Future Streamflow and Hydrological Drought Under CMIP6 Climate Projections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Data Sources
3. Research Methods
3.1. SWAT Model
3.2. SWAT-MODFLOW Model
3.3. Calculation of Evapotranspiration
3.4. Model Calibration
3.5. SRI Index and the Theory of Travel
4. Model Building
4.1. Sub-Basin Division and Model Coupling
4.2. Model Calibration and Validation
5. Results and Analysis
5.1. CMIP6 Model Simulation Capability Assessment
5.2. Future Trends in Hydro-Meteorological Changes
5.3. Trend and Sudden Change Tests
5.4. Future Changes in Hydrological Drought
6. Discussion
7. Conclusions
- (1)
- The SWAT-MODFLOW hydrological model constructed based on measured meteorological data is of good applicability. The monthly runoff rate determination and verification R2 for the Caizuzi hydrological station under the control of the watershed is 0.71 and 0.84, and the NSE is 0.673 and 0.799.
- (2)
- The multi-model after ensemble mean screening can better improve the accuracy of the simulation and reduce the instability of a single CMIP6 climate model.
- (3)
- The results of future climate and runoff changes in the Naoli River basin under different scenarios show that the maximum and minimum temperatures will increase significantly in the future, and precipitation will generally increase, with a greater increase in SSP5-8.5. Evapotranspiration will increase under SSP2-4.5 and generally decrease under SSP5-8.5. Runoff will show no significant trend under both scenarios but will show a downward trend in the long term.
- (4)
- Runoff changes frequently within 10 years in each scenario. The future runoff in the Naoli River basin in each scenario shows a trend of first increasing and then decreasing. The turning point in the SSP2-4.5 scenario is in the long term, and in the SSP5-8.5 scenario, it is in the short term.
- (5)
- The SRI under the SSP2-4.5 scenario shows an increasing trend, and the frequency of droughts and extremely severe droughts is highest in the short term. The frequency of extreme droughts is zero under the SSP5-8.5 scenario, and the SRI shows a decreasing trend, but the frequency of runoff droughts is relatively high in the long term.
- (6)
- In future scenario simulations, compared with the baseline period (1965–2014), both the annual average temperature and precipitation in the watershed increased significantly. Under the SSP2-4.5 and SSP5-8.5 scenarios, the temperature increased by 1.89 °C and 3.22 °C, respectively, and the annual precipitation increased by 32% and 36.19%, respectively. Although overall precipitation and temperature showed an increasing trend, runoff during summer and autumn decreases.
- (7)
- Analysis based on the SRI-3 model indicates that both future emission scenarios show a significant strengthening trend in hydrological drought. Under the SSP5-8.5 scenario, drought intensification occurs earlier (June 2016), with more frequent early warning signals and an earlier onset of abrupt changes (2060). In contrast, under the SSP2-4.5 scenario, although the onset of abrupt changes is later (2074), there is ultimately higher drought intensity (UF = 15.05). Additionally, the periods from 2030 to 2047 (SSP5-8.5) and from 2045 to 2055 (SSP2-4.5) are identified as critical drought transition periods, indicating that different emission pathways will exert distinct influences on the temporal evolution and intensity of future droughts.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vicente-Serrano, S.M.; Peña-Angulo, D.; Murphy, C.; López-Moreno, J.I.; Tomas-Burguera, M.; Dominguez-Castro, F.; Tian, F.; Eklundh, L.; Cai, Z.; Alvarez-Farizo, B. The complex multi-sectoral impacts of drought: Evidence from a mountainous basin in the Central Spanish Pyrenees. Sci. Total Environ. 2021, 769, 144702. [Google Scholar] [CrossRef]
