Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = coaxial borehole heat exchange

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 21676 KiB  
Article
Heat Exchange Effectiveness and Influence Mechanism of Coaxial Downhole in the Alpine Region of Xining City, Qinghai Province
by Zhen Zhao, Xinkai Zhan, Baizhong Yan, Guangxiong Qin and Yanbo Yu
Energies 2025, 18(16), 4451; https://doi.org/10.3390/en18164451 - 21 Aug 2025
Abstract
To enhance the development efficiency of medium–deep geothermal resources in cold regions, this study focuses on a coaxial borehole heat exchanger (CBHE) located in Dapuzi Town, Xining City, Qinghai Province. Based on field-scale heat exchange experiments, a three-dimensional numerical model of the CBHE [...] Read more.
To enhance the development efficiency of medium–deep geothermal resources in cold regions, this study focuses on a coaxial borehole heat exchanger (CBHE) located in Dapuzi Town, Xining City, Qinghai Province. Based on field-scale heat exchange experiments, a three-dimensional numerical model of the CBHE was developed using COMSOL Multiphysics 6.2, incorporating both conductive heat transfer in the surrounding geological formation and convective heat transfer within the wellbore. The model was calibrated and validated against measured data. On this basis, the effects of wellhead injection flow rate, injection temperature, and the thermal conductivity of the inner pipe on heat exchange performance were systematically analyzed. The results show that in cold regions with high altitudes (2000–3000 m) and medium–deep low-temperature geothermal reservoirs (68.8 °C), using a coaxial heat exchange system for space heating delivers good heat extraction performance, with a maximum average power output of 282.37 kW. Among the parameters, the injection flow rate has the most significant impact on heat extraction. When the flow rate increases from 10 m3/h to 30 m3/h, the heat extraction power increases by 57.58%. An increase in injection temperature helps suppress thermal short-circuiting and improves the effluent temperature, but excessively high temperatures lead to a decline in heat extraction. Additionally, increasing the thermal conductivity of the inner pipe significantly intensifies thermal short-circuiting and reduces overall heat exchange capacity. Under constant reservoir conditions, the thermal influence radius expands with both depth and operating time, reaching a maximum of 10.04 m by the end of the heating period. For the CBHE system in Dapuzi, maintaining an injection flow rate of 20–25 m3/h and an injection temperature of approximately 20 °C can achieve an optimal balance between effluent temperature and heat extraction. Full article
15 pages, 3262 KiB  
Article
Study on Quantifying Soil Thermal Imbalance in Shallow Coaxial Borehole Heat Exchangers
by Rujie Liu, Wei He, Chaohui Zhou, Yue Hu, Yuce Liu, Tao Han, Yongqiang Luo and Meng Wang
Processes 2025, 13(8), 2543; https://doi.org/10.3390/pr13082543 - 12 Aug 2025
Viewed by 274
Abstract
The bore field in ground source heat pump (GSHP) systems usually encounters thermal accumulation in long-term operation, but there is no quantitative index evaluating this process and its magnitude. A heat accumulation evaluation metric has been proposed, based on the linear trend Slope [...] Read more.
The bore field in ground source heat pump (GSHP) systems usually encounters thermal accumulation in long-term operation, but there is no quantitative index evaluating this process and its magnitude. A heat accumulation evaluation metric has been proposed, based on the linear trend Slope (°C/a) of the curve of soil temperature variation. Using this metric, the influence of various factors on soil temperature has been quantitatively analyzed. The results indicate that, under constant heating durations, each 10-day extension of cooling periods leads to an increase of 0.038 °C/a in soil temperature. Extending the recovery period within an annual cycle facilitates soil self-recovery and mitigates subsurface thermal accumulation. Increasing the spacing between boreholes effectively reduces thermal interference, whereas a greater number of boreholes exacerbates thermal accumulation. Deepening vertical boreholes from 100 m to 200 m reduces the average annual soil temperature increase by 0.1076 °C. Appropriately increasing backfill thermal conductivity enhances heat exchange efficiency and suppresses thermal accumulation. Higher water flow rates result in logarithmic increases in the evaluation metric, thereby intensifying soil thermal accumulation. Intermittent operation extends recovery periods, thereby alleviating soil thermal imbalance. Under balanced cooling and heating loads, increasing the system lifespan from 10 a to 30 a reduces the evaluation metric by 47.2%. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 2256 KiB  
Article
Performance Analysis of Different Borehole Heat Exchanger Configurations: A Case Study in NW Italy
by Jessica Maria Chicco, Nicolò Giordano, Cesare Comina and Giuseppe Mandrone
Smart Cities 2025, 8(4), 121; https://doi.org/10.3390/smartcities8040121 - 21 Jul 2025
Viewed by 469
Abstract
The central role of heating and cooling in energy transition has been recognised in recent years, especially with geopolitical developments since February 2022 which demand an acceleration in deploying local energy sources to increase the resilience of the energy sector. Geothermal energy is [...] Read more.
The central role of heating and cooling in energy transition has been recognised in recent years, especially with geopolitical developments since February 2022 which demand an acceleration in deploying local energy sources to increase the resilience of the energy sector. Geothermal energy is a promising and vital option to optimize heating and cooling systems, promoting sustainability of urban environments. To this end, a proper design is of paramount importance to guarantee the energy performance of the whole system. This work deals with the optimization of the technical and geometrical characteristics of borehole heat exchangers (BHEs) as part of a shallow geothermal plant that is assumed to be integrated in an already operating gas-fired DH grid. Thermal performances of three different configurations were analysed according to the geological information that revealed an aquifer at −36 m overlying a poorly permeable marly succession. Numerical simulations validated the geological, hydrogeological, and thermo-physical models by back-analysing the experimental results of a thermal response test (TRT) on a pilot 150 m deep BHE. Five-year simulations were then performed to compare 150 m and 36 m polyethylene 2U, and 36 m steel coaxial BHEs. The coaxial configuration shows the best performance both in terms of specific power (74.51 W/m) and borehole thermal resistance (0.02 mK/W). Outcomes of the study confirm that coupling the best geological and technical parameters ensure the best energy performance and economic sustainability. Full article
(This article belongs to the Special Issue Energy Strategies of Smart Cities)
Show Figures

