The Evolution of Runoff Processes in the Source Region of the Yangtze River Under Future Climate Change
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. CMIP6 Data
3.2. HBV Model
- (1)
- Snowmelt module
- (2)
- Soil module
- (3)
- Response Module
- (4)
- Converging module
3.3. Multi-Temporal-Scale Analysis
4. Results and Discussion
4.1. Calibration and Validation of HBV Model
4.2. Characteristics of Intra-Annual Variability in Precipitation, Temperature, and Runoff
4.3. Characterization of Changes in Precipitation, Temperature, and Runoff Trends
4.4. The Contribution Analysis to Future Changes in Runoff
5. Conclusions
- The TRB exhibits a distinct warming and increased precipitation trend under future climate change, characterized by increased precipitation concentrated from May to October and significant year-round temperature increases, particularly pronounced under high-emission scenarios.
- The overall trend of future yearly runoff is increasing with the forcing scenario. The increase in total runoff is concentrated in May–October, mainly due to the increase in icemelt runoff and increasing rainfall, while snowmelt runoff also shows an increase, but accounts for a smaller percentage of the total runoff and has a smaller impact on the total runoff. The average annual runoff in the watershed under the four future scenarios for 2031–2060 and 2061–2090, in descending order, was SSP3-7.0 < SSP1-2.6 < SSP2-4.5 < SSP5-8.5, with the largest increase in runoff in the SSP5-8.5 scenario.
- Precipitation becomes the main factor influencing changes in annual runoff depth, while temperature effects show scenario- and period-related complexity. In the low-emission scenario, far-reaching warming is stable and runoff changes are dominated by precipitation; in the high-emission scenario, warming is intense, melting is greater, and precipitation and temperature jointly drive runoff changes. In the long-term high-emission scenario, the amplification of runoff depth by temperature becomes significant, mainly through accelerated glacier ablation and altered precipitation patterns.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CMIP6 | Coupled Model Intercomparison Project Phase 6, refers to the GCM |
SSP | Shared socioeconomic pathway scenario from CMIP6 simulations |
TRB | Tuotuo River Basin |
SRYR | Source region of the Yangtze River |
References
- Palmate, S.S.; Pandey, A.; Tigabu, T.B.; Mercado-Bettin, D.; Fohrer, N.; Wagner, P.D. A conceptual framework to disentangle land use and climate change impacts on water balance components and sediment yield. Environ. Dev. Sustain. 2023, 27, 7033–7061. [Google Scholar] [CrossRef]
- Van Uytven, E.; Wampers, E.; Wolfs, V.; Willems, P. Evaluation of change factor-based statistical downscaling methods for impact analysis in urban hydrology. Urban Water J. 2020, 17, 785–794. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, L.-E.; Zhong, L. Future Risk of Tourism Pressures under Climate Change: A Case Study in the Three-River-Source National Park. Remote Sens. 2022, 14, 3758. [Google Scholar] [CrossRef]
- Zierl, B.; Bugmann, H. Global change impacts on hydrological processes in Alpine catchments. Water Resour. Res. 2005, 41, W02028. [Google Scholar] [CrossRef]
- Sood, A.; Muthuwatta, L.; McCartney, M. A SWAT evaluation of the effect of climate change on the hydrology of the Volta River basin. Water Int. 2013, 38, 297–311. [Google Scholar] [CrossRef]
- Zhou, T.J.; Chen, Z.M.; Chen, X.L.; Zuo, M.; Jiang, J.; Hu, S. Interpreting IPCC AR6: Future global climate based on projection under scenarios and on near-term information. Clim. Change Res. 2021, 17, 652–663. [Google Scholar]