- Zscheischler, J.; Fischer, E.M. The record-breaking compound hot and dry 2018 growing season in Germany. Weather Clim. Extrem. 2020, 29, 100270. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Yuan, X.; Yao, H.; Zhao, Y.; AghaKouchak, A. The interactions between hydrological drought evolution and precipitation-streamflow relationship. J. Hydrol. 2021, 597, 126210. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Greve, P.; Roderick, M.; Ukkola, A.; Wada, Y. The aridity index under global warming. Environ. Res. Lett. 2019, 14, 124006. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, J.; Blanchette, M.; Rousseau, A.N.; Xu, Y.J.; Hu, B.; Zhang, G. Wetland mitigation functions on hydrological droughts: From drought characteristics to propagation of meteorological droughts to hydrological droughts. J. Hydrol. 2023, 617, 128971. [Google Scholar] [CrossRef]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35, L02405. [Google Scholar] [CrossRef]
- Kadapala, B.K.R.; Farsana, M.A.; Vimala, C.G.; Joshi, S.; Hakeem, K.A.; Raju, P. A grid-wise approach for accurate computation of Standardized Runoff Index (SRI). Sci. Total Environ. 2024, 946, 174472. [Google Scholar] [CrossRef]
- Tian, R.; Li, J.; Zheng, J.; Liu, L.; Han, W.; Liu, Y. Changes in vegetation phenology and its response to different layers of soil moisture in the dry zone of Central Asia, 1982–2022. J. Hydrol. 2025, 646, 132314. [Google Scholar] [CrossRef]
- Achite, M.; Katipoğlu, O.M.; Jehanzaib, M.; Kartal, V.; Mansour, H. Understanding run theory for evaluating hydrologic drought in the Wadi Mina Basin (Algeria): A historical analysis. Theor. Appl. Climatol. 2024, 155, 9673–9688. [Google Scholar] [CrossRef]
- Whitaker, A.C.; Chapasa, S.N.; Sagras, C.; Theogene, U.; Veremu, R.; Sugiyama, H. Estimation of baseflow recession constant and regression of low flow indices in eastern Japan. Hydrol. Sci. J. 2022, 67, 191–204. [Google Scholar] [CrossRef]
- Gan, R.; Gu, S.; Tong, X.; Lu, J.; Tang, H. A nonparametric standardized runoff index for characterizing hydrological drought in the Shaying River Basin, China. Nat. Hazards 2024, 120, 2233–2253. [Google Scholar] [CrossRef]
- Abdelmoaty, H.M.; Papalexiou, S.M.; Rajulapati, C.R.; AghaKouchak, A. Biases beyond the mean in CMIP6 extreme precipitation: A global investigation. Earth’s Future 2021, 9, e2021EF002196. [Google Scholar] [CrossRef]
- Fredriksen, H.B.; Smith, C.J.; Modak, A.; Rugenstein, M. 21st century scenario forcing increases more for CMIP6 than CMIP5 models. Geophys. Res. Lett. 2023, 50, e2023GL102916. [Google Scholar] [CrossRef]
- Xu, K.; Wu, C.; Zhang, C.; Hu, B.X. Uncertainty assessment of drought characteristics projections in humid subtropical basins in China based on multiple CMIP5 models and different index definitions. J. Hydrol. 2021, 600, 126502. [Google Scholar] [CrossRef]
- Behzadi, F.; Javadi, S.; Yousefi, H.; Hashemy Shahdany, S.M.; Moridi, A.; Neshat, A.; Golmohammadi, G.; Maghsoudi, R. Projections of meteorological drought severity-duration variations based on CMIP6. Sci. Rep. 2024, 14, 5027. [Google Scholar] [CrossRef]
- Zhao, T.; Dai, A. CMIP6 model-projected hydroclimatic and drought changes and their causes in the twenty-first century. J. Clim. 2022, 35, 897–921. [Google Scholar]
- Araujo, D.S.; Enquist, B.J.; Frazier, A.E.; Merow, C.; Roehrdanz, P.R.; Moulatlet, G.M.; Zvoleff, A.; Song, L.; Maitner, B.; Nikolopoulos, E.I. Global Future Drought Layers Based on Downscaled CMIP6 Models and Multiple Socioeconomic Pathways. Sci. Data 2025, 12, 295. [Google Scholar] [CrossRef]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K. Global data assessment and analysis of drought characteristics based on CMIP6. J. Hydrol. 2021, 596, 126091. [Google Scholar] [CrossRef]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K.; Zhou, Z.; Zhu, J. A CMIP6-based framework for propagation from meteorological and hydrological droughts to socioeconomic drought. J. Hydrol. 2023, 623, 129782. [Google Scholar] [CrossRef]
