Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (443)

Search Parameters:
Keywords = cold rivers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 39231 KiB  
Article
Study on the Distribution Characteristics of Thermal Melt Geological Hazards in Qinghai Based on Remote Sensing Interpretation Method
by Xing Zhang, Zongren Li, Sailajia Wei, Delin Li, Xiaomin Li, Rongfang Xin, Wanrui Hu, Heng Liu and Peng Guan
Water 2025, 17(15), 2295; https://doi.org/10.3390/w17152295 (registering DOI) - 1 Aug 2025
Abstract
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research [...] Read more.
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research into permafrost dynamics. Climate warming has accelerated permafrost degradation, leading to a range of geological hazards, most notably widespread thermokarst landslides. This study investigates the spatiotemporal distribution patterns and influencing factors of thermokarst landslides in Qinghai Province through an integrated approach combining field surveys, remote sensing interpretation, and statistical analysis. The study utilized multi-source datasets, including Landsat-8 imagery, Google Earth, GF-1, and ZY-3 satellite data, supplemented by meteorological records and geospatial information. The remote sensing interpretation identified 1208 cryogenic hazards in Qinghai’s permafrost regions, comprising 273 coarse-grained soil landslides, 346 fine-grained soil landslides, 146 thermokarst slope failures, 440 gelifluction flows, and 3 frost mounds. Spatial analysis revealed clusters of hazards in Zhiduo, Qilian, and Qumalai counties, with the Yangtze River Basin and Qilian Mountains showing the highest hazard density. Most hazards occur in seasonally frozen ground areas (3500–3900 m and 4300–4900 m elevation ranges), predominantly on north and northwest-facing slopes with gradients of 10–20°. Notably, hazard frequency decreases with increasing permafrost stability. These findings provide critical insights for the sustainable development of cold-region infrastructure, environmental protection, and hazard mitigation strategies in alpine engineering projects. Full article
Show Figures

Figure 1

25 pages, 3746 KiB  
Article
Empirical Modelling of Ice-Jam Flood Hazards Along the Mackenzie River in a Changing Climate
by Karl-Erich Lindenschmidt, Sergio Gomez, Jad Saade, Brian Perry and Apurba Das
Water 2025, 17(15), 2288; https://doi.org/10.3390/w17152288 - 1 Aug 2025
Abstract
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations [...] Read more.
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations produce non-exceedance probability profiles, which indicate the likelihood of various flood levels occurring due to ice jams. The flood levels associated with specific return periods were validated using historical gauge records. The empirical equations require input parameters such as channel width, slope, and thalweg elevation, which were obtained from bathymetric surveys. This approach is applied to assess ice-jam flood hazards by extrapolating data from a gauged reach at Fort Simpson to an ungauged reach at Jean Marie River along the Mackenzie River in Canada’s Northwest Territories. The analysis further suggests that climate change is likely to increase the severity of ice-jam flood hazards in both reaches by the end of the century. This methodology is applicable to other cold-region rivers in Canada and northern Europe, provided similar fluvial geomorphological and hydro-meteorological data are available, making it a valuable tool for ice-jam flood risk assessment in other ungauged areas. Full article
Show Figures

Figure 1

24 pages, 6731 KiB  
Article
Combined Impacts of Acute Heat Stress on the Histology, Antioxidant Activity, Immunity, and Intestinal Microbiota of Wild Female Burbot (Lota Lota) in Winter: New Insights into Heat Sensitivity in Extremely Hardy Fish
by Cunhua Zhai, Yutao Li, Ruoyu Wang, Haoxiang Han, Ying Zhang and Bo Ma
Antioxidants 2025, 14(8), 947; https://doi.org/10.3390/antiox14080947 (registering DOI) - 31 Jul 2025
Abstract
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. [...] Read more.
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. In January of 2025, we collected wild adult burbot individuals from the Ussuri River (water temperature: about 2 °C), China. The burbot were exposed to 2 °C, 7 °C, 12 °C, 17 °C, and 22 °C environments for 96 h; then, the liver and intestinal contents were subsequently collected for histopathology observation, immunohistochemistry, biochemical index assessment, and transcriptome/16S rDNA sequencing analysis. There was obvious liver damage including hepatocyte necrosis, fat vacuoles, and cellular peripheral nuclei. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were elevated and subsequently decreased. Additionally, the malondialdehyde (MDA) level significantly increased with increasing temperature. These results indicate that 7 °C (heat stress temperature), 12 °C (tipping point for normal physiological metabolism status), 17 °C (tipping point for individual deaths), and 22 °C (thermal limit) are critical temperatures in terms of the physiological response of burbot during their breeding period. In the hepatic transcriptome profiling, 6538 differentially expressed genes (DEGs) were identified, while KEGG enrichment analysis showed that high-temperature stress could affect normal liver function by regulating energy metabolism, immune, and apoptosis-related pathways. Microbiomics also revealed that acute heat stress could change the intestinal microbe community structure. Additionally, correlation analysis suggested potential regulatory relationships between intestinal microbe taxa and immune/apoptosis-related DEGs in the liver. This study revealed the potential impact of environmental water temperature changes in cold habitats in winter on the physiological adaptability of burbot during the breeding period and provides new insights for the ecological protection of burbot in the context of global climate change and habitat warming. Full article
(This article belongs to the Special Issue Antioxidant Response in Aquatic Animals)
Show Figures

