigerant leakage or heat exchanger fouling, which may reduce system efficiency by up to 25%, even with maintenance intervals every two years. As a result, the implementation of self-fault detection, diagnosis, and evaluation (FDDE) tools based on operational data has become increasingly important. The complexity and added value of these tools grow as they progress from simple fault detection to quantitative fault evaluation, enabling more accurate and timely maintenance strategies. Direct fault measurements are often unfeasible due to spatial, economic, or intrusiveness constraints, thus requiring indirect methods based on low-cost and accessible measurements. In such cases, overlapping fault symptoms may create diagnostic ambiguities. Moreover, the accuracy of FDDE approaches depends on the type and number of sensors deployed, which must be balanced against cost considerations. This paper provides a comprehensive review of current FDDE methodologies for heat pumps, drawing insights from the academic literature, patent databases, and commercial products. Finally, the role of artificial intelligence in enhancing fault evaluation capabilities is discussed, along with emerging challenges and future research directions. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

26 pages, 1891 KiB  
Article
Developing Novel Plant-Based Probiotic Beverages: A Study on Viability and Physicochemical and Sensory Stability
by Concetta Condurso, Maria Merlino, Anthea Miller, Ambra Rita Di Rosa, Francesca Accetta, Michelangelo Leonardi, Nicola Cicero and Teresa Gervasi
Foods 2025, 14(12), 2148; https://doi.org/10.3390/foods14122148 - 19 Jun 2025
Viewed by 1066
Abstract
Consumer demand for plant-based functional foods, especially probiotic beverages, has increased due to their health benefits and suitability as dairy-free alternatives. This study assessed, through a factorial combination, the stability of plant-based extracts (avocado, ginger, and tropical) individually inoculated with three commercial Lactobacillus [...] Read more.
Consumer demand for plant-based functional foods, especially probiotic beverages, has increased due to their health benefits and suitability as dairy-free alternatives. This study assessed, through a factorial combination, the stability of plant-based extracts (avocado, ginger, and tropical) individually inoculated with three commercial Lactobacillus strains (L. casei, L. plantarum, L. reuteri) and stored under refrigerated conditions during both primary (PSL) and secondary shelf life (SSL). Product shelf life was defined by probiotic viability, considering the functional threshold (≥6 log CFU/mL), which was maintained across all formulations throughout the storage period. Physicochemical parameters, including pH, titratable acidity, and colour, as well as volatile profile, remained stable, with only minor variations depending on the matrix and bacterial strain. Sensory evaluations (triangle and acceptability tests) confirmed that the probiotic juices were acceptable to consumers. Overall, the results demonstrate the feasibility of producing non-fermented, plant-based probiotic beverages that retain their functional properties and meet consumer sensory expectations, offering a promising alternative for vegan and lactose-intolerant individuals. Full article
Show Figures

Figure 1

10 pages, 610 KiB  
Proceeding Paper
Performance Analysis of Refrigeration System with Thermal Energy Storage for Lateral Heat Sources
by Sarala Ramasubramanian, Vinoth Raj Durairaj, Karpagaraj Anbalagan and Nivetha Govindaraj
Eng. Proc. 2025, 95(1), 16; https://doi.org/10.3390/engproc2025095016 - 17 Jun 2025
Viewed by 426
Abstract
The global energy crisis, driven by factors such as increased demand, limited fossil fuel resources, and growing environmental concerns created an urgent need for energy-efficient solutions across all sectors. Among these, refrigeration systems, which are used extensively in both domestic and commercial settings, [...] Read more.
The global energy crisis, driven by factors such as increased demand, limited fossil fuel resources, and growing environmental concerns created an urgent need for energy-efficient solutions across all sectors. Among these, refrigeration systems, which are used extensively in both domestic and commercial settings, are responsible for a sizeable amount of global energy consumption. Finding ways to reduce energy used in the refrigeration could play a crucial role in mitigating the energy crisis. Phase Change Materials (PCMs) have emerged as a promising technology to enhance the energy efficiency of refrigeration systems. By storing and releasing energy in the form of latent heat, PCMs optimize energy conversion rate of the processes, reduce power consumption, and lower the overall environmental impact. The present research focus Calcium Chloride Hexahydrate (CCH) as the PCM which acts as an intermediary between the heat sources to achieve optimal effectiveness. To improve system performance and optimize PCM quantity, two novel system configurations were assessed in the mass proportions of 1 kg and 2 kg of PCM with water. The incorporation of PCZ enhanced the overall heat energy utilisation, recovery of waste heat, and greater system output. And actual COP of the refrigeration system was meet out with the domestic refrigerator in ranges of 1.0759 to 1.1537. The above two novel system were proved that a vital role in removal of waste latent heat into lateral use in the ranges of 110.8 kJ (min.) into 226.8 kJ (max.). Finally proposed system was avoided global warming temperature raise because of uses of waste heat into lateral uses in the refrigeration systems. Full article
Show Figures