- Chen, C.; Gan, R.; Feng, D.; Yang, F.; Zuo, Q. Quantifying the contribution of SWAT modeling and CMIP6 inputting to streamflow prediction uncertainty under climate change. J. Clean. Prod. 2022, 364, 132675. [Google Scholar] [CrossRef]
- Loritz, R.; Dolich, A.; Acuña Espinoza, E.; Ebeling, P.; Guse, B.; Götte, J.; Hassler, S.K.; Hauffe, C.; Heidbüchel, I.; Kiesel, J. CAMELS-DE: Hydro-meteorological time series and attributes for 1555 catchments in Germany. Earth Syst. Sci. Data Discuss. 2024, 16, 5625–5642. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, G.; Chen, C.; Duan, Z.; Gao, C. Using integrated hydrological models to assess the impacts of climate change on discharges and extreme flood events in the Upper Yangtze River Basin. Water 2021, 13, 299. [Google Scholar] [CrossRef]
- Feng, D.; Beck, H.; De Bruijn, J.; Sahu, R.K.; Satoh, Y.; Wada, Y.; Liu, J.; Pan, M.; Lawson, K.; Shen, C. Deep dive into hydrologic simulations at global scale: Harnessing the power of deep learning and physics-informed differentiable models (δ HBV-globe1. 0-hydroDL). Geosci. Model Dev. 2024, 17, 7181–7198. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, F.; Bai, Q. Underground space utilization of coalmines in China: A review of underground water reservoir construction. Tunn. Undergr. Space Technol. 2021, 107, 103657. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Yue, F.-J.; Wang, Y.-C.; Qin, C.-Q.; Ding, H.; Xue, L.-L.; Li, S.-L. The effect of heavy rainfall events on nitrogen patterns in agricultural surface and underground streams and the implications for karst water quality protection. Agric. Water Manag. 2022, 266, 107600. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Sun, B.; Chen, H.; Li, H.; Luo, Y. Drought impacts on hydropower capacity over the Yangtze River basin and their future projections under 1.5/2 C warming scenarios. Front. Earth Sci. 2020, 8, 578132. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, H. Changes in drought characteristics over China during 1961–2019. Front. Earth Sci. 2023, 11, 1138795. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Liu, G.-W.; Dai, C.-L.; Zou, Z.-W.; Li, Q. Simulation and Prediction of Snowmelt Runoff in the Tangwang River Basin Based on the NEX-GDDP-CMIP6 Climate Model. Water 2024, 16, 2082. [Google Scholar] [CrossRef]
- Xu, M.; Sun, Y.; Wang, H.; Qi, P.; Peng, Z.; Wu, Y.; Zhang, G. Altitude characteristics in the response of rain-on-snow flood risk to future climate change in a high-latitude water tower. J. Environ. Manag. 2024, 369, 122292. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, X.; Yonghe, S.; Zhike, C.; Wu, H.; Zhao, Y. Hydrological evolution of wetland in Naoli River Basin and its driving mechanism. Water Resour. Manag. 2012, 26, 1455–1475. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, S.; Liu, H.; Cong, J.; Li, Y.; Wang, G. The impacts of land reclamation on the accumulation of key elements in wetland ecosystems in the Sanjiang Plain, northeast China. Environ. Pollut. 2018, 237, 487–498. [Google Scholar] [CrossRef]
- Huang, T.; Zhao, H.; Zhao, Y.; Ren, J.; Li, Z.; Li, B. Soil Erosion and Its Spatial Distribution Characteristics in Three-River-Source National Park. Bull. Soil Water Conserv. 2023, 43, 95–103. [Google Scholar] [CrossRef]
- Yang, X.; Dai, C.; Liu, G.; Meng, X.; Li, C. Evaluation of groundwater resources in the middle and lower reaches of Songhua River based on SWAT model. Water 2024, 16, 2839. [Google Scholar] [CrossRef]
- Bayat, M.; Alizadeh, H.; Mojaradi, B. SWAT_DA: Sequential multivariate data assimilation-oriented modification of SWAT. Water Resour. Res. 2022, 58, e2022WR032397. [Google Scholar] [CrossRef]
- Frederiksen, R.R.; Molina-Navarro, E. The importance of subsurface drainage on model performance and water balance in an agricultural catchment using SWAT and SWAT-MODFLOW. Agric. Water Manag. 2021, 255, 107058. [Google Scholar] [CrossRef]
