Performance Analysis of Refrigeration System with Thermal Energy Storage for Lateral Heat Sources †
Abstract
:1. Introduction
Phase Change Material
2. Experimental Setup
3. Performance Analysis of a Refrigeration System
3.1. Mathematical Expressions
3.1.1. Performance of a Refrigeration System
3.1.2. Phase Changer Zone
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Javeri-Shahreza, I.; Fakhroleslam, M.; Sadrameli, S.M. Application of phase change materials for performance enhancement of open-display supermarket refrigerators: Numerical simulation and parametric study. J. Energy Storage 2023, 66, 107506. [Google Scholar] [CrossRef]
- Azzouz, K.; Leducq, D.; Gobin, D. Performance enhancement of a household refrigerator by addition of latent heat storage. Int. J. Refrig. 2008, 31, 892–901. [Google Scholar] [CrossRef]
- Azzouz, K.; Leducq, D.; Gobin, D. Enhancing the performance of household refrigerators with latent heat storage: An experimental investigation. Int. J. Refrig. 2009, 32, 1634–1644. [Google Scholar] [CrossRef]
- Wang, F.; Maidment, G.; Missenden, J.; Tozer, R. The novel use of phase change materials in refrigeration plant. Part 3: PCM for control and energy savings. Appl. Therm. Eng. 2007, 27, 2911–2918. [Google Scholar] [CrossRef]
- Sonnenrein, G.; Elsner, A.; Baumhogger, E.; Morbach, A.; Fieback, K.; Vrabec, J. Reducing the power consumption of household refrigerators through the integration of latent heat storage elements in wire-andtube condensers. Int. J. Refrig. 2015, 51, 154–160. [Google Scholar] [CrossRef]
- Tulapurkar, C.; Subramaniam, P.R.; Thagamani, G.; Thiyagaranjin, R. Phase change materials for domestic refrigerators to improve food quality and prolong compressor off time. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 12–15 July 2010. [Google Scholar]
- Karthikeyan, A.; Sivan, V.A.; Maher Khaliq, A.; Anderson, A. Performance improvement of vapour compression refrigeration system using different phase changing materials. Mater. Today Proc. 2020, 44, 3540–3543. [Google Scholar] [CrossRef]
- Arora, C.P. Refrigeration and Air Conditioning, 3rd ed.; Tata McGraw-Hill Publishing Company Ltd.: New Delhi, India, 2009. [Google Scholar]
- Udroiu, C.-M.; Mota-Babiloni, A.; Gim’enez-Prades, P.; Navarro-Esbrí, A.B.-C.J. Twostage cascade configurations based on ejectors for ultra-low temperature refrigeration with natural refrigerants. Int. J. Thermofluids 2023, 17, 100287. [Google Scholar] [CrossRef]
- Nandanwar, Y.N.; Pramod; Walke, V.; Vednath; Kalbande, P.; Mohan, M. Performance improvement of vapour compression refrigeration system using phase change material and thermoelectric generator. Int. J. Thermofluids 2023, 18, 100352. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Buddhi, D. Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage, Sol. Energy Mater. Sol. Cells 2008, 92, 891–899. [Google Scholar] [CrossRef]
- Sun, M.; Sha, H.; Liu, T.; Wang, X.; Jiang, D.; Liu, T.; Li, M.; Chen, G. Calcium chloride hexahydrate based supercooling phase change material for a long-term recovery of low-grade thermal energy. Appl. Therm. Eng. 2024, 243, 122663. [Google Scholar] [CrossRef]
