Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (231)

Search Parameters:
Keywords = collaborative scenario planning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2894 KiB  
Article
Technology Roadmap Methodology and Tool Upgrades to Support Strategic Decision in Space Exploration
by Giuseppe Narducci, Roberta Fusaro and Nicole Viola
Aerospace 2025, 12(8), 682; https://doi.org/10.3390/aerospace12080682 (registering DOI) - 30 Jul 2025
Viewed by 55
Abstract
Technological roadmaps are essential tools for managing and planning complex projects, especially in the rapidly evolving field of space exploration. Defined as dynamic schedules, they support strategic and long-term planning while coordinating current and future objectives with particular technology solutions. Currently, the available [...] Read more.
Technological roadmaps are essential tools for managing and planning complex projects, especially in the rapidly evolving field of space exploration. Defined as dynamic schedules, they support strategic and long-term planning while coordinating current and future objectives with particular technology solutions. Currently, the available methodologies are mostly built on experts’ opinions and in just few cases, methodologies and tools have been developed to support the decision makers with a rational approach. In any case, all the available approaches are meant to draw “ideal” maturation plans. Therefore, it is deemed essential to develop an integrate new algorithms able to decision guidelines on “non-nominal” scenarios. In this context, Politecnico di Torino, in collaboration with the European Space Agency (ESA) and Thales Alenia Space–Italia, developed the Technology Roadmapping Strategy (TRIS), a multi-step process designed to create robust and data-driven roadmaps. However, one of the main concerns with its initial implementation was that TRIS did not account for time and budget estimates specific to the space exploration environment, nor was it capable of generating alternative development paths under constrained conditions. This paper discloses two main significant updates to TRIS methodology: (1) improved time and budget estimation to better reflect the specific challenges of space exploration scenarios and (2) the capability of generating alternative roadmaps, i.e., alternative technological maturation paths in resource-constrained scenarios, balancing financial and temporal limitations. The application of the developed routines to available case studies confirms the tool’s ability to provide consistent planning outputs across multiple scenarios without exceeding 20% deviation from expert-based judgements available as reference. The results demonstrate the potential of the enhanced methodology in supporting strategic decision making in early-phase mission planning, ensuring adaptability to changing conditions, optimized use of time and financial resources, as well as guaranteeing an improved flexibility of the tool. By integrating data-driven prioritization, uncertainty modeling, and resource-constrained planning, TRIS equips mission planners with reliable tools to navigate the complexities of space exploration projects. This methodology ensures that roadmaps remain adaptable to changing conditions and optimized for real-world challenges, supporting the sustainable advancement of space exploration initiatives. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