- Salmani, H.; Javadi, S.; Eini, M.R.; Golmohammadi, G. Compilation simulation of surface water and groundwater resources using the SWAT-MODFLOW model for a karstic basin in Iran. Hydrogeol. J. 2023, 31, 571–587. [Google Scholar] [CrossRef]
- Lee, S.; Park, Y.S.; Kim, J.; Lim, K.J. Enhanced Hydrological Simulations in Paddy-Dominated Watersheds Using the Hourly SWAT-MODFLOW-PADDY Modeling Approach. Sustainability 2023, 15, 9106. [Google Scholar] [CrossRef]
- Liu, Z. Estimating land evapotranspiration from potential evapotranspiration constrained by soil water at daily scale. Sci. Total Environ. 2022, 834, 155327. [Google Scholar] [CrossRef]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—A review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Zare, M.; Azam, S.; Sauchyn, D. Evaluation of soil water content using SWAT for Southern Saskatchewan, Canada. Water 2022, 14, 249. [Google Scholar] [CrossRef]
- Sánchez-Gómez, A.; Martínez-Pérez, S.; Pérez-Chavero, F.M.; Molina-Navarro, E. Optimization of a SWAT model by incorporating geological information through calibration strategies. Optim. Eng. 2022, 23, 2203–2233. [Google Scholar] [CrossRef]
- Ostad-Ali-Askari, K. Investigation of meteorological variables on runoff archetypal using SWAT: Basic concepts and fundamentals. Appl. Water Sci. 2022, 12, 177. [Google Scholar] [CrossRef]
- Zare, M.; Azam, S.; Sauchyn, D. A modified SWAT model to simulate soil water content and soil temperature in cold regions: A case study of the south saskatchewan river basin in Canada. Sustainability 2022, 14, 10804. [Google Scholar] [CrossRef]
- Hughes, J.D.; Russcher, M.J.; Langevin, C.D.; Morway, E.D.; McDonald, R.R. The MODFLOW Application Programming Interface for simulation control and software interoperability. Environ. Model. Softw. 2022, 148, 105257. [Google Scholar] [CrossRef]
- Bailey, R.T.; Tasdighi, A.; Park, S.; Tavakoli-Kivi, S.; Abitew, T.; Jeong, J.; Green, C.H.; Worqlul, A.W. APEX-MODFLOW: A New integrated model to simulate hydrological processes in watershed systems. Environ. Model. Softw. 2021, 143, 105093. [Google Scholar] [CrossRef]
- Makhlouf, A.; El-Rawy, M.; Kanae, S.; Ibrahim, M.G.; Sharaan, M. Integrating MODFLOW and machine learning for detecting optimum groundwater abstraction considering sustainable drawdown and climate changes. J. Hydrol. 2024, 637, 131428. [Google Scholar] [CrossRef]
- Pérez-Ciria, T.; Labat, D.; Chiogna, G. Heterogeneous spatiotemporal streamflow response to large-scale climate indexes in the Eastern Alps. J. Hydrol. 2022, 615, 128698. [Google Scholar] [CrossRef]
- Rajwa-Kuligiewicz, A.; Bojarczuk, A. Streamflow response to catastrophic windthrow and forest recovery in subalpine spruce forest. J. Hydrol. 2024, 634, 131078. [Google Scholar] [CrossRef]
- Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Miralles, D.G.; Beck, H.E.; Siegmund, J.F.; Alvarez-Garreton, C.; Verbist, K.; Garreaud, R.; Boisier, J.P.; Galleguillos, M. On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes. Hydrol. Earth Syst. Sci. 2024, 28, 1415–1439. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Azorin-Molina, C.; Morán-Tejeda, E. Accurate computation of a streamflow drought index. J. Hydrol. Eng. 2012, 17, 318–332. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Yao, H.; Zhang, D. Multi-timescale assessment of propagation thresholds from meteorological to hydrological drought. Sci. Total Environ. 2021, 765, 144232. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Rogers, K.; Ling, J.; Saintilan, N. The impacts of river regulation and water diversion on the hydrological drought characteristics in the Lower Murrumbidgee River, Australia. J. Hydrol. 2011, 405, 382–391. [Google Scholar] [CrossRef]
- GB/T20481-2017; Meteorological Drought Grade. General Administration of Quality Supervision, Inspection and Quarantine of China & Standardization Administration of China: Beijing, China, 2017.