Figure 1

13 pages, 10728 KiB  
Article
Climate Features Affecting the Management of the Madeira River Sustainable Development Reserve, Brazil
by Matheus Gomes Tavares, Sin Chan Chou, Nicole Cristine Laureanti, Priscila da Silva Tavares, Jose Antonio Marengo, Jorge Luís Gomes, Gustavo Sueiro Medeiros and Francis Wagner Correia
Geographies 2025, 5(3), 36; https://doi.org/10.3390/geographies5030036 - 24 Jul 2025
Viewed by 226
Abstract
Sustainable Development Reserves are organized units in the Amazon that are essential for the proper use and sustainable management of the region’s natural resources and for the livelihoods and economy of the local communities. This study aims to provide a climatic characterization of [...] Read more.
Sustainable Development Reserves are organized units in the Amazon that are essential for the proper use and sustainable management of the region’s natural resources and for the livelihoods and economy of the local communities. This study aims to provide a climatic characterization of the Madeira River Sustainable Development Reserve (MSDR), offering scientific support to efforts to assess the feasibility of implementing adaptation measures to increase the resilience of isolated Amazon communities in the face of extreme climate events. Significant statistical analyses based on time series of observational and reanalysis climate data were employed to obtain a detailed diagnosis of local climate variability. The results show that monthly mean two-meter temperatures vary from 26.5 °C in February, the coolest month, to 28 °C in August, the warmest month. Monthly precipitation averages approximately 250 mm during the rainy season, from December until May. July and August are the driest months, August and September are the warmest months, and September and October are the months with the lowest river level. Cold spells were identified in July, and warm spells were identified between July and September, making this period critical for public health. Heavy precipitation events detected by the R80, Rx1day, and Rx5days indices show an increasing trend in frequency and intensity in recent years. The analyses indicated that the MSDR has no potential for wind-energy generation; however, photovoltaic energy production is viable throughout the year. Regarding the two major commercial crops and their resilience to thermal stress, the region presents suitable conditions for açaí palm cultivation, but Brazil nut production may be adversely affected by extreme drought and heat events. The results of this study may support research on adaptation strategies that includethe preservation of local traditions and natural resources to ensure sustainable development. Full article
Show Figures