26 pages, 1494 KiB  
Article
Human–Robot Interaction and Tracking System Based on Mixed Reality Disassembly Tasks
by Raúl Calderón-Sesmero, Adrián Lozano-Hernández, Fernando Frontela-Encinas, Guillermo Cabezas-López and Mireya De-Diego-Moro
Robotics 2025, 14(8), 106; https://doi.org/10.3390/robotics14080106 - 30 Jul 2025
Viewed by 134
Abstract
Disassembly is a crucial process in industrial operations, especially in tasks requiring high precision and strict safety standards when handling components with collaborative robots. However, traditional methods often rely on rigid and sequential task planning, which makes it difficult to adapt to unforeseen [...] Read more.
Disassembly is a crucial process in industrial operations, especially in tasks requiring high precision and strict safety standards when handling components with collaborative robots. However, traditional methods often rely on rigid and sequential task planning, which makes it difficult to adapt to unforeseen changes or dynamic environments. This rigidity not only limits flexibility but also leads to prolonged execution times, as operators must follow predefined steps that do not allow for real-time adjustments. Although techniques like teleoperation have attempted to address these limitations, they often hinder direct human–robot collaboration within the same workspace, reducing effectiveness in dynamic environments. In response to these challenges, this research introduces an advanced human–robot interaction (HRI) system leveraging a mixed-reality (MR) interface embedded in a head-mounted device (HMD). The system enables operators to issue real-time control commands using multimodal inputs, including voice, gestures, and gaze tracking. These inputs are synchronized and processed via the Robot Operating System (ROS2), enabling dynamic and flexible task execution. Additionally, the integration of deep learning algorithms ensures precise detection and validation of disassembly components, enhancing accuracy. Experimental evaluations demonstrate significant improvements, including reduced task completion times, enhanced operator experience, and compliance with strict adherence to safety standards. This scalable solution offers broad applicability for general-purpose disassembly tasks, making it well-suited for complex industrial scenarios. Full article
(This article belongs to the Special Issue Robot Teleoperation Integrating with Augmented Reality)
14 pages, 243 KiB  
Article
Building Safe Emergency Medical Teams with Emergency Crisis Resource Management (E-CRM): An Interprofessional Simulation-Based Study
by Juan Manuel Cánovas-Pallarés, Giulio Fenzi, Pablo Fernández-Molina, Lucía López-Ferrándiz, Salvador Espinosa-Ramírez and Vanessa Arizo-Luque
Healthcare 2025, 13(15), 1858; https://doi.org/10.3390/healthcare13151858 - 30 Jul 2025
Viewed by 170
Abstract
Background/Objectives: Effective teamwork is crucial for minimizing human error in healthcare settings. Medical teams, typically composed of physicians and nurses, supported by auxiliary professionals, achieve better outcomes when they possess strong collaborative competencies. High-quality teamwork is associated with fewer adverse events and [...] Read more.
Background/Objectives: Effective teamwork is crucial for minimizing human error in healthcare settings. Medical teams, typically composed of physicians and nurses, supported by auxiliary professionals, achieve better outcomes when they possess strong collaborative competencies. High-quality teamwork is associated with fewer adverse events and complications and lower mortality rates. Based on this background, the objective of this study is to analyze the perception of non-technical skills and immediate learning outcomes in interprofessional simulation settings based on E-CRM items. Methods: A cross-sectional observational study was conducted involving participants from the official postgraduate Medicine and Nursing programs at the Catholic University of Murcia (UCAM) during the 2024–2025 academic year. Four interprofessional E-CRM simulation sessions were planned, involving randomly assigned groups with proportional representation of medical and nursing students. Teams worked consistently throughout the training and participated in clinical scenarios observed via video transmission by their peers. Post-scenario debriefings followed INACSL guidelines and employed the PEARLS method. Results: Findings indicate that 48.3% of participants had no difficulty identifying the team leader, while 51.7% reported minor difficulty. Role assignment posed moderate-to-high difficulty for 24.1% of respondents. Communication, situation awareness, and early help-seeking were generally managed with ease, though mobilizing resources remained a challenge for 27.5% of participants. Conclusions: This study supports the value of interprofessional education in developing essential competencies for handling urgent, emergency, and high-complexity clinical situations. Strengthening interdisciplinary collaboration contributes to safer, more effective patient care. Full article
17 pages, 3393 KiB  
Article
Research on Distributed Collaborative Task Planning and Countermeasure Strategies for Satellites Based on Game Theory Driven Approach
by Huayu Gao, Junqi Wang, Xusheng Xu, Qiufan Yuan, Pei Wang and Daming Zhou
Remote Sens. 2025, 17(15), 2640; https://doi.org/10.3390/rs17152640 - 30 Jul 2025
Viewed by 174
Abstract
With the rapid advancement of space technology, satellites are playing an increasingly vital role in fields such as Earth observation, communication and navigation, space exploration, and military applications. Efficiently deploying satellite missions under multi-objective, multi-constraint, and dynamic environments has become a critical challenge [...] Read more.
With the rapid advancement of space technology, satellites are playing an increasingly vital role in fields such as Earth observation, communication and navigation, space exploration, and military applications. Efficiently deploying satellite missions under multi-objective, multi-constraint, and dynamic environments has become a critical challenge in the current aerospace domain. This paper integrates the concepts of game theory and proposes a distributed collaborative task model suitable for on-orbit satellite mission planning. A two-player impulsive maneuver game model is constructed using differential game theory. Based on the ideas of Nash equilibrium and distributed collaboration, multi-agent technology is applied to the distributed collaborative task planning, achieving collaborative allocation and countermeasure strategies for multi-objective and multi-satellite scenarios. Experimental results demonstrate that the method proposed in this paper exhibits good adaptability and robustness in multiple impulse scheduling, maneuver strategy iteration, and heterogeneous resource utilization, providing a feasible technical approach for mission planning and game confrontation in satellite clusters. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