Figure 1

16 pages, 767 KiB  
Article
Male Layer-Type Birds (Lohmann Brown Classic Hybrid) as a Meat Source for Chicken Pâtés
by Nikolay Kolev, Desislav Balev, Stefan Dragoev, Teodora Popova, Evgeni Petkov, Krasimir Dimov, Surendranath Suman, Ana Paula Salim and Desislava Vlahova-Vangelova
Appl. Sci. 2025, 15(12), 6702; https://doi.org/10.3390/app15126702 - 14 Jun 2025
Viewed by 500
Abstract
The valorisation of underutilized male layer-type chickens offers a sustainable and ethically aligned opportunity for the poultry industry. This study evaluated the feasibility of male layer-type chicken meat in the production of chicken pâtés and compared the effects of different meat sources—commercial broiler [...] Read more.
The valorisation of underutilized male layer-type chickens offers a sustainable and ethically aligned opportunity for the poultry industry. This study evaluated the feasibility of male layer-type chicken meat in the production of chicken pâtés and compared the effects of different meat sources—commercial broiler (CP), and 5 (5wP) and 9-week-old (9wP) male layer-type chickens—on product quality during refrigerated storage using the general linear model with the Tukey–Kramer post-hoc test. Pâtés made from 5wP meat exhibited the most favourable technological properties, including the lowest (p < 0.05) total expressible fluid (TEF), highest (p < 0.05) water retention (TEFWater), and lowest (p < 0.05) fat content (TEFFat) than CP and 9wP indicating superior emulsion stability. The 5wP pâtés also presented the lowest (p < 0.05) TBARS values on day 1, along with reduced colour deterioration (ΔE) over 7 days of storage. CP samples demonstrated the greatest (p < 0.05) hardness, cohesiveness, and gumminess, but lower (p < 0.05) springiness and resilience compared to 5wP and 9wP, yielding softer and elastic pâtés. Overall, pâtés formulated with 5wP can be a promising option for the development of value-added poultry products. The incorporation of male layer-type chicken meat into commercial formulations will encourage further research of their market potential. Full article
Show Figures

Figure 1

26 pages, 5120 KiB  
Review
Effective and Realistic Strategies for Large-Scale Liquid Hydrogen Production
by Jian Yang and Yanzhong Li
Cryo 2025, 1(2), 8; https://doi.org/10.3390/cryo1020008 - 13 Jun 2025
Viewed by 894
Abstract
The excessive use of fossil fuels could bring about a global environmental crisis. Transitioning from a carbon-based to a hydrogen-based economy is an important way to realize the low-carbon energy transition. The key to this economy transformation lies in the efficient utilization of [...] Read more.
The excessive use of fossil fuels could bring about a global environmental crisis. Transitioning from a carbon-based to a hydrogen-based economy is an important way to realize the low-carbon energy transition. The key to this economy transformation lies in the efficient utilization of hydrogen. Hydrogen liquefaction is an efficient technology for the transportation and storage of hydrogen, and the liquid hydrogen produced is also a direct feedstock for many important fields. Large-scale liquefaction of hydrogen has not been commercialized due to its high energy consumption (>10 kWh/kgLH2) and low efficiency (<30%). However, conceptual designs for hydrogen liquefaction with a low energy consumption (about 6.4 kWh/kgLH2) and high efficiency (>40%) are frequently reported in the existing literature. Therefore, in this paper, the production process of liquid hydrogen is reviewed from three aspects, which are hydrogen pre-cooling, hydrogen cryo-cooling, and ortho-para hydrogen (OPH) conversion. The focus is to summarize effective and realistic hydrogen liquefaction schemes in the existing studies to provide process guidance for the subsequent practical production of liquid hydrogen. The development of open and closed refrigeration cycles for hydrogen pre-cooling is reviewed following the lead of pre-coolant types. The implementation methods of structural optimization of different hydrogen cryo-cooling cycles are clarified and the performance improvements achieved are compared. Different modes of OPH conversion are presented and their realization in simulation and practical applications is summarized. Finally, subjective recommendations are given regarding the content of the review. Full article
(This article belongs to the Special Issue Efficient Production, Storage and Transportation of Liquid Hydrogen)
Show Figures