Figure 1

45 pages, 1606 KiB  
Review
A Comprehensive Review of Geothermal Heat Pump Systems
by Khaled Salhein, Sabriya Alghennai Salheen, Ahmed M. Annekaa, Mansour Hawsawi, Edrees Yahya Alhawsawi, C. J. Kobus and Mohamed Zohdy
Processes 2025, 13(7), 2142; https://doi.org/10.3390/pr13072142 - 5 Jul 2025
Viewed by 565
Abstract
Geothermal heat pump systems (GHPSs) offer a sustainable and energy-efficient solution for heating and cooling buildings. Ground heat exchanger (GHE) design and configuration significantly impact on the overall performance and installation expenses of geothermal heat pump systems. This paper presents a comprehensive analysis [...] Read more.
Geothermal heat pump systems (GHPSs) offer a sustainable and energy-efficient solution for heating and cooling buildings. Ground heat exchanger (GHE) design and configuration significantly impact on the overall performance and installation expenses of geothermal heat pump systems. This paper presents a comprehensive analysis of GHPSs, focusing on their advantages, disadvantages, key components, types, and particularly the various closed-loop GHE configurations. Detailed comparisons highlight how different designs affect thermal performance and installation costs. The findings reveal that helical GHEs offer superior thermal efficiency with reduced drilling requirements and cost savings, while coaxial GHEs, especially those using steel tubes, enhance heat transfer and enable shorter boreholes. Cost-effective options like W-type GHEs provide performance comparable to more complex systems. Additionally, triple U-tube and spiral configurations balance high efficiency with economic feasibility. The single and double U-tube remain the most common borehole geometry, though coaxial designs present distinct advantages in targeted scenarios. These insights support the optimization of vertical GHEs, advancing system performance, cost-effectiveness, and long-term sustainability in GHPS applications. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Graphical abstract