24 pages, 8483 KiB  
Article
A Weakly Supervised Network for Coarse-to-Fine Change Detection in Hyperspectral Images
by Yadong Zhao and Zhao Chen
Remote Sens. 2025, 17(15), 2624; https://doi.org/10.3390/rs17152624 - 28 Jul 2025
Viewed by 256
Abstract
Hyperspectral image change detection (HSI-CD) provides substantial value in environmental monitoring, urban planning and other fields. In recent years, deep-learning based HSI-CD methods have made remarkable progress due to their powerful nonlinear feature learning capabilities, yet they face several challenges: mixed-pixel phenomenon affecting [...] Read more.
Hyperspectral image change detection (HSI-CD) provides substantial value in environmental monitoring, urban planning and other fields. In recent years, deep-learning based HSI-CD methods have made remarkable progress due to their powerful nonlinear feature learning capabilities, yet they face several challenges: mixed-pixel phenomenon affecting pixel-level detection accuracy; heterogeneous spatial scales of change targets where coarse-grained features fail to preserve fine-grained details; and dependence on high-quality labels. To address these challenges, this paper introduces WSCDNet, a weakly supervised HSI-CD network employing coarse-to-fine feature learning, with key innovations including: (1) A dual-branch detection framework integrating binary and multiclass change detection at the sub-pixel level that enhances collaborative optimization through a cross-feature coupling module; (2) introduction of multi-granularity aggregation and difference feature enhancement module for detecting easily confused regions, which effectively improves the model’s detection accuracy; and (3) proposal of a weakly supervised learning strategy, reducing model sensitivity to noisy pseudo-labels through decision-level consistency measurement and sample filtering mechanisms. Experimental results demonstrate that WSCDNet effectively enhances the accuracy and robustness of HSI-CD tasks, exhibiting superior performance under complex scenarios and weakly supervised conditions. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

39 pages, 17182 KiB  
Article
A Bi-Layer Collaborative Planning Framework for Multi-UAV Delivery Tasks in Multi-Depot Urban Logistics
by Junfu Wen, Fei Wang and Yebo Su
Drones 2025, 9(7), 512; https://doi.org/10.3390/drones9070512 - 21 Jul 2025
Viewed by 360
Abstract
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The [...] Read more.
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The novelty of this work lies in the seamless integration of an enhanced genetic algorithm and tailored swarm optimization within a unified two-tier architecture. The upper layer tackles the task assignment problem by formulating a multi-objective optimization model aimed at minimizing economic costs, delivery delays, and the number of UAVs deployed. The Enhanced Non-Dominated Sorting Genetic Algorithm II (ENSGA-II) is developed, incorporating heuristic initialization, goal-oriented search operators, an adaptive mutation mechanism, and a staged evolution control strategy to improve solution feasibility and distribution quality. The main contributions are threefold: (1) a novel ENSGA-II design for efficient and well-distributed task allocation; (2) an improved PSO-based path planner with chaotic initialization and adaptive parameters; and (3) comprehensive validation demonstrating substantial gains over baseline methods. The lower layer addresses the path planning problem by establishing a multi-objective model that considers path length, flight risk, and altitude variation. An improved particle swarm optimization (PSO) algorithm is proposed by integrating chaotic initialization, linearly adjusted acceleration coefficients and maximum velocity, a stochastic disturbance-based position update mechanism, and an adaptively tuned inertia weight to enhance algorithmic performance and path generation quality. Simulation results under typical task scenarios demonstrate that the proposed model achieves an average reduction of 47.8% in economic costs and 71.4% in UAV deployment quantity while significantly reducing delivery window violations. The framework exhibits excellent capability in multi-objective collaborative optimization. The ENSGA-II algorithm outperforms baseline algorithms significantly across performance metrics, achieving a hypervolume (HV) value of 1.0771 (improving by 72.35% to 109.82%) and an average inverted generational distance (IGD) of 0.0295, markedly better than those of comparison algorithms (ranging from 0.0893 to 0.2714). The algorithm also demonstrates overwhelming superiority in the C-metric, indicating outstanding global optimization capability in terms of distribution, convergence, and the diversity of the solution set. Moreover, the proposed framework and algorithm are both effective and feasible, offering a novel approach to low-altitude urban logistics delivery problems. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