- Nevárez-Favela, M.; Fernández-Reynoso, D.; Sánchez-Cohen, I.; Sánchez-Galindo, M.; Macedo-Cruz, A.; Palacios-Espinosa, C. Comparison between WEAP and SWAT Models in a Basin at Oaxaca. Mexico. Tecnol. Cienc. Agua 2021, 12, 358–401. [Google Scholar] [CrossRef]
- Arnold, J.G.; Bieger, K.; White, M.J.; Srinivasan, R.; Dunbar, J.A.; Allen, P.M. Use of decision tables to simulate management in SWAT+. Water 2018, 10, 713. [Google Scholar] [CrossRef]
- Das, S.K.; Ahsan, A.; Khan, M.H.R.B.; Yilmaz, A.G.; Ahmed, S.; Imteaz, M.; Tariq, M.A.U.R.; Shafiquzzaman, M.; Ng, A.W.; Al-Ansari, N. Calibration, validation and uncertainty analysis of a SWAT water quality model. Appl. Water Sci. 2024, 14, 86. [Google Scholar] [CrossRef]
- Jafari, T.; Kiem, A.S.; Javadi, S.; Nakamura, T.; Nishida, K. Fully integrated numerical simulation of surface water-groundwater interactions using SWAT-MODFLOW with an improved calibration tool. J. Hydrol. Reg. Stud. 2021, 35, 100822. [Google Scholar] [CrossRef]
- Abbas, S.A.; Xuan, Y.; Bailey, R.T. Assessing climate change impact on water resources in water demand scenarios using SWAT-MODFLOW-WEAP. Hydrology 2022, 9, 164. [Google Scholar] [CrossRef]
- Nie, Y.; Lin, X.; Yang, Q.; Liu, J.; Chen, D.; Uotila, P. Differences between the CMIP5 and CMIP6 Antarctic sea ice concentration budgets. Geophys. Res. Lett. 2023, 50, e2023GL105265. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Z.; Ahmed, Z.; Zhang, L.; Su, B.; Tao, H.; Jiang, T. Projections of precipitation over China based on CMIP6 models. Stoch. Environ. Res. Risk Assess. 2021, 35, 831–848. [Google Scholar] [CrossRef]
- Hu, Y.; Hua, W. Evaluation of Summer Non-Uniform Multidecadal Temperature Variations Over Eurasia in CMIP6 Models. J. Geophys. Res. Atmos. 2023, 128, e2023JD039267. [Google Scholar] [CrossRef]
- Rashid, H.; Yang, K.; Zeng, A.; Ju, S.; Rashid, A.; Guo, F.; Lan, S. Predicting the hydrological impacts of future climate change in a humid-subtropical watershed. Atmosphere 2021, 13, 12. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.-J.; Wang, T.-T.; Hossain, S. Simulating runoff changes and evaluating under climate change using CMIP6 data and the optimal SWAT model: A case study. Sci. Rep. 2024, 14, 23228. [Google Scholar] [CrossRef]
- Notz, D.; Community, S. Arctic sea ice in CMIP6. Geophys. Res. Lett. 2020, 47, e2019GL086749. [Google Scholar] [CrossRef]
- Yang, L.; Tian, J.; Fu, Y.; Zhu, B.; He, X.; Gao, M.; Odamtten, M.T.; Kong, R.; Zhang, Z. Will the arid and semi-arid regions of Northwest China become warmer and wetter based on CMIP6 models? Hydrol. Res. 2022, 53, 29–50. [Google Scholar] [CrossRef]
- Touma, D.; Ashfaq, M.; Nayak, M.A.; Kao, S.-C.; Diffenbaugh, N.S. A multi-model and multi-index evaluation of drought characteristics in the 21st century. J. Hydrol. 2015, 526, 196–207. [Google Scholar] [CrossRef]