14 pages, 7040 KiB  
Article
Thermal Performance of Deep Borehole Heat Exchangers (DBHEs) Installed in a Groundwater-Filled Hot Dry Rock (HDR) Well in Qinghai, China
by Qixing Zhang, Feiyang Lu, Yong Huang, Liwei Tan, Jin Luo and Longcheng Duan
Energies 2025, 18(9), 2229; https://doi.org/10.3390/en18092229 - 27 Apr 2025
Viewed by 405
Abstract
Deep borehole heat exchangers (DBHEs) have been widely used for extracting geothermal energy in China. However, the application of this technology in an open well with high temperature remains unknown. In this paper, the thermal performance of a DBHE installed in a groundwater-filled [...] Read more.
Deep borehole heat exchangers (DBHEs) have been widely used for extracting geothermal energy in China. However, the application of this technology in an open well with high temperature remains unknown. In this paper, the thermal performance of a DBHE installed in a groundwater-filled hot dry rock (HDR) well in the Gonghe Basin of Qinghai Province in China was investigated. A U-shaped pipe subjected to a hydraulic pressure of 30 MPa and a temperature of 180 °C was tested successfully. Severe heat loss was detected during the test, which might have been due to the pipe not being well-insulated. To better understand the performance of DBHEs, a numerical model was developed. The results indicate that the pipe’s thermal performance increased by 247% using insulation with a 15 mm layer thickness and a thermal conductivity of 0.042 W/m·K. Thermal performance was significantly improved by increasing the fluid flow rate and pipe diameter. Among the different pipe configurations, double U-shaped buried pipes can achieve the highest performance. The heat-specific rate can reach up to 341.33 W/m with a double U-shaped pipe with a diameter of 63 mm. The second highest rate can be achieved with a coaxial pipe, while single U-shaped pipes have the lowest one. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

24 pages, 5807 KiB  
Article
Research on the Optimized Design of Medium and Deep Ground-Source Heat Pump Systems Considering End-Load Variation
by Jianlin Li, Xupeng Qi, Xiaoli Li, Huijie Huang and Jian Gao
Sustainability 2025, 17(7), 3234; https://doi.org/10.3390/su17073234 - 4 Apr 2025
Cited by 1 | Viewed by 713
Abstract
Ground-source heat pump (GSHP) systems with medium-depth and deeply buried pipes in cold regions are highly important for addressing global climate change and the energy crisis because of their efficient, clean, and sustainable energy characteristics. However, unique geological conditions in cold climates pose [...] Read more.
Ground-source heat pump (GSHP) systems with medium-depth and deeply buried pipes in cold regions are highly important for addressing global climate change and the energy crisis because of their efficient, clean, and sustainable energy characteristics. However, unique geological conditions in cold climates pose serious challenges to the heat transfer efficiency, long-term stability, and adaptability of systems. This study comprehensively analyses the effects of various factors, including well depth, inner-to-outer tube diameter ratios, cementing material, the thermal conductivity of the inner tube, the flow rate, and the start–stop ratio, on the performance of a medium-depth coaxial borehole heat exchanger. Field tests, numerical simulations, and sensitivity analyses are combined to determine the full-cycle thermal performance and heat-transfer properties of medium-depth geological formations and their relationships with system performance. The results show that the source water temperature increases by approximately 4 °C and that the heat transfer increases by 50 kW for every 500 m increase in well depth. The optimization of the inner and outer pipe diameter ratios effectively improves the heat-exchange efficiency, and a larger pipe diameter ratio design can significantly reduce the flow resistance and improve system stability. When the thermal conductivity of the cementing cement increases from 1 W/(m·K) to 2 W/(m·K), the outlet water temperature at the source side increases by approximately 1 °C, and the heat transfer increases by 13 kW. However, the improvement effect of further increasing the thermal conductivity on the heat-exchange efficiency gradually decreases. When the flow rate is 0.7 m/s, the heat transfer is stable at approximately 250 kW, and the system economy and heat-transfer efficiency reach a balance. These findings provide a robust scientific basis for promoting medium-deep geothermal energy heating systems in cold regions and offer valuable references for the green and low-carbon transition in building heating systems. Full article
Show Figures