45 pages, 11380 KiB  
Article
Application of Multi-Strategy Controlled Rime Algorithm in Path Planning for Delivery Robots
by Haokai Lv, Qian Qian, Jiawen Pan, Miao Song, Yong Feng and Yingna Li
Biomimetics 2025, 10(7), 476; https://doi.org/10.3390/biomimetics10070476 - 19 Jul 2025
Viewed by 407
Abstract
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME [...] Read more.
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME optimization algorithm. Through in-depth analysis, we identified several major drawbacks in the standard RIME algorithm for path planning: insufficient global exploration capability in the initial stages, a lack of diversity in the hard RIME search mechanism, and oscillatory phenomena in soft RIME step size adjustment. These issues often lead to undesirable phenomena in path planning, such as local optima traps, path redundancy, or unsmooth trajectories. To address these limitations, this study proposes the Multi-Strategy Controlled Rime Algorithm (MSRIME), whose innovation primarily manifests in three aspects: first, it constructs a multi-strategy collaborative optimization framework, utilizing an infinite folding Fuch chaotic map for intelligent population initialization to significantly enhance the diversity of solutions; second, it designs a cooperative mechanism between a controlled elite strategy and an adaptive search strategy that, through a dynamic control factor, autonomously adjusts the strategy activation probability and adaptation rate, expanding the search space while ensuring algorithmic convergence efficiency; and finally, it introduces a cosine annealing strategy to improve the step size adjustment mechanism, reducing parameter sensitivity and effectively preventing path distortions caused by abrupt step size changes. During the algorithm validation phase, comparative tests were conducted between two groups of algorithms, demonstrating their significant advantages in optimization capability, convergence speed, and stability. Further experimental analysis confirmed that the algorithm’s multi-strategy framework effectively suppresses the impact of coordinate and dimensional differences on path quality during iteration, making it more suitable for delivery robot path planning scenarios. Ultimately, path planning experimental results across various Building Coverage Rate (BCR) maps and diverse application scenarios show that MSRIME exhibits superior performance in key indicators such as path length, running time, and smoothness, providing novel technical insights and practical solutions for the interdisciplinary research between intelligent logistics and computer science. Full article
Show Figures

Figure 1

22 pages, 3599 KiB  
Article
A Framework for Synergy Measurement Between Transportation and Production–Living–Ecological Space Using Volume-to-Capacity Ratio, Accessibility, and Coordination
by Xiaoyi Ma, Mingmin Liu, Jingru Huang, Ruihua Hu and Hongjie He
Land 2025, 14(7), 1495; https://doi.org/10.3390/land14071495 - 18 Jul 2025
Viewed by 271
Abstract
In the stage of high-quality development, the functional coordination between transportation systems and territorial space is a key issue for improving urban spatial efficiency. This paper breaks through the traditional volume-to-capacity ratio analysis paradigm and innovatively integrates the “production-living-ecological space” theory. By introducing [...] Read more.
In the stage of high-quality development, the functional coordination between transportation systems and territorial space is a key issue for improving urban spatial efficiency. This paper breaks through the traditional volume-to-capacity ratio analysis paradigm and innovatively integrates the “production-living-ecological space” theory. By introducing an improved accessibility evaluation model and developing a coordination measurement algorithm, a three-dimensional evaluation mechanism covering development potential assessment, service efficiency diagnosis, and resource allocation optimization is established. Empirical research indicates that the improved accessibility indicators can precisely identify the transportation location value of regional functional cores, while the composite coordination indicators can deconstruct the spatiotemporal matching characteristics of “transportation facilities—spatial functions,” providing a dual decision-making basis for the redevelopment of existing space. This measurement system innovatively realizes the integration of planning transmission mechanisms with multi-scale application scenarios, guiding both overall spatial planning and urban renewal area re-optimization. The methodology, applied to the urban villages of Guangzhou, can significantly increase land utilization intensity and value. The research results offer a technical tool for cross-scale collaboration in land space planning reforms and provide theoretical innovations and practical guidance for the value reconstruction of existing spaces under the context of new urbanization. Full article
Show Figures