- Rahimia, M.; Ranjbara, A.A.; Hosseinib, M.J. Experimental investigation on PCM/fin slab incorporation in a evaporator side of a household refrigerator. Energy Rep. 2023, 10, 407–418. [Google Scholar] [CrossRef]
- Yang, H.; Zou, Y.; Cui, H. Advancements and challenges in enhancing salt hydrate phase change materials for building energy storage: Optimization methodologies and mechanisms. Natl. Sci. Open 2024, 3, 20230056. [Google Scholar] [CrossRef]
- Xie, N.; Huang, Z.; Luo, Z.; Gao, X.; Fang, Y.; Zhang, Z. Inorganic Salt Hydrate for Thermal Energy Storage. Appl. Sci. 2017, 7, 1317. [Google Scholar] [CrossRef]
Properties of CaCl2⋅6H2O | Value |
---|---|
Melting point | 24 °C |
Specific heat | |
i. Solid | 1.399 kJ/kg · K |
ii. Liquid | 2.059 kJ/kg · K |
Latent heat of fusion | 140 kJ/kg |
Density | 1470 kg/m3 |
Thermal conductivity | |
i. Solid | 1.089 W/m · K |
ii. Liquid | 0.59 W/m · K |
Parameters | Specification |
---|---|
Capacity | 190 L |
Compressor input | 100 W |
Condenser | Air cooled wired type |
Expansion device | Capillary tube Length = 2.1 m Diameter = 0.78 mm |
Evaporator | Upper location |
Defrost method | Automatic |
Refrigerant | R134a Capacity = 135 g |
Lubricant | Mineral oil |
S. No. | Time (min) | Initial Temp. of Water (°C) | Final Temp. of Water (°C) | Temp. Difference (°C) | Refrigeration Effect | Work Input | Actual COP |
---|---|---|---|---|---|---|---|
1 | 0 | 31.7 | 31.7 | 3.7 | 0 | 0 | 0 |
2 | 15 | 28 | 24.4 | 3.6 | 0.4187 | 0.3629 | 1.1537 |
3 | 30 | 24.4 | 21.3 | 3.1 | 0.3605 | 0.3324 | 1.0845 |
4 | 45 | 19.4 | 16.1 | 3.3 | 0.3838 | 0.3567 | 1.0759 |
5 | 60 | 12.8 | 09.3 | 3.5 | 0.4071 | 0.3621 | 1.1242 |
S. No. | Time (min) | Initial Temp. of Water (°C) | Final Temp. of Water 1 kg of PCM (°C) | Final Temp. of Water 2 kg of PCM (°C) | Amount of Heat Stored in 1 kg of PCM | Amount of Heat Stored in 2 kg of PCM |
---|---|---|---|---|---|---|
1 | 0 | 31 | 33.4 | 35.2 | 100.8 | 176.4 |
2 | 15 | 35.4 | 38.6 | 40.8 | 134.4 | 226.8 |
3 | 30 | 42.6 | 46.2 | 47.7 | 151.2 | 214.2 |
4 | 45 | 47.9 | 50.3 | 52.5 | 100.8 | 193.2 |
5 | 60 | 54.7 | 54.5 | 59.6 | 117.6 | 205.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramasubramanian, S.; Durairaj, V.R.; Anbalagan, K.; Govindaraj, N. Performance Analysis of Refrigeration System with Thermal Energy Storage for Lateral Heat Sources. Eng. Proc. 2025, 95, 16. https://doi.org/10.3390/engproc2025095016
Ramasubramanian S, Durairaj VR, Anbalagan K, Govindaraj N. Performance Analysis of Refrigeration System with Thermal Energy Storage for Lateral Heat Sources. Engineering Proceedings. 2025; 95(1):16. https://doi.org/10.3390/engproc2025095016
Chicago/Turabian StyleRamasubramanian, Sarala, Vinoth Raj Durairaj, Karpagaraj Anbalagan, and Nivetha Govindaraj. 2025. "Performance Analysis of Refrigeration System with Thermal Energy Storage for Lateral Heat Sources" Engineering Proceedings 95, no. 1: 16. https://doi.org/10.3390/engproc2025095016
APA StyleRamasubramanian, S., Durairaj, V. R., Anbalagan, K., & Govindaraj, N. (2025). Performance Analysis of Refrigeration System with Thermal Energy Storage for Lateral Heat Sources. Engineering Proceedings, 95(1), 16. https://doi.org/10.3390/engproc2025095016