Figure 1

27 pages, 18522 KiB  
Article
Summer Cooling Effect of Rivers in the Yangtze Basin, China: Magnitude, Threshold and Mechanisms
by Pan Xiong, Dongjie Guan, Yanli Su and Shuying Zeng
Land 2025, 14(8), 1511; https://doi.org/10.3390/land14081511 - 22 Jul 2025
Viewed by 223
Abstract
Under the dual pressures of global climate warming and rapid urbanization, the Yangtze River Basin, as the world’s largest urban agglomeration, is facing intensifying thermal environmental stress. Although river ecosystems demonstrate significant thermal regulation functions, their spatial thresholds of cooling effects and multiscale [...] Read more.
Under the dual pressures of global climate warming and rapid urbanization, the Yangtze River Basin, as the world’s largest urban agglomeration, is facing intensifying thermal environmental stress. Although river ecosystems demonstrate significant thermal regulation functions, their spatial thresholds of cooling effects and multiscale driving mechanisms have remained to be systematically elucidated. This study retrieved land surface temperature (LST) using the split window algorithm and quantitatively analyzed the changes in the river cold island effect and its driving mechanisms in the Yangtze River Basin by combining multi-ring buffer analysis and the optimal parameter-based geographical detector model. The results showed that (1) forest land is the main land use type in the Yangtze River Basin, with built-up land having the largest area increase. Affected by natural, socioeconomic, and meteorological factors, the summer temperatures displayed a spatial pattern of “higher in the east than the west, warmer in the south than the north”. (2) There are significant differences in the cooling magnitude among different land types. Forest land has the maximum daytime cooling distance (589 m), while construction land has the strongest cooling magnitude (1.72 °C). The cooling effect magnitude is most pronounced in upstream areas of the basin, reaching 0.96 °C. At the urban agglomeration scale, the Chengdu–Chongqing urban agglomeration shows the greatest temperature reduction of 0.90 °C. (3) Elevation consistently demonstrates the highest explanatory power for LST spatial variability. Interaction analysis shows that the interaction between socioeconomic factors and elevation is generally the strongest. This study provides important spatial decision support for formulating basin-scale ecological thermal regulation strategies based on refined spatial layout optimization, hierarchical management and control, and a “natural–societal” dual-dimensional synergistic regulation system. Full article
Show Figures

Graphical abstract

17 pages, 4550 KiB  
Article
Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin
by Degui Yao, Xiaohui Wang and Jinyu Wang
Atmosphere 2025, 16(7), 892; https://doi.org/10.3390/atmos16070892 - 21 Jul 2025
Viewed by 158
Abstract
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme [...] Read more.
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme precipitation in the YRB from 1981 to 2020 through the extreme precipitation metrics and Empirical Orthogonal Function (EOF) analysis. The results indicate that both the frequency and intensity of extreme precipitation exhibit an eastward and southward increasing pattern in terms of climate state, with regions of higher precipitation showing greater interannual variability. When precipitation in the YRB exhibits a spatially coherent enhancement pattern, high latitudes exhibits an Eurasian teleconnection wave train that facilitates the southward movement of cold air. Concurrently, the northward extension of the Western Pacific subtropical high (WPSH) enhances moisture transport from low latitudes to the YRB, against the backdrop of a transitioning SST pattern from El Niño to La Niña. When precipitation in the YRB shows a “south-increase, north-decrease” dipole pattern, the southward-shifted Ural high and westward-extended WPSH converge cold air and moist in the southern YRB region, with no dominant SST drivers identified. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

22 pages, 16538 KiB  
Article
Experimental Study on Interface Bonding Performance of Frost-Damaged Concrete Reinforced with Yellow River Sedimentary Sand Engineered Cementitious Composites
by Binglin Tan, Ali Raza, Ge Zhang and Chengfang Yuan
Materials 2025, 18(14), 3278; https://doi.org/10.3390/ma18143278 - 11 Jul 2025
Viewed by 364
Abstract
Freeze–thaw damage is a critical durability challenge in cold climates that leads to surface spalling, cracking, and degradation of structural performance. In northern China, the severity of winter conditions further accelerates the degradation of concrete infrastructure. This study investigates the reinforcement of frost-damaged [...] Read more.
Freeze–thaw damage is a critical durability challenge in cold climates that leads to surface spalling, cracking, and degradation of structural performance. In northern China, the severity of winter conditions further accelerates the degradation of concrete infrastructure. This study investigates the reinforcement of frost-damaged concrete using engineered cementitious composites (ECC) prepared with Yellow River sedimentary sand (YRS), employed as a 100% mass replacement for quartz sand to promote sustainability. The interface bonding performance of ECC-C40 specimens was evaluated by testing the impact of various surface roughness treatments, freeze–thaw cycles, and interface agents. A multi-factor predictive formula for determining interface bonding strength was created, and the bonding mechanism and model were examined through microscopic analysis. The results show that ECC made with YRS significantly improved the interface bonding performance of ECC-C40 specimens. Specimens treated with a cement expansion slurry as the interface agent and those subjected to the splitting method for surface roughness achieves the optimal reinforced condition, exhibited a 27.57%, 35.17%, 43.57%, and 42.92% increase in bonding strength compared to untreated specimens under 0, 50, 100, and 150 cycles, respectively. Microscopic analysis revealed a denser interfacial microstructure. Without an interface agent, the bond interface followed a dual-layer, three-zone model; with the interface agent, a three-layer, three-zone model was observed. Full article
Show Figures