Figure 1

23 pages, 6199 KiB  
Article
PDAA: An End-to-End Polygon Dynamic Adjustment Algorithm for Building Footprint Extraction
by Longjie Luo, Jiangchen Cai, Bin Feng and Liufeng Tao
Remote Sens. 2025, 17(14), 2495; https://doi.org/10.3390/rs17142495 - 17 Jul 2025
Viewed by 205
Abstract
Buildings are a significant component of urban space and are essential to smart cities, catastrophe monitoring, and land use planning. However, precisely extracting building polygons from remote sensing images remains difficult because of the variety of building designs and intricate backgrounds. This paper [...] Read more.
Buildings are a significant component of urban space and are essential to smart cities, catastrophe monitoring, and land use planning. However, precisely extracting building polygons from remote sensing images remains difficult because of the variety of building designs and intricate backgrounds. This paper proposes an end-to-end polygon dynamic adjustment algorithm (PDAA) to improve the accuracy and geometric consistency of building contour extraction by dynamically generating and optimizing polygon vertices. The method first locates building instances through the region of interest (RoI) to generate initial polygons, and then uses four core modules for collaborative optimization: (1) the feature enhancement module captures local detail features to improve the robustness of vertex positioning; (2) the contour vertex tuning module fine-tunes vertex coordinates through displacement prediction to enhance geometric accuracy; (3) the learnable redundant vertex removal module screens key vertices based on a classification mechanism to eliminate redundancy; and (4) the missing vertex completion module iteratively restores missed vertices to ensure the integrity of complex contours. PDAA dynamically adjusts the number of vertices to adapt to the geometric characteristics of different buildings, while simplifying the prediction process and reducing computational complexity. Experiments on public datasets such as WHU, Vaihingen, and Inria show that PDAA significantly outperforms existing methods in terms of average precision (AP) and polygon similarity (PolySim). It is at least 2% higher than existing methods in terms of average precision (AP), and the generated polygonal contours are closer to the real building geometry. Values of 75.4% AP and 84.9% PolySim were achieved on the WHU dataset, effectively solving the problems of redundant vertices and contour smoothing, and providing high-precision building vector data support for scenarios such as smart cities and emergency response. Full article
Show Figures

Figure 1

32 pages, 5465 KiB  
Article
DETEAMSK: A Model-Based Reinforcement Learning Approach to Intelligent Top-Level Planning and Decisions for Multi-Drone Ad Hoc Teamwork by Decoupling the Identification of Teammate and Task
by Penghui Xu, Yu Zhang, Le Hao and Qilin Yan
Aerospace 2025, 12(7), 635; https://doi.org/10.3390/aerospace12070635 - 16 Jul 2025
Viewed by 195
Abstract
The ability to collaborate with new teammates, adapt to unfamiliar environments, and engage in effective planning is essential for multi-drone agents within unmanned combat systems. This paper introduces DETEAMSK (Model-based Reinforcement Learning by Decoupling the Identification of Teammates and Tasks), a model-based reinforcement [...] Read more.
The ability to collaborate with new teammates, adapt to unfamiliar environments, and engage in effective planning is essential for multi-drone agents within unmanned combat systems. This paper introduces DETEAMSK (Model-based Reinforcement Learning by Decoupling the Identification of Teammates and Tasks), a model-based reinforcement learning method in intelligent top-level planning and decisions designed for ad hoc teamwork among multi-drone agents. It specifically addresses integrated reconnaissance and strike missions in urban combat scenarios under varying conditions. DETEAMSK’s performance is evaluated through comprehensive, multidimensional experiments and compared with other baseline models. The results demonstrate that DETEAMSK exhibits superior effectiveness, robustness, and generalization capabilities across a range of task domains. Moreover, the model-based reinforcement learning approach offers distinct advantages over traditional models, such as the PLASTIC-Model, and model-free approaches, like the PLASTIC-Policy, due to its unique “dynamic decoupling identification” feature. This study provides valuable insights for advancing both theoretical and applied research in model-based reinforcement learning methods for multi-drone systems. Full article
(This article belongs to the Special Issue Innovations in Unmanned Aerial Vehicle: Design and Development)
Show Figures