Figure 1

44 pages, 11723 KiB  
Article
Numerical Analysis of Inlet–Outlet Leg Barriers in Vertical Borehole Heat Exchangers: A Strategy to Mitigate the Thermal Resistance
by Asfia Nishat and Hossam Abuel-Naga
Geotechnics 2025, 5(1), 17; https://doi.org/10.3390/geotechnics5010017 - 1 Mar 2025
Viewed by 1028
Abstract
The efficiency of heat transfer through borehole heat exchangers is influenced by the thermal resistances of both the borehole and the surrounding soil. Optimizing these resistances can improve the heat transfer performance and reduce system costs. Soil thermal resistance is geographically specific and [...] Read more.
The efficiency of heat transfer through borehole heat exchangers is influenced by the thermal resistances of both the borehole and the surrounding soil. Optimizing these resistances can improve the heat transfer performance and reduce system costs. Soil thermal resistance is geographically specific and challenging to reduce, according to previous research; in contrast, borehole resistance can be minimized through practical approaches, such as increasing the thermal conductivity of the grout or adjusting the shank spacing in the U-tube configuration. The previous literature also suggests that coaxial pipes are a more efficient design than a single U-tube borehole heat exchanger. A novel approach involves inserting a physical barrier between the U-tube’s inlet and outlet legs to reduce the thermal short-circuiting and/or to improve the temperature distribution from the inlet leg in a U-tube borehole. Limited studies exist on the barrier technique and its contribution to reducing thermal resistance. The effects of two different barrier geometries, flat plate and U-shape, made from different materials, with various grout and soil thermal conductivities and shank spacing configurations, were considered in this study. Using FlexPDE software version 6.51, this study numerically assesses thermal resistances through the borehole. This study focuses on the sole contribution of a barrier in mitigating the thermal resistance of a U-tube borehole heat exchanger. This study suggests that the barrier technique is an effective solution for optimizing heat transfer through U-tube borehole heat exchangers, especially with reduced shank spacing and lower thermal conductivity soil. It can reduce the length of a U-tube borehole by up to 8.1 m/kW of heat transfer, offering a viable alternative to increasing shank spacing in the U-tube borehole or the enhancing thermal conductivity of the grout. Moreover, under specific conditions of soil and grout with low to medium thermal conductivity, a U-tube borehole heat exchanger with a barrier between the legs demonstrates a reduction of up to 43.4 m per kW heat transfer (22.7%) in the overall length compared to coaxial pipes. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (2nd Edition))
Show Figures