Figure 1

22 pages, 2918 KiB  
Article
Design and Development of a Low-Power IoT System for Continuous Temperature Monitoring
by Luis Miguel Pires, João Figueiredo, Ricardo Martins, João Nascimento and José Martins
Designs 2025, 9(3), 73; https://doi.org/10.3390/designs9030073 - 12 Jun 2025
Viewed by 1088
Abstract
This article presents the development of a compact, high-precision, and energy-efficient temperature monitoring system designed for tracking applications where continuous and accurate thermal monitoring is essential. Built around the HY0020 System-on-Chip (SoC), the system integrates two bandgap-based temperature sensors—one internal to the SoC [...] Read more.
This article presents the development of a compact, high-precision, and energy-efficient temperature monitoring system designed for tracking applications where continuous and accurate thermal monitoring is essential. Built around the HY0020 System-on-Chip (SoC), the system integrates two bandgap-based temperature sensors—one internal to the SoC and one external (Si7020-A20)—mounted on a custom PCB and powered by a coin cell battery. A distinctive feature of the system is its support for real-time parameterization of the internal sensor, which enables advanced capabilities such as thermal profiling, cross-validation, and onboard diagnostics. The system was evaluated under both room temperature and refrigeration conditions, demonstrating high accuracy with the internal sensor showing an average error of 0.041 °C and −0.36 °C, respectively, and absolute errors below ±0.5 °C. With an average current draw of just 0.01727 mA, the system achieves an estimated autonomy of 6.6 years on a 1000 mAh battery. Data are transmitted via Bluetooth Low Energy (BLE) to a Raspberry Pi 4 gateway and forwarded to an IoT cloud platform for remote access and analysis. With a total cost of approximately EUR 20 and built entirely from commercially available components, this system offers a scalable and cost-effective solution for a wide range of temperature-sensitive applications. Its combination of precision, long-term autonomy, and advanced diagnostic capabilities make it suitable for deployment in diverse fields such as supply chain monitoring, environmental sensing, biomedical storage, and smart infrastructure—where reliable, low-maintenance thermal tracking is essential. Full article
Show Figures