Figure 1

22 pages, 3768 KiB  
Article
A Collaborative Navigation Model Based on Multi-Sensor Fusion of Beidou and Binocular Vision for Complex Environments
by Yongxiang Yang and Zhilong Yu
Appl. Sci. 2025, 15(14), 7912; https://doi.org/10.3390/app15147912 - 16 Jul 2025
Viewed by 336
Abstract
This paper addresses the issues of Beidou navigation signal interference and blockage in complex substation environments by proposing an intelligent collaborative navigation model based on Beidou high-precision navigation and binocular vision recognition. The model is designed with Beidou navigation providing global positioning references [...] Read more.
This paper addresses the issues of Beidou navigation signal interference and blockage in complex substation environments by proposing an intelligent collaborative navigation model based on Beidou high-precision navigation and binocular vision recognition. The model is designed with Beidou navigation providing global positioning references and binocular vision enabling local environmental perception through a collaborative fusion strategy. The Unscented Kalman Filter (UKF) is used to integrate data from multiple sensors to ensure high-precision positioning and dynamic obstacle avoidance capabilities for robots in complex environments. Simulation results show that the Beidou–Binocular Cooperative Navigation (BBCN) model achieves a global positioning error of less than 5 cm in non-interference scenarios, and an error of only 6.2 cm under high-intensity electromagnetic interference, significantly outperforming the single Beidou model’s error of 40.2 cm. The path planning efficiency is close to optimal (with an efficiency factor within 1.05), and the obstacle avoidance success rate reaches 95%, while the system delay remains within 80 ms, meeting the real-time requirements of industrial scenarios. The innovative fusion approach enables unprecedented reliability for autonomous robot inspection in high-voltage environments, offering significant practical value in reducing human risk exposure, lowering maintenance costs, and improving inspection efficiency in power industry applications. This technology enables continuous monitoring of critical power infrastructure that was previously difficult to automate due to navigation challenges in electromagnetically complex environments. Full article
(This article belongs to the Special Issue Advanced Robotics, Mechatronics, and Automation)
Show Figures

Figure 1

20 pages, 3151 KiB  
Article
Distributed Power, Energy Storage Planning, and Power Tracking Studies for Distribution Networks
by Xiaoming Zhang and Jiaming Liu
Electronics 2025, 14(14), 2833; https://doi.org/10.3390/electronics14142833 - 15 Jul 2025
Viewed by 261
Abstract
In recent years, global energy transition has pushed distributed generation (DG) to the forefront in relation to new energy development. Most existing studies focus on DG or energy storage planning but lack co-optimization and power tracking analysis. To address this problem, a multi-objective [...] Read more.
In recent years, global energy transition has pushed distributed generation (DG) to the forefront in relation to new energy development. Most existing studies focus on DG or energy storage planning but lack co-optimization and power tracking analysis. To address this problem, a multi-objective genetic algorithm-based collaborative planning method for photovoltaic (PV) and energy storage is proposed. On this basis, power flow tracking technology is further introduced to conduct a detailed analysis of distributed energy power allocation, providing support for system operation optimization and responsibility sharing. To verify the validity of the model, a 14-node distribution network is used as an example. Voltage stability, PV consumption rate, and economy are taken as objective functions. By solving the three scenarios, it is determined that the introduction of energy storage increases the PV consumption rate from 85.6% to 96.3%; the average network loss for the whole day increases from 1.81 MW to 2.40 MW. Utilizing power tracking techniques, various causes were analyzed; it was found that the placement of energy storage leads to a multidirectional and repetitive flow of power. Full article
Show Figures

Figure 1

26 pages, 14110 KiB  
Article
Gemini: A Cascaded Dual-Agent DRL Framework for Task Chain Planning in UAV-UGV Collaborative Disaster Rescue
by Mengxuan Wen, Yunxiao Guo, Changhao Qiu, Bangbang Ren, Mengmeng Zhang and Xueshan Luo
Drones 2025, 9(7), 492; https://doi.org/10.3390/drones9070492 - 11 Jul 2025
Viewed by 473
Abstract
In recent years, UAV (unmanned aerial vehicle)-UGV (unmanned ground vehicle) collaborative systems have played a crucial role in emergency disaster rescue. To improve rescue efficiency, heterogeneous network and task chain methods are introduced to cooperatively develop rescue sequences within a short time for [...] Read more.
In recent years, UAV (unmanned aerial vehicle)-UGV (unmanned ground vehicle) collaborative systems have played a crucial role in emergency disaster rescue. To improve rescue efficiency, heterogeneous network and task chain methods are introduced to cooperatively develop rescue sequences within a short time for collaborative systems. However, current methods also overlook resource overload for heterogeneous units and limit planning to a single task chain in cross-platform rescue scenarios, resulting in low robustness and limited flexibility. To this end, this paper proposes Gemini, a cascaded dual-agent deep reinforcement learning (DRL) framework based on the Heterogeneous Service Network (HSN) for multiple task chains planning in UAV-UGV collaboration. Specifically, this framework comprises a chain selection agent and a resource allocation agent: The chain selection agent plans paths for task chains, and the resource allocation agent distributes platform loads along generated paths. For each mission, a well-trained Gemini can not only allocate resources in load balancing but also plan multiple task chains simultaneously, which enhances the robustness in cross-platform rescue. Simulation results show that Gemini can increase rescue effectiveness by approximately 60% and improve load balancing by approximately 80%, compared to the baseline algorithm. Additionally, Gemini’s performance is stable and better than the baseline in various disaster scenarios, which verifies its generalization. Full article
Show Figures