Graphical abstract

26 pages, 5129 KiB  
Article
HEC-RAS-Based Evaluation of Water Supply Reliability in the Dry Season of a Cold-Region Reservoir in Mudanjiang, Northeast China
by Peng-Fei Lu, Chang-Lei Dai, Yuan-Ming Wang, Xiao Yang and Xin-Yu Wang
Sustainability 2025, 17(14), 6302; https://doi.org/10.3390/su17146302 - 9 Jul 2025
Viewed by 314
Abstract
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking [...] Read more.
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking Linhai Reservoir as the core, it integrates the HEC-RAS hydrodynamic model with multi-source data such as basin topography, hydro-meteorological data, and water conservancy project parameters to construct a multi-scenario water supply scheduling model during the dry season. The aim is to provide scientific recommendations for different reservoir operation strategies in response to varying frequencies of upstream inflow, based on simulations conducted after the reservoir’s completion. Taking into account winter runoff reduction characteristics and engineering parameters, we simulated the relationships between water level and flow, ecological flow requirements, and urban water shortages. The results indicate that in both flood and normal years, dynamic coordination of storage and discharge can achieve a daily water supply of 120,000 cubic meters, with 100% compliance for the ecological flow rate. For mild and moderate drought years, additional water diversion becomes necessary to achieve 93.5% and 89% supply reliability, respectively. During severe and extreme droughts, significantly reduced reservoir inflows lower ecological compliance rates, necessitating emergency measures, such as utilizing dead storage capacity and exploring alternative water sources. The study proposes operational strategies tailored to different drought intensities: initiating storage adjustments in September for mild droughts and implementing peak-shifting measures by mid-October for extreme droughts. These approaches enhance storage efficiency and mitigate ice blockage risks. This research supports the water supply security and river ecological health of urban and rural areas in Mudanjiang City and Hailin City and provides a certain scientific reference basis for the multi-objective coordinated operation of reservoirs in the same type of high-latitude cold regions. Full article
Show Figures

Figure 1

61 pages, 5489 KiB  
Review
Unlocking the Sublime: A Review of Native Australian Citrus Species
by Joel B. Johnson, Natasha L. Hungerford, Yasmina Sultanbawa and Michael E. Netzel
Foods 2025, 14(14), 2425; https://doi.org/10.3390/foods14142425 - 9 Jul 2025
Viewed by 1298
Abstract
Citrus fruit are well-known for their characteristic flavour and nutritional value. Global citrus production has increased by 528% between 1961 and 2021, and in Australia, citrus is the most exported fresh fruit product by volume. There are six described Citrus species endemic to [...] Read more.
Citrus fruit are well-known for their characteristic flavour and nutritional value. Global citrus production has increased by 528% between 1961 and 2021, and in Australia, citrus is the most exported fresh fruit product by volume. There are six described Citrus species endemic to Australia: C. australasica (Australian finger lime), C. australis (round lime), C. garrawayi (Mount White lime), C. glauca (desert lime), C. gracilis (Humpty Doo lime), and C. inodora (Russell River lime). Australian Citrus possess unique flavours, aromas, and phytochemical profiles, suggesting a potential use as novelty crops and/or ‘functional foods’. Furthermore, the native Australian Citrus germplasm is a valuable source of desirable traits in citrus breeding, including drought, cold, heat, salinity, and disease resistance. These may help solve some challenges facing citrus growers globally, including disease, a declining soil quality, changing climates, and narrowing profit margins. However, many Australian citrus species’ nutritional value, chemical composition, and bioactive properties remain unknown. This review focuses on these under-investigated native Citrus species, their distribution, production, physiology, disease tolerance, traditional use, taxonomy, flavour, nutritional composition, bioactivity, and commercial production. It concludes with a perspective on the future of these native species in the Australian and global citrus context. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