- Ma, Y.; Ma, W.; Zhong, L.; Hu, Z.; Li, M.; Zhu, Z.; Han, C.; Wang, B.; Liu, X. Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia. Sci. Rep. 2017, 7, 44574. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, D.; Zhou, Z. Review of research progress and modeling of hydrological processes in the cold regions of the Qinghai-Xizang Plateau. J. Glaciol. Geocryol. 2024, 46, 1312–1328. [Google Scholar]
- Shu, Z.K.; Li, W.X.; Zhang, J.Y.; Jin, J.L.; Xue, Q.; Wang, Y.T.; Wang, G.Q. Historical Changes and Future Trends of Extreme Precipitation and High Temperature in China. Strateg. Study CAE 2022, 24, 116–125. [Google Scholar] [CrossRef]
- Tian, R.; Ma, Y.; Ma, W.; Zhao, X.; Zha, D. Longer Time-Scale Variability of Atmospheric Vertical Motion over the Tibetan Plateau and North Pacific and the Climate in East Asia. Atmosphere 2021, 12, 630. [Google Scholar] [CrossRef]
- Yang, J.P. Studies on eco-environmental change in source regions of the Yangtze and Yellow Rivers of China: Present and future. Sci. Cold Arid Reg. 2019, 11, 173–183. [Google Scholar]
- Xie, M.; Li, Y.; Cai, X. Hydrological responses to the synergistic climate and land-use changes in the upper Lancang river basin. Environ. Res. Lett. 2024, 19, 014045. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Z.; Zhao, L.; Chen, H.; Feng, R. Precursor Signals for Climate Prediction Based on Thermal Conditions of the Tibetan Plateau and Indian Ocean. Clim. Environ. Res. 2024, 29, 216–228. [Google Scholar]
- Luo, Y.; Qin, N.S.; Zhou, B.; Li, J.J.; Liu, J.; Wang, C.X.; Pang, Y.S. Change of Runoff in the Source Regions of the Yangtze River from 1961 to 2016. Res. Soil Water Conserv. 2019, 26, 123–128. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.; Wang, H.; Ding, X.; Xu, H. Estimation of glacier mass loss and its contribution to river runoff in the source region of the Yangtze River during 2000–2018. J. Hydrol. 2020, 589, 125207. [Google Scholar] [CrossRef]
- Chen, L.J.; Yu, B.L.; Chen, Z.Q.; Li, B.L.; Wu, J.P. Investigating the Temporal and Spatial Variability of Total Ozone Column in the Yangtze River Delta Using Satellite Data: 1978–2013. Remote Sens. 2014, 6, 12527–12543. [Google Scholar] [CrossRef]
- Jin, H.Y.; Chen, X.H.; Zhong, R.D.; Pan, Y.J.; Zhao, T.T.; Liu, Z.Y.; Tu, X.J. Corrected GCM data through CMFD data to analysis future runoff changes in the source region of the Yangtze River, China. Environ. Earth Sci. 2022, 81, 527. [Google Scholar] [CrossRef]
- Tang, X.P.; Lv, H.S. Temporal Variation of Main Hydrologic Meteorogical Elements in Tuotuohe River Basin. Water Resour. Power 2016, 34, 37–40. [Google Scholar]
- Luo, Y.; Qin, N.S.; Pang, Y.S.; Wang, C.X.; Liu, J.; Li, J.J.; Liu, X.S. Effect of climate warming on the runoff of source regions of the Yangtze River: Take Tuotuo River basin as an example. J. Glaciol. Geocryol. 2020, 42, 952–964. [Google Scholar]
- Ma, T.; She, Y.; Zhao, L.; Hu, B.; Feng, X.; Zhao, J.; Zhao, Z. Alpine Wetland Evolution and Their Response to Climate Change in the Yellow-River-Source National Park from 2000 to 2020. Water 2022, 14, 2351. [Google Scholar] [CrossRef]
- Shi, M.; Yuan, Z.; Hong, X.; Liu, S. Spatiotemporal Variation of Snow Cover and Its Response to Climate Change in the Source Region of the Yangtze River, China. Atmosphere 2022, 13, 1161. [Google Scholar] [CrossRef]
- Zhang, G.; Shi, X.; Li, D.; Wang, Q.; Dai, S. Climate Change in Tuotuohe Area at the Headwater of Yangtze River. J. Glaciol. Geocryol. 2006, 28, 678–685. [Google Scholar]
- Li, X.; Ye, H.L.; Li, J.F.; Han, T.F.; Liu, C.F. Impact of climate change on runoff in Tuotuo River Basin. Qinghai Prataculture 2023, 32, 27–32. [Google Scholar]