Figure 1

13 pages, 2529 KiB  
Article
Cryopreservation of Ovarian Tissue at the Stage of Vitellogenesis from Yellow Drum (Nibea albiflora) and Its Effects on Cell Viability and Germ Cell-Specific Gene Expression
by Li Zhou, Feiyan Li, Zhaohan Sun, Jia Chen and Kunhuang Han
Fishes 2025, 10(6), 288; https://doi.org/10.3390/fishes10060288 - 12 Jun 2025
Viewed by 375
Abstract
The cryopreservation of ovarian tissues from fish has recently been carried out for several endangered and commercially valuable species. However, previous studies in this context have focused on the cryopreservation of immature ovaries—mainly through slow freezing and vitrification—which requires specialized freezing equipment or [...] Read more.
The cryopreservation of ovarian tissues from fish has recently been carried out for several endangered and commercially valuable species. However, previous studies in this context have focused on the cryopreservation of immature ovaries—mainly through slow freezing and vitrification—which requires specialized freezing equipment or higher cryoprotectant concentrations to keep cell viability. Therefore, the aim of this study was to explore a convenient, rapid, efficient and less toxic method for the cryopreservation of ovaries at the stage of vitellogenesis from yellow drum (Nibea albiflora), an economically important marine fish. The ovaries at the stage of vitellogenesis were isolated and cut into blocks of approximately 1 cm3, then cryopreserved with 15% propylene glycol (PG), fetal bovine serum (FBS) and 0.2 M trehalose as cryoprotectants. Finally, the samples were treated using three different freezing procedures, including a −80 °C refrigerator, liquid nitrogen, and their combination. After 7 days, the tissues were thawed and digested, and the cell survival rates and gene expression levels were detected using cell viability assay kits and qRT-PCR, respectively. The results of the viability assay showed that the procedure of ovarian tissue storage at −80 °C in a refrigerator for 1 h, followed by transfer to liquid nitrogen, resulted in the highest cell survival rate (>90%). Furthermore, the germ cells at various phases were of normal size; presented a full, smooth surface and regular shape; and did not show any signs of cell rupture, atrophy, depression, granulation or cavitation. Furthermore, the qRT-PCR results revealed that genes related to reproductive development, such as vasa, foxl2, zp3 and gsdf, were all down-regulated under the optimal protocol, while the expression of the nanos2 gene (which is specifically distributed in oogonia) maintained a higher level, similar to that in the control group. This indicated that the viability of germ stem cells (oogonia) was not weakened after freezing and that oogonia could be isolated from the cryopreserved ovaries for germ cell transplantation. The present study successfully establishes an optimal cryopreservation protocol for ovarian tissues from Nibea albiflora, providing reference for the preservation of ovaries at the stage of vitellogenesis from other species. Full article
Show Figures

Figure 1

12 pages, 434 KiB  
Communication
Preliminary Characterization and Consumer Insights of Juice Enzymatically Extracted from North American Pawpaw (Asimina triloba)
by Robert G. Brannan
Beverages 2025, 11(3), 86; https://doi.org/10.3390/beverages11030086 - 9 Jun 2025
Viewed by 659
Abstract
This study reports for the first time parameters and consumer preferences about juice prepared from North American pawpaw fruit (Asimina triloba). Enzymatic extraction using a commercial preparation of pectinases, hemicellulases, and beta-glucanases (Pectinex® Ultra SP-L) significantly increased juice yield compared [...] Read more.
This study reports for the first time parameters and consumer preferences about juice prepared from North American pawpaw fruit (Asimina triloba). Enzymatic extraction using a commercial preparation of pectinases, hemicellulases, and beta-glucanases (Pectinex® Ultra SP-L) significantly increased juice yield compared to non-enzyme extraction, but enzyme concentration (0.05% vs. 0.1%) and acidification method (citric vs. tartaric acid) showed no significant differences. Sensory panelists found no significant differences between citric and tartaric acid acidified juices, or between juices prepared from fresh pawpaw and pawpaw stored refrigerated for 14 days. Blending pawpaw juice with fruit juices improved overall acceptability compared to blending with fruit purees. Consumer testing revealed no overall preference among five juice formulations (100% pawpaw juice, sweetened pawpaw juice, pawpaw juice with the addition of 10% apple, orange, or pineapple juice). Consumers highlighted the complex flavor profile of pawpaw, with sweet and bitter tastes, and melon, papaya, and pear flavors being most frequently identified. Sweetening the juice altered the flavor profile, masking sourness and certain flavors. Based on this preliminary study, challenges and opportunities were identified for the development of a pawpaw-based juice. Full article
Show Figures