Figure 1

19 pages, 2672 KiB  
Article
Heat Transfer Modeling of Geothermal Wells in Fractured Aquifers Considering the Joule–Thompson Effect
by Mengmeng Li, Gang Bi, Yu Shi and Yang Wang
Processes 2025, 13(1), 37; https://doi.org/10.3390/pr13010037 - 27 Dec 2024
Cited by 1 | Viewed by 927
Abstract
Geothermal energy, as a clean, low-carbon, widely distributed, renewable and environmentally friendly energy source, plays an important role in the transition from traditional energy sources dominated by coal and oil to clean energy. Ground source heat pump technology is a key technological tool [...] Read more.
Geothermal energy, as a clean, low-carbon, widely distributed, renewable and environmentally friendly energy source, plays an important role in the transition from traditional energy sources dominated by coal and oil to clean energy. Ground source heat pump technology is a key technological tool for developing geothermal energy for widespread use. Coaxial-cased heat exchangers are the core component of the ground source heat pump system, and their heat transfer performance directly affects the heat transfer efficiency and service life of the ground source heat pump system. According to the actual working conditions of coaxial-cased heat exchangers in fractured aquifers, the coupled pressure–temperature model of the heat transfer outside the borehole was created by considering the influence of the Joule–Thompson effect. For heat transfer inside the wellbore, a multi-layer long concentric cylinder wall model was developed to obtain the fluid temperature distribution within the wellbore. Results show that the heat transfer efficiency increases with the increase of thermal conductivity, water production and effective permeability of fractures. The positive and negative values of the Joule–Thompson coefficient reflect the trend of fluid temperature changing with pressure. The larger the absolute value is, the greater the temperature change is. The increase in the initial temperature of the injected water will lead to a decrease in the theoretical heat transfer. With the increase of the water injection rate and horizontal wellbore length, the heat recovery power will also increase significantly, but the optimal value needs to be considered comprehensively. The findings of the study can not only lay a theoretical foundation for the performance evaluation and optimal design of coaxial-cased heat exchangers but also have great significance in promoting the efficient development of geothermal energy. Full article
(This article belongs to the Special Issue Shale Gas and Coalbed Methane Exploration and Practice)
Show Figures

Figure 1

17 pages, 3206 KiB  
Article
Numerical Simulation of Geothermal Energy Development at Mount Meager and Its Impact on In Situ Thermal Stress
by Yutong Chai, Zhuoheng Chen and Shunde Yin
Energies 2024, 17(14), 3466; https://doi.org/10.3390/en17143466 - 14 Jul 2024
Cited by 1 | Viewed by 1279
Abstract
The Meager Mountain Geothermal Project stands as one of the pioneering geothermal energy initiatives in its early stages of resource development. Despite its abundant geothermal heat resources, no prior studies have systematically evaluated the potential of implementing coaxial borehole heat exchangers on site. [...] Read more.
The Meager Mountain Geothermal Project stands as one of the pioneering geothermal energy initiatives in its early stages of resource development. Despite its abundant geothermal heat resources, no prior studies have systematically evaluated the potential of implementing coaxial borehole heat exchangers on site. This study addresses this research gap by presenting a comprehensive heat transfer model for an underground closed-loop geothermal system utilizing a single coaxial well. Finite element analysis incorporated fluid and solid heat transfer, as well as solid mechanics. The results obtained facilitated the construction of the temperature and thermal stress profiles induced by the cooling effects resulting from years of heat extraction. After 25 years of operation, the outlet temperature has reached approximately 74 °C, and the maximum radial tensile thermal stress amounts to ~47 MPa. Furthermore, the analysis demonstrates that higher fluid velocities contribute to more perturbed temperature and stress distributions. The study attained maximum thermal and electric power outputs of 208 kW and 17 kW, respectively. This research also underscores the significant impact of geothermal gradient and well length on BHE design, with longer wells yielding more power, especially at higher injection velocities. Full article
(This article belongs to the Special Issue Energy Geomechanics)
Show Figures