- Wijngaard, R.R.; Helfricht, K.; Schneeberger, K.; Huttenlau, M.; Schneider, K.; Bierkens, M.F.P. Hydrological response of the Otztal glacierized catchments to climate change. Hydrol. Res. 2016, 47, 979–995. [Google Scholar] [CrossRef]
- Foster, L. Modeling Climate Change Impacts to Rocky Mountain Headwater Hydrology; Colorado School of Mines: Golden, CO, USA, 2018. [Google Scholar]
- Zhou, J.; Abulimiti, A.; Mao, W.; Jiao, M.; An, M.; Shen, Y. The responses of the runoff processes to climate change in the Qingshuihe River watershed on the southern slope of Tianshan Mountains. J. Glaciol. Geocryol. 2014, 36, 685–690. [Google Scholar]
- Lai, X.; Gong, Y.; Cen, S.; Tian, H.; Zhang, H. Impact of the Westerly Jet on Rainfall/Runoff in the Source Region of the Yangtze River during the Flood Season. Adv. Meteorol. 2020, 2020, 6726347. [Google Scholar] [CrossRef]
- Suarez, J.A.R.; Diaz-Fierros, F.; Perez, R.; Soto, B. Assessing the influence of afforestation with Eucalyptus globulus on hydrological response from a small catchment in northwestern Spain using the HBV hydrological model. Hydrol. Process. 2014, 28, 5561–5572. [Google Scholar] [CrossRef]
- Panthi, J.; Talchabhadel, R.; Ghimire, G.R.; Sharma, S.; Dahal, P.; Baniya, R.; Boving, T.; Pradhanang, S.M.; Parajuli, B. Hydrologic Regionalization under Data Scarcity: Implications for Streamflow Prediction. J. Hydrol. Eng. 2021, 26, 05021022. [Google Scholar] [CrossRef]
- Deng, P.; Wang, G.F.; Wang, G.J. Evaluation of BMA for temperature simulation in China by CMIP6 global climate models. J. Meteorol. Sci. 2024, 44, 775–782. [Google Scholar]
- Xiaoling, Y.; Botao, Z.; Ying, X.; Zhenyu, H. CMIP6 Evaluation and Projection of Temperature and Precipitation over China. Adv. Atmos. Sci. 2021, 38, 817–830. [Google Scholar]
- Han, Z.; Xu, Y.; Wu, J.; Shi, Y. Evaluation on the simulated runoff in China and future change projection based on multiple regional climate models. Clim. Change Res. 2022, 18, 305–318. [Google Scholar]
- Wang, L.; Zeng, S.D.; Yang, L.H.; Huang, S.S.; Mao, W.Y.; Xia, J. CMIP6-based meteorological drought characteristic study under climate change in the Hanjiang River Basin. Water Resour. Prot. 2024, 40, 39–45+61. [Google Scholar]
- Long, Y.N.; Zhang, Y.L.; Jiang, C.B.; Mo, J.C.; Huang, C.F.; Song, X.Y. Study on Runoff Response of Zishui Basin Under Climate Change Based on CMIP6. Res. Soil Water Conserv. 2024, 31, 114–125. [Google Scholar] [CrossRef]
- Zhou, T.; Zou, L.; Chen, X. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Clim. Change Res. 2019, 15, 445–456. [Google Scholar]
- Nooni, I.K.; Ogou, F.K.; Chaibou, A.A.S.; Nakoty, F.M.; Gnitou, G.T.; Lu, J. Evaluating CMIP6 Historical Mean Precipitation over Africa and the Arabian Peninsula against Satellite-Based Observation. Atmosphere 2023, 14, 607. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Wang, H.; Sun, B.; Chen, H. Evaluation of CMIP6 model simulations of extreme precipitation in China and comparison with CMIP5. Acta Meteorol. Sin. 2021, 79, 369–386. [Google Scholar]
- Zhu, H.; Jiang, Z.; Li, J.; Li, W.; Sun, C.; Li, L. Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China? Adv. Atmos. Sci. 2020, 37, 1119–1132. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Z.; Zang, H.; Wang, W.; Wei, M.; Cui, H. Runoff Simulation and Prediction in the Source Region of the Yellow River Based on SSP Scenarios. J. North China Univ. Water Resour. Electr. Power Nat. Sci. Ed. 2023, 44, 31–40. [Google Scholar] [CrossRef]
- Liu, K.; Liu, J.F.; Wang, C.Q. Assessment of Future Trends in Temperature and Precipitation in the Yellow River Basin under SSP Scenarios. J. China Hydrol. 2024, 44, 1–13. [Google Scholar] [CrossRef]