25 pages, 9967 KiB  
Article
Study on the Influence and Mechanism of Mineral Admixtures and Fibers on Frost Resistance of Slag–Yellow River Sediment Geopolymers
by Ge Zhang, Huawei Shi, Kunpeng Li, Jialing Li, Enhui Jiang, Chengfang Yuan and Chen Chen
Nanomaterials 2025, 15(13), 1051; https://doi.org/10.3390/nano15131051 - 6 Jul 2025
Viewed by 278
Abstract
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica [...] Read more.
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica fume and metakaolin) and fibers (steel fiber and PVA fiber). Through 400 freeze-thaw cycles combined with microscopic characterization techniques such as SEM, XRD, and MIP, the results indicate that the group with 20% silica fume content (SF20) exhibited optimal frost resistance, showing a 19.9% increase in compressive strength after 400 freeze-thaw cycles. The high pozzolanic reactivity of SiO2 in SF20 promoted continuous secondary gel formation, producing low C/S ratio C-(A)-S-H gels and increasing the gel pore content from 24% to 27%, thereby refining the pore structure. Due to their high elastic deformation capacity (6.5% elongation rate), PVA fibers effectively mitigate frost heave stress. At the same dosage, the compressive strength loss rate (6.18%) and splitting tensile strength loss rate (21.79%) of the PVA fiber-reinforced group were significantly lower than those of the steel fiber-reinforced group (9.03% and 27.81%, respectively). During the freeze-thaw process, the matrix pore structure exhibited a typical two-stage evolution characteristic of “refinement followed by coarsening”: In the initial stage (0–100 cycles), secondary hydration products from mineral admixtures filled pores, reducing the proportion of macropores by 5–7% and enhancing matrix densification; In the later stage (100–400 cycles), due to frost heave pressure and differences in thermal expansion coefficients between matrix phases (e.g., C-(A)-S-H gel and fibers), interfacial microcracks propagated, causing the proportion of macropores to increase back to 35–37%. This study reveals the synergistic interaction between mineral admixtures and fibers in enhancing freeze–thaw performance. It provides theoretical support for the high-value application of Yellow River sediment in F400-grade geopolymer composites. The findings have significant implications for infrastructure in cold regions, including subgrade materials, hydraulic structures, and related engineering applications. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Civil Engineering)
Show Figures

Figure 1

21 pages, 7172 KiB  
Article
Future Streamflow and Hydrological Drought Under CMIP6 Climate Projections
by Tao Liu, Yan Liu, Zhenjiang Si, Longfei Wang, Yusu Zhao and Jing Wang
Atmosphere 2025, 16(6), 691; https://doi.org/10.3390/atmos16060691 - 6 Jun 2025
Viewed by 758
Abstract
Droughts caused by runoff are an important environmental issue in the context of global climate change, with profound impacts on ecosystems, agriculture and water resource management. To assess the impact of future climate change on the hydrological response of watersheds, this study combines [...] Read more.
Droughts caused by runoff are an important environmental issue in the context of global climate change, with profound impacts on ecosystems, agriculture and water resource management. To assess the impact of future climate change on the hydrological response of watersheds, this study combines the SWAT (Soil and Water Assessment Tool) and MODFLOW (MODular groundwater FLOW model) models to predict future changes in runoff and hydrological drought in watersheds using data from two scenarios under 15 CMIP6 climate models. The results show that: (1) The R2 and NSE values of monthly runoff at the Caizuzi station in the Naoli River basin are greater than 0.60 in different periods; (2) the ensemble of climate models after screening can effectively improve the accuracy of runoff simulation and reduce the prediction uncertainty of a single climate model; (3) under different scenarios, the temperature generally increases, the precipitation increases and evapotranspiration increased under the SSP2-4.5 scenario and decreased under the SSP5-8.5 scenario; (4) runoff showed an increasing trend under the SSP2-4.5 scenario and the opposite trend under the SSP5-8.5 scenario; (5) the frequency of winter runoff droughts decreased in the future period, while the frequency of spring and summer droughts increased, with the change trend being more pronounced under the SSP5-8.5 scenario; (6) compared with the baseline period (1965–2014), under the SSP2-4.5 and SSP5-8.5 scenarios, the average annual temperature in the watershed increased by 1.89 °C and 3.22 °C, respectively, and the annual precipitation increased by 32% and 36.19%, respectively, but the summer and autumn runoff decreased; and (7) The SRI-3 model analysis indicates that hydrological droughts will significantly intensify under both future emission scenarios. Under the SSP5-8.5 scenario, droughts will worsen earlier and the abrupt change will occur earlier, while under the SSP2-4.5 scenario, although the abrupt change will occur later, the drought intensity will be higher. The critical drought transition periods are 2030–2047 (SSP5-8.5) and 2045–2055 (SSP2-4.5). This study provides important scientific basis for adaptive water resources management and drought mitigation strategies in cold-region watersheds under future climate scenarios. Full article
Show Figures