- Haider, S.; Masood, M.U.; Rashid, M.; Alshehri, F.; Pande, C.B.; Katipoğlu, O.M.; Costache, R. Simulation of the potential impacts of projected climate and land use change on runoff under CMIP6 scenarios. Water 2023, 15, 3421. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Bazrafshan, O.; Katipoğlu, O.M.; Jamshid, S. Harnessing artificial ıntelligence for streamflow predictions under climate change scenarios in arid region. Theor. Appl. Climatol. 2025, 156, 231. [Google Scholar] [CrossRef]
- Sutanto, S.J.; Wetterhall, F.; Van Lanen, H.A. Hydrological drought forecasts outperform meteorological drought forecasts. Environ. Res. Lett. 2020, 15, 084010. [Google Scholar] [CrossRef]
- Ishizaki, N.N.; Shiogama, H.; Hanasaki, N.; Takahashi, K. Development of CMIP6-Based Climate Scenarios for Japan Using Statistical Method and Their Applicability to Heat-Related Impact Studies. Earth Space Sci. 2022, 9, e2022EA002451. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y.; Shi, R.; Ren, H. Application of Remote Sensing and GIS in Drought and Flood Assessment and Monitoring. Water 2023, 15, 541. [Google Scholar] [CrossRef]
- Ansari, R.; Casanueva, A.; Liaqat, M.U.; Grossi, G. Evaluation of bias correction methods for a multivariate drought index: Case study of the Upper Jhelum Basin. Geosci. Model Dev. 2023, 16, 2055–2076. [Google Scholar] [CrossRef]
- Mudunuru, M.K.; Son, K.; Jiang, P.; Chen, X. SWAT watershed model calibration using deep learning. arXiv 2021, arXiv:2110.03097. [Google Scholar]
Data Type | Scale | Source |
---|---|---|
Meteorological data | 1970–2014 | China Meteorological Data Network (http://data.cma.cn, accessed on 26 April 2025) |
DEM | 30 km | Geospatial data cloud (https://www.gscloud.cn/, accessed on 26 April 2025) |
Soil type | 30 km | HWSD Soil Database (https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases, accessed on 26 April 2025) |
Land use | 30 km | Chinese Academy of Sciences Center for Resources and Environmental Science and Data (https://www.resdc.cn/, accessed on 26 April 2025) |
Hydrological data | 2005–2012 | Earth Resources Data Cloud Platform (www.gis5g.com, accessed on 26 April 2025) |
Pattern Name | Country | Spatial Resolution | Pattern Name | Country | Spatial Resolution |
---|---|---|---|---|---|
ACCESS-CM2 ACCESS-ESM1-5 | Australia | 0.25° × 0.25° | EC-Earth3 IPSL-CM6A-LR | Europe | 0.25° × 0.25° |
NorESM2-LM NorESM2-MM | Norway | MIROC6 MIROC-ES2L MRI-ESM2-0 | Japan | ||
MPI-ESM1-2-HR MPI-ESM1-2-LR | Germany | ||||
GFDL-CM4 GFDL-ESM4 | United States | ||||
INM-CM4-8 | Russia | CanESM5 | Canada |
Grade | Type | SRI |
---|---|---|
1 | no drought | SRI > −0.5 |
2 | light drought | −0.5 ≥ SRI > −1.0 |
3 | moderate drought | −1.0 ≥ SRI > −1.5 |
4 | severe drought | −1.5 ≥ SRI > −2.0 |
5 | exceptionally drought | SRI ≤ −2.0 |
Parameter Name | Physical Meaning | Optimal Value | Range |
---|---|---|---|
V__SOL_K(..).sol | Saturated hydraulic conductivity of soil | 1839.660522 | 1636.908936 ~ 2183.40918 |
V__SLSOIL.hru | Slope length for lateral subsurface flow | 113.416641 | 68.897896 ~ 128.977173 |
V__RAINHHMX(..).wgn | Maximum half-hour rainfall | 22.638643 | −3.12659 ~ 71.124802 |