- Guo, B.; Wei, C.; Yu, Y.; Liu, Y.; Li, J.; Meng, C.; Cai, Y. The dominant influencing factors of desertification changes in the source region of Yellow River: Climate change or human activity? Sci. Total Environ. 2022, 813, 152512. [Google Scholar] [CrossRef]
- Ni, Y.; Lv, X.; Yu, Z.; Wang, J.; Ma, L.; Zhang, Q. Intra-annual variation in the attribution of runoff evolution in the Yellow River source area. Catena 2023, 225, 107032. [Google Scholar] [CrossRef]
- Wang, K.; Lu, F.; Song, X. High Resolution CMIP6 Forcing Data of the Tibetan Plateau (1979–2013, 2015–2100); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2023. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Shouzhang, P. 1-km Monthly Potential Evapotranspiration Dataset for China (1901–2023); National Earth System Science Data Center: Beijing, China, 2024. [Google Scholar] [CrossRef]
- Sun, L.M.; Wang, X.F.; Yang, W. Comparative Study of Hydrological Models in Different Basins Applied to the Source Area of the Yellow River. China Water Transp. 2023, 121–123. [Google Scholar] [CrossRef]
- Wang, S.M.; Liu, B.; Li, R.; Sun, X.X.; Mao, R. Temporal changes in mixing effects on litter decay and nitrogen release in a boreal riparian forest in northeastern China. J. For. Res. 2024, 35, 1–11. [Google Scholar] [CrossRef]
- Gao, H.K.; He, X.B.; Ye, B.S.; Gao, X. The Simulation of HBV Hydrology Model in the Dongkemadi River Basin, Headwater of the Yangtze River. J. Glaciol. Geocryol. 2011, 33, 171–181. [Google Scholar]
- Liu, Y.H.; Gao, G.; Zhai, J.Q.; Liu, L.L.; Wen, T.T.; Sun, Y.S. The discharge change in the source region of the Yellow River in the next 40 years based on the CMIP6 and two hydrological models. J. Glaciol. Geocryol. 2024, 46, 675–687. [Google Scholar]
- Osuch, M.; Wawrzyniak, T.; Nawrot, A. Diagnosis of the hydrology of a small Arctic permafrost catchment using HBV conceptual rainfall-runoff model. Hydrol. Res. 2019, 50, 459–478. [Google Scholar] [CrossRef]
- Jiang, P.; Yu, Z.B.; Gautam, M.R. Pacific and Atlantic Ocean influence on the spatiotemporal variability of heavy precipitation in the western United States. Glob. Planet. Change 2013, 109, 38–45. [Google Scholar] [CrossRef]
- Li, X.; O, S.; Wang, N.; Liu, L.; Huang, Y. Evaluation of the GPM IMERG V06 products for light rain over Mainland China. Atmos. Res. 2021, 253, 105510. [Google Scholar] [CrossRef]
- Yang, Z.; Hsu, K.; Sorooshian, S.; Xu, X.; Braithwaite, D.; Verbist, K.M.J. Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile. J. Geophys. Res. Atmos. 2016, 121, 3790–3806. [Google Scholar] [CrossRef]
- Seibert, J.; Vis, M.J.P. Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrol. Earth Syst. Sci. 2012, 16, 3315–3325. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Wanders, N.; Lutz, A.F.; Shea, J.M.; Bierkens, M.F.P. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol. Earth Syst. Sci. 2015, 19, 4673–4687. [Google Scholar] [CrossRef]
- Kang, S.C.; Xu, Y.W.; You, Q.L.; Flügel, W.A.; Pepin, N.; Yao, T.D. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015101. [Google Scholar] [CrossRef]
- Su, J.; Duan, A.; Xu, H. Quantitative analysis of surface warming amplification over the Tibetan Plateau after the late 1990s using surface energy balance equation. Atmos. Sci. Lett. 2017, 18, 112–117. [Google Scholar] [CrossRef]
- Hu, S.; Hsu, P.-C.; Li, W.; Wang, L.; Chen, H.; Zhou, B. Mechanisms of Tibetan Plateau Warming Amplification in Recent Decades and Future Projections. J. Clim. 2023, 36, 5775–5792. [Google Scholar] [CrossRef]