Figure 1

19 pages, 2272 KiB  
Article
Environmental Pollution and Biological Invasions Threaten Native Freshwater Infaunal Bivalves in the Guandu River Basin, Southeast Brazil
by Nathália Rodrigues, Igor C. Miyahira, Antonio J. S. Rodrigues, Luciano N. Santos and Raquel A. F. Neves
Limnol. Rev. 2025, 25(2), 24; https://doi.org/10.3390/limnolrev25020024 - 3 Jun 2025
Viewed by 379
Abstract
Freshwater bivalves play essential ecological roles in ecosystems, but they are among the most threatened fauna worldwide. Despite receiving industrial and domestic wastes, the Guandu River is the main source of drinking water for more than nine million people in the Rio de [...] Read more.
Freshwater bivalves play essential ecological roles in ecosystems, but they are among the most threatened fauna worldwide. Despite receiving industrial and domestic wastes, the Guandu River is the main source of drinking water for more than nine million people in the Rio de Janeiro metropolitan region. This study aimed to assess how infaunal bivalves respond to water and sediment quality in the Guandu River basin. Samples were collected at 10 sites across reservoirs, lotic, and lentic systems during cold–dry and warm–rainy seasons. Four bivalves were identified: Anodontites trapesialis, Diplodon ellipticus, Corbicula fluminea (non-native), and C. largillierti (non-native). Native species were restricted to two lentic sites at Guandu Lagoon, with the poorest environmental quality, significantly affected by high chlorophyll a and ammonia in the water. In contrast, C. fluminea was widely distributed and more abundant in the basin but restricted to less degraded sites, suggesting a lower tolerance to environmental pollution. Multivariate analyses indicated significant differences in environmental conditions and species–environment correlation. The non-native species spread and poor environmental quality threaten native bivalves in the Guandu River basin, leading them to a local extinction risk. Results highlight the need for effective management and conservation actions to protect biodiversity in tropical river basins. Full article
Show Figures

Figure 1

17 pages, 4447 KiB  
Article
Can the Baikal Amphipod Gmelinoides fasciatus (Stebbing, 1899) Have Different Responses to Light Pollution with Different Color Temperatures?
by Dmitry Karnaukhov, Yana Ermolaeva, Maria Maslennikova, Dmitry Golubets, Arina Lavnikova, Ivan Kodatenko, Artem Guliguev, Diana Rechile, Kirill Salovarov, Anastasia Olimova, Kristina Ruban, Darya Kondratieva, Anna Solomka, Alyona Slepchenko, Alexandr Bashkirtsev, Sofya Biritskaya, Anastasia Solodkova, Natalia Kulbachnaya and Eugene Silow
J. Mar. Sci. Eng. 2025, 13(6), 1039; https://doi.org/10.3390/jmse13061039 - 25 May 2025
Viewed by 500
Abstract
Light pollution can affect various groups of aquatic organisms. This effect will vary depending on the color temperature of the artificial lighting. However, at the moment, the issue of adaptation of organisms to light pollution and the influence of different color temperatures on [...] Read more.
Light pollution can affect various groups of aquatic organisms. This effect will vary depending on the color temperature of the artificial lighting. However, at the moment, the issue of adaptation of organisms to light pollution and the influence of different color temperatures on them has not been well-studied. In this study, we decided to conduct a series of experiments with individuals of the amphipod Gmelinoides fasciatus from two populations and find out how individuals adapted to light pollution. The first group of individuals is from the population in Lake Baikal (Bolshie Koty Bay), and the second group is from the population in the Angara River (within the city of Irkutsk). The second population is significantly affected by light pollution. Since the middle of the last century, there has been an artificial barrier between these populations in the form of a hydroelectric power station. The experiments showed that G. fasciatus individuals developed different behavioral strategies in relation to artificial lighting with different color temperatures. In warm light, individuals tend to move to a shaded area, while in cold light, individuals may be attracted to artificial lighting, but only in small groups. These identified patterns may likely find practical use. Full article
(This article belongs to the Special Issue Evolution and Ecology of Crustaceans and Their Applications)
Show Figures