V__TIMP.bsn | Snowpack temperature lag factor | 0.633103 | 0.582176 ~ 1.12978 |
V__ALPHA_BNK.rte | Baseflow alpha factor for bank storage | 1.127053 | 0.689446 ~ 1.333934 |
V__SOL_BD(..).sol | Bulk density of soil layer | 1.39 | 1.22 ~ 1.95 |
R__CH_S1.sub | Channel slope in sub-basin 1 | −2.07 | −2.35 ~ 0.24 |
R__CH_L2.rte | Channel length in routing reach 2 | 0.88 | 0.05 ~ 1.70 |
V__CH_N1.sub | Manning’s n value for the main channel in sub-basin 1 | 10.07 | 5.56 ~ 21.61 |
V__SURLAG.bsn | Surface runoff lag coefficient | 4.107 | 1.06 ~ 11.03 |
V__CN2.mgt | Curve number for moisture condition II | 91.81 | 78.23 ~ 104.10 |
V__GW_SPYLD.gw | Specific yield of shallow aquifer | 0.10 | −0.04 ~ 0.19 |
V__LAT_TTIME.hru | Lateral flow travel time | −93.95 | −107.40 ~ −7.76 |
V__SLSUBBSN.hru | Average slope length of sub-basin | 118.01 | 75.30 ~ 142.57 |
V__GWQMN.gw | Threshold depth of water in shallow aquifer | −1326.12 | −4392.32 ~ −839.36 |
V__EPCO.hru | Plant uptake compensation factor | 0.57 | 0.55 ~ 0.93 |
V__PLAPS.sub | Precipitation lapse rate | −490.06 | −793.15 ~ −385.23 |
K | Permeability coefficient k (cm/s) | 0.001 | / |
μ | Degree of water hardness | 0.03 | / |
Scenario | Time Slot | Maximum Temperature | Lowest Temperature | Precipitation | ET | Runoff |
---|---|---|---|---|---|---|
SSP2-4.5 | 2016–2100 | 0.315 ** | 0.376 ** | 0.58 ** | 0.95 ** | 0.04 |
2016–2060 | 0.362 ** | 0.048 ** | 0.98 * | 0.96 ** | 0.39 | |
2061–2100 | 0.027 ** | 0.023 ** | −0.23 | 1.03 ** | −3.53 | |
SSP5-8.5 | 2016–2100 | 0.082 ** | 0.094 ** | 1.16 ** | 2.42 * | −0.44 |
2016–2060 | 0.057 ** | 0.073 ** | 1.67 * | 1.71 | 2.81 | |
2061–2100 | 0.100 ** | 0.113 ** | 1.77 * | 2.99 | 1.71 |
Scenario | Time Slot | Frequency of Drought | Frequency of Drought | Average Duration | Average Drought Intensity | Average Drought Severity | Heavy, Very Dry, Frequent | SRImin |
---|---|---|---|---|---|---|---|---|
SSP2-4.5 | 2016–2060 | 13 | 36.7% | 15.23 | −1.1 | −16.32 | 8 | −2.33 |
2061–2100 | 10 | 25.0% | 12 | −0.88 | −12.1 | 3 | −2.03 | |
SSP5-8.5 | 2016–2060 | 9 | 27.7% | 16.67 | −1.22 | −37.62 | 5 | −4.04 |
2061–2100 | 11 | 35.2% | 15.36 | −0.91 | −12.54 | 0 | −1.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Liu, Y.; Si, Z.; Wang, L.; Zhao, Y.; Wang, J. Future Streamflow and Hydrological Drought Under CMIP6 Climate Projections. Atmosphere 2025, 16, 691. https://doi.org/10.3390/atmos16060691
Liu T, Liu Y, Si Z, Wang L, Zhao Y, Wang J. Future Streamflow and Hydrological Drought Under CMIP6 Climate Projections. Atmosphere. 2025; 16(6):691. https://doi.org/10.3390/atmos16060691
Chicago/Turabian StyleLiu, Tao, Yan Liu, Zhenjiang Si, Longfei Wang, Yusu Zhao, and Jing Wang. 2025. "Future Streamflow and Hydrological Drought Under CMIP6 Climate Projections" Atmosphere 16, no. 6: 691. https://doi.org/10.3390/atmos16060691
APA StyleLiu, T., Liu, Y., Si, Z., Wang, L., Zhao, Y., & Wang, J. (2025). Future Streamflow and Hydrological Drought Under CMIP6 Climate Projections. Atmosphere, 16(6), 691. https://doi.org/10.3390/atmos16060691