Figure 1

20 pages, 4105 KiB  
Article
Evaluating Waste Heat Potential for Fifth Generation District Heating and Cooling (5GDHC): Analysis Across 26 Building Types and Recovery Strategies
by Stanislav Chicherin
Processes 2025, 13(6), 1730; https://doi.org/10.3390/pr13061730 - 31 May 2025
Viewed by 784
Abstract
Efficient cooling and heat recovery systems are becoming increasingly critical in large-scale commercial and industrial facilities, especially with the rising demand for sustainable energy solutions. Traditional air-conditioning and refrigeration systems often dissipate significant amounts of waste heat, which remains underutilized. This study addresses [...] Read more.
Efficient cooling and heat recovery systems are becoming increasingly critical in large-scale commercial and industrial facilities, especially with the rising demand for sustainable energy solutions. Traditional air-conditioning and refrigeration systems often dissipate significant amounts of waste heat, which remains underutilized. This study addresses the challenge of harnessing low-potential waste heat from such systems to support fifth-generation district heating and cooling (5GDHC) networks, particularly in moderate-temperate regions like Flanders, Belgium. To evaluate the technical and economic feasibility of waste heat recovery, a methodology is developed that integrates established performance metrics—such as the energy efficiency ratio (EER), power usage effectiveness (PUE), and specific cooling demand (kW/t)—with capital (CapEx) and operational expenditure (OpEx) assessments. Empirical correlations, including regression analysis based on manufacturer data and operational case studies, are used to estimate equipment sizing and system performance across three operational modes. The study includes detailed modeling of data centers, cold storage facilities, and large supermarkets, taking into account climatic conditions, load factors, and thermal capacities. Results indicate that average cooling loads typically reach 58% of peak demand, with seasonal coefficient of performance (SCOP) values ranging from 6.1 to a maximum of 10.3. Waste heat recovery potential varies significantly across building types, with conversion rates from 33% to 68%, averaging at 59%. In data centers using water-to-water heat pumps, energy production reaches 10.1 GWh/year in heat pump mode and 8.6 GWh/year in heat exchanger mode. Despite variations in system complexity and building characteristics, OpEx and CapEx values converge closely (within 2.5%), demonstrating a well-balanced configuration. Simulations also confirm that large buildings operating above a 55% capacity factor provide the most favorable conditions for integrating waste heat into 5GDHC systems. In conclusion, the proposed approach enables the scalable and efficient integration of low-grade waste heat into district energy networks. While climatic and technical constraints exist, especially concerning temperature thresholds and equipment design, the results show strong potential for energy savings up to 40% in well-optimized systems. This highlights the viability of retrofitting large-scale cooling systems for dual-purpose operation, offering both environmental and economic benefits. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

51 pages, 4396 KiB  
Review
A Review of CO2 Clathrate Hydrate Technology: From Lab-Scale Preparation to Cold Thermal Energy Storage Solutions
by Sai Bhargav Annavajjala, Noah Van Dam, Devinder Mahajan and Jan Kosny
Energies 2025, 18(10), 2659; https://doi.org/10.3390/en18102659 - 21 May 2025
Cited by 1 | Viewed by 1092
Abstract
Carbon dioxide (CO2) clathrate hydrate is gaining attention as a promising material for cold thermal energy storage (CTES) due to its high energy storage capacity and low environmental footprint. It shows strong potential in building applications, where space cooling accounts for [...] Read more.
Carbon dioxide (CO2) clathrate hydrate is gaining attention as a promising material for cold thermal energy storage (CTES) due to its high energy storage capacity and low environmental footprint. It shows strong potential in building applications, where space cooling accounts for nearly 40% of total energy use and over 85% of electricity demand in developed countries. CO2 hydrates are also being explored for use in refrigeration, cold chain logistics, supercomputing, biomedical cooling, and defense systems. With the growing number of applications in mind, this review focuses on the thermal behavior of CO2 hydrates and their environmental impact. It highlights recent efforts to reduce formation pressure and temperature using chemical promoters and surfactants. This paper also reviews key experimental techniques used to study hydrate properties, including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), high-pressure differential scanning calorimetry (HP-DSC), and the T-history method. In lifecycle comparisons, CO2 hydrate systems show better energy efficiency and lower carbon emissions than traditional ice or other phase-change materials (PCMs). This review also discusses current commercialization challenges such as high energy input during formation and promoter toxicity. Finally, practical strategies to move CO2 hydrate-based CTES from lab-scale studies to real-world cooling and temperature control applications are discussed. Full article
Show Figures

Figure 1

Back to TopTop