Figure 1

17 pages, 1575 KiB  
Article
Dynamic Path Planning for Unmanned Autonomous Vehicles Based on CAS-UNet and Graph Neural Networks
by Yuchu Ji, Rentong Sun, Yang Wang, Zijian Zhu and Zhenghao Liu
Sensors 2025, 25(14), 4283; https://doi.org/10.3390/s25144283 - 9 Jul 2025
Viewed by 360
Abstract
This paper proposes a deeply integrated model called CAS-GNN, aiming to solve the collaborative path-planning problem for multi-agent vehicles operating in dynamic environments. Our proposed model integrates CAS-UNet and Graph Neural Network (GNN), and, by introducing a dynamic edge enhancement module and a [...] Read more.
This paper proposes a deeply integrated model called CAS-GNN, aiming to solve the collaborative path-planning problem for multi-agent vehicles operating in dynamic environments. Our proposed model integrates CAS-UNet and Graph Neural Network (GNN), and, by introducing a dynamic edge enhancement module and a dynamic edge weight update module, it improves the accuracy of obstacle boundary recognition in complex scenarios and adaptively changes the influence of different edges during the information transmission process. We generate data through online trajectory optimization to enhance the model’s adaptability to dynamic environments. Simulation results show that our proposed CAS-GNN model has good performance in path planning. In a dynamic scenario involving six vehicles, our model achieved a success rate of 92.8%, a collision rate of 0.0836%, and a trajectory efficiency of 64%. Compared with the traditional A-GNN model, our proposed CAS-GNN model improves the planning success rate by 2.7% and the trajectory efficiency by 8%, while reducing the collision rate by 23%. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

40 pages, 6398 KiB  
Article
A Supply–Demand-Driven Framework for Evaluating Service Effectiveness of University Campus Emergency Shelter: Evidence from Central Tianjin Under Earthquake Scenarios
by Hao Gao, Yuqi Han, Jiahao Zhang, Yuanzhen Song, Tianlin Zhang, Fengliang Tang and Su Sun
Land 2025, 14(7), 1411; https://doi.org/10.3390/land14071411 - 4 Jul 2025
Viewed by 426
Abstract
Urban disaster risks are escalating, and university campus emergency shelters (UCESs) are key to alleviating the supply–demand imbalance in emergency shelter services (ESSs) within high-density central urban areas. However, existing studies lacked the measurement of UCES service effectiveness from a regional supply–demand perspective, [...] Read more.
Urban disaster risks are escalating, and university campus emergency shelters (UCESs) are key to alleviating the supply–demand imbalance in emergency shelter services (ESSs) within high-density central urban areas. However, existing studies lacked the measurement of UCES service effectiveness from a regional supply–demand perspective, limiting the ability to guide planning practices. Therefore, we focused on the capacity of UCESs to improve regional supply–demand relationships and developed a service effectiveness evaluation framework for UCESs in the central urban area of Tianjin under an earthquake scenario. We identified emergency shelter spaces within the campuses and developed a campus–city collaborative shelter capacity model to determine their service supply capacity. Then we quantified regional service demand driven by seismic risk. Finally, we quantified the service effectiveness of each UCES by constructing a service effectiveness evaluation model. Results showed that (1) the total shelter capacity and service coverage of 13 UCESs accounted for approximately 32.1% of the central district’s population and 67.5% of its land area, indicating their strong potential to provide large-scale ESSs. (2) Average seismic risk values ranged from 0.200 to 0.260, exhibiting the characteristic of being higher in the south and lower in the north. (3) Service effectiveness was classified into three levels—higher (1.150–1.257), medium (0.957–0.988), and lower (0.842–0.932)—corresponding to planning interventions that can be implemented based on them. This study aims to reveal differences between different UCESs to improve regional supply–demand relationships by evaluating their service effectiveness and supporting refined emergency management and planning decisions. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

Back to TopTop