Figure 1

24 pages, 4948 KiB  
Article
The Evolution of Runoff Processes in the Source Region of the Yangtze River Under Future Climate Change
by Nana Zhang, Peng Jiang, Bin Yang, Changhai Tan, Wence Sun, Qin Ju, Simin Qu, Kunqi Ding, Jingjing Qin and Zhongbo Yu
Atmosphere 2025, 16(6), 640; https://doi.org/10.3390/atmos16060640 - 24 May 2025
Viewed by 377
Abstract
Climate change has intensified the melting of glaciers and permafrost in high-altitude cold regions, leading to more frequent extreme hydrological events. This has caused significant variations in the spatiotemporal distribution of meltwater runoff from the headwater cryosphere, posing a major challenge to regional [...] Read more.
Climate change has intensified the melting of glaciers and permafrost in high-altitude cold regions, leading to more frequent extreme hydrological events. This has caused significant variations in the spatiotemporal distribution of meltwater runoff from the headwater cryosphere, posing a major challenge to regional water security. In this study, the HBV hydrological model was set up and driven by CMIP6 global climate model outputs to investigate the multi-scale temporal variations of runoff under different climate change scenarios in the Tuotuo River Basin (TRB) within the source region of the Yangtze River (SRYR). The results suggest that the TRB will undergo significant warming and wetting in the future, with increasing precipitation primarily occurring from May to October and a notable rise in annual temperature. Both temperature and precipitation trends intensify under more extreme climate scenarios. Under all climate scenarios, annual runoff generally exhibits an upward trend, except under the SSP1-2.6 scenario, where a slight decline in total runoff is projected for the late 21st century (2061–2090). The increase in total runoff is primarily concentrated between May and October, driven by enhanced rainfall and meltwater contributions, while snowmelt runoff also shows an increase, but accounts for a smaller percentage of the total runoff and has a smaller impact on the total runoff. Precipitation is the primary driver of annual runoff depth changes, with temperature effects varying by scenario and period. Under high emissions, intensified warming and glacier melt amplify runoff, while low emissions show stable warming with precipitation dominating runoff changes. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

22 pages, 4602 KiB  
Article
Dynamics of Phyto- and Bacterioplankton in Southern Baikal and Irkutsk Reservoir During the Open Water Period of 2023 According to Metabarcoding Data
by Yuri Galachyants, Darya Petrova, Artem Marchenkov, Maria Nalimova and Yelena Likhoshway
Diversity 2025, 17(6), 369; https://doi.org/10.3390/d17060369 - 22 May 2025
Viewed by 493
Abstract
Artificial reservoirs formed by hydroelectric dams are young ecosystems requiring water quality monitoring, as they often serve local populations. Traditionally, this is performed through hydrochemical and sanitary assessments, alongside phytoplankton composition analysis. This study aimed to assess the seasonal dynamics of microbial communities—both [...] Read more.
Artificial reservoirs formed by hydroelectric dams are young ecosystems requiring water quality monitoring, as they often serve local populations. Traditionally, this is performed through hydrochemical and sanitary assessments, alongside phytoplankton composition analysis. This study aimed to assess the seasonal dynamics of microbial communities—both bacterioplankton and microeukaryotes including phytoplankton—in the Irkutsk Reservoir (IR), which is fed by the cold oligotrophic waters of Southern Baikal (SB). Using parallel metabarcoding of 16S and 18S rRNA gene fragments, we analyzed community composition during the open-water season and evaluated the ecological connectivity between these two freshwater systems. We demonstrated that seasonal changes in microeukaryotic communities were closely linked between SB and IR, with the greatest divergence observed in early summer and progressive convergence by autumn. Metabarcoding confirmed microscopy-based observations while providing higher taxonomic resolution and detecting otherwise overlooked groups. Bacterioplankton communities also exhibited seasonal variation and were shaped by environmental gradients and reservoir characteristics. Cyanobacteria peaked in SB in late summer but did not dominate communities, unlike in mesotrophic lowland reservoirs. These findings demonstrate the value of metabarcoding for freshwater monitoring and provide new insights into microbial community dynamics in river–reservoir systems influenced by oligotrophic lake inflow. Full article
(This article belongs to the Special Issue DNA Barcodes for Evolution and Biodiversity—2nd Edition)
Show Figures

Figure 1

Back to TopTop