- Radic, V.; Hock, R. Glaciers in the Earth’s Hydrological Cycle: Assessments of Glacier Mass and Runoff Changes on Global and Regional Scales. Surv. Geophys. 2014, 35, 813–837. [Google Scholar] [CrossRef]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 2018, 8, 135–140. [Google Scholar] [CrossRef]
- Sun, H.; Yao, T.-D.; Su, F.-G.; Ou, T.; He, Z.; Tang, G.; Chen, D. Increased glacier melt enhances future extreme floods in the southern Tibetan Plateau. Adv. Clim. Change Res. 2024, 15, 431–441. [Google Scholar] [CrossRef]
- Wang, N.; Yao, T.; Xu, B.; Chen, A.a.; Wang, W. Spatiotemporal Pattern, Trend, and Influence of Glacier Change in Tibetan Plateau and Surroundings under Global Warming. Bull. Chin. Acad. Sci. 2019, 34, 1220–1232. [Google Scholar]
Climate Models | Country | Resolution |
---|---|---|
ACCESS-ESM1-5 | Australia | 1.88° × 1.24° |
BMA | Brazil | 1.875° × 1.25° |
CanESM5 | Canada | 2.81° × 2.81° |
CNRM-CM6 | Australia | 1.88° × 1.24° |
INMCM4-8 | Russia | 2.00° × 1.50° |
IPSL | France | 2.50° × 1.26° |
MRI-ESM2-0 | Japan | 1.125° × 1.125° |
UKESM1-0-LL | The United Kingdom | 1.875° × 1.25° |
Climate Models | Calibration Period | Validation Period | ||
---|---|---|---|---|
NSE | R2 | NSE | R2 | |
ACCESS-ESM1-5 | 0.76 | 0.76 | 0.75 | 0.71 |
BMA | 0.68 | 0.69 | 0.74 | 0.68 |
CanESM5 | 0.65 | 0.68 | 0.63 | 0.64 |
CNRM-CM6 | 0.68 | 0.63 | 0.64 | 0.71 |
INMCM4-8 | 0.70 | 0.71 | 0.71 | 0.72 |
IPSL | 0.69 | 0.70 | 0.69 | 0.64 |
MRI-ESM2-0 | 0.73 | 0.75 | 0.69 | 0.72 |
UKESM1-0-LL | 0.68 | 0.69 | 0.63 | 0.63 |
Variables | Scenarios | HIS | Near Future (2031–2060) | Far Future (2061–2090) |
---|---|---|---|---|
Precipitation | SSP1-2.6 | 2.28 * | 1.18 | −1.50 |
SSP2-4.5 | 1.57 | −0.21 | ||
SSP3-7.0 | 2.07 * | 3.64 * | ||
SSP5-8.5 | 2.85 * | 4.10 * | ||
Temperature | SSP1-2.6 | 5.39 * | 4.10 * | −1.11 |
SSP2-4.5 | 5.82 * | 4.17 * | ||
SSP3-7.0 | 6.49 * | 6.67 * | ||
SSP5-8.5 | 6.60 * | 6.82 * | ||
Total runoff | SSP1-2.6 | 2.11 * | 1.32 | −1.93 |
SSP2-4.5 | 2.00 * | 0.36 | ||
SSP3-7.0 | 3.89 * | 4.14 * | ||
SSP5-8.5 | 4.03 * | 4.85 * | ||
Snowmelt runoff | SSP1-2.6 | −0.82 | −0.11 | 0.11 |
SSP2-4.5 | 0.89 | 0.57 | ||
SSP3-7.0 | 0.68 | 1.18 | ||
SSP5-8.5 | 2.25 * | 2.93 * | ||
Glacier-melt runoff | SSP1-2.6 | 4.57 * | 2.57 * | −1.96 * |
SSP2-4.5 | 4.89 * | 1.89 | ||
SSP3-7.0 | 5.60 * | 5.85 * | ||
SSP5-8.5 | 5.60 * | 5.92 * |
Scenarios | Near Future (2031–2060) | Far Future (2061–2090) | ||
---|---|---|---|---|
SSP1-2.6 | 0.941 * | 0.675 * | 0.966 * | 0.461 * |
SSP2-4.5 | 0.948 * | 0.488 * | 0.923 * | 0.171 |
SSP3-7.0 | 0.931 * | 0.604 * | 0.910 * | 0.759 * |
SSP5-8.5 | 0.932 * | 0.488 * | 0.891 * | 0.777 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Jiang, P.; Yang, B.; Tan, C.; Sun, W.; Ju, Q.; Qu, S.; Ding, K.; Qin, J.; Yu, Z. The Evolution of Runoff Processes in the Source Region of the Yangtze River Under Future Climate Change. Atmosphere 2025, 16, 640. https://doi.org/10.3390/atmos16060640
Zhang N, Jiang P, Yang B, Tan C, Sun W, Ju Q, Qu S, Ding K, Qin J, Yu Z. The Evolution of Runoff Processes in the Source Region of the Yangtze River Under Future Climate Change. Atmosphere. 2025; 16(6):640. https://doi.org/10.3390/atmos16060640
Chicago/Turabian StyleZhang, Nana, Peng Jiang, Bin Yang, Changhai Tan, Wence Sun, Qin Ju, Simin Qu, Kunqi Ding, Jingjing Qin, and Zhongbo Yu. 2025. "The Evolution of Runoff Processes in the Source Region of the Yangtze River Under Future Climate Change" Atmosphere 16, no. 6: 640. https://doi.org/10.3390/atmos16060640
APA StyleZhang, N., Jiang, P., Yang, B., Tan, C., Sun, W., Ju, Q., Qu, S., Ding, K., Qin, J., & Yu, Z. (2025). The Evolution of Runoff Processes in the Source Region of the Yangtze River Under Future Climate Change. Atmosphere, 16(6), 640. https://doi.org/10.3390/atmos16060640