Figure 1

29 pages, 8552 KiB  
Article
Integrated Underground Analyses as a Key for Seasonal Heat Storage and Smart Urban Areas
by Dimitra Rapti, Francesco Tinti and Carlo Antonio Caputo
Energies 2024, 17(11), 2533; https://doi.org/10.3390/en17112533 - 24 May 2024
Cited by 3 | Viewed by 1127
Abstract
The design and performance of a shallow geothermal system is influenced by the geological and hydrogeological context, environmental conditions and thermal demand loads. In order to preserve the natural thermal resource, it is crucial to have a balance between the supply and the [...] Read more.
The design and performance of a shallow geothermal system is influenced by the geological and hydrogeological context, environmental conditions and thermal demand loads. In order to preserve the natural thermal resource, it is crucial to have a balance between the supply and the demand for the renewable energy. In this context, this article presents a case study where an innovative system is created for the storage of seasonal solar thermal energy underground, exploiting geotechnical micropiles technology. The new geoprobes system (energy micropile; EmP) consists of the installation of coaxial geothermal probes within existing micropiles realized for the seismic requalification of buildings. The underground geothermal system has been realized, starting from the basement of an existing holiday home Condominium, and was installed in dry subsoil, 20 m-deep below the parking floor. The building consists of 140 apartments, with a total area of 5553 m2, and is located at an altitude of about 1490 m above sea level. Within the framework of a circular economy, energy saving and the use of renewable sources, the design of the geothermal system was based on geological, hydrogeological and thermophysical analytical studies, in situ measurements (e.g., Lefranc and Lugeon test during drilling; Rock Quality Designation index; thermal response tests; acquisition of temperature data along the borehole), numerical modelling and long-term simulations. Due to the strong energy imbalance of the demand from the building (heating only), and in order to optimize the underground annual balance, both solar thermal storage and geothermal heat extraction/injection to/from a field of 380 EmPs, with a relative distance varying from 1 to 2 m, were adopted. The integrated solution, resulting from this investigation, allowed us to overcome the standard barriers of similar geological settings, such as the lack of groundwater for shallow geothermal energy exploitation, the lack of space for borehole heat exchanger drilling, the waste of solar heat during the warm season, etc., and it can pave the way for similar renewable and low carbon emission hybrid applications as well as contribute to the creation of smart buildings/urban areas. Full article
(This article belongs to the Collection Review Papers in Energy and Environment)
Show Figures

Figure 1

21 pages, 5139 KiB  
Article
Study of Heat Transfer Characteristics and Economic Analysis of a Closed Deep Coaxial Geothermal Heat Exchanger Retrofitted from an Abandoned Oil Well
by Rui-Jia Liu, Lin-Rui Jia, Wen-Shuo Zhang, Ming-Zhi Yu, Xu-Dong Zhao and Ping Cui
Sustainability 2024, 16(4), 1603; https://doi.org/10.3390/su16041603 - 14 Feb 2024
Cited by 2 | Viewed by 1809
Abstract
It is economical to transform abandoned oil/geothermal wells into closed deep geothermal heat exchangers with coaxial tubes. A numerical model of a coaxial geothermal heat exchanger (CGHE) with varying borehole diameters is established according to an abandoned well in Northern China. The finite [...] Read more.
It is economical to transform abandoned oil/geothermal wells into closed deep geothermal heat exchangers with coaxial tubes. A numerical model of a coaxial geothermal heat exchanger (CGHE) with varying borehole diameters is established according to an abandoned well in Northern China. The finite difference method is adopted to solve the temperature distribution, and the accuracy of the model is validated with experimental data. Based on the existing structure of the abandoned well with different depths, the feasibility of its conversion into a deep CGHE is discussed, and this study uses the orthogonal experimental method to analyze the influence of four main factors and their significance level on the average heat extraction rate, with the heat extraction rate up to 422.18 kW in the optimal combination. This study also integrates with actual project considerations and conducts an economic analysis to determine the most appropriate circulation fluid flow rate. The results highlight the key factors on the heat transfer performance of the CGHE, with the inlet water temperature to the CGHE being the most significant, followed by the configuration of the CGHE retrofitted from abandoned. From the economic perspective, given that the CGHE in this study is retrofitted from the abandoned oil Wells, the drilling cost can be reduced by up to CNY 1800 thousand, and the flow rate design of 35 m3/h is the optimal choice, ensuring a cost-effective system operation while meeting the operational requirements of the deep CGHE. Full article
Show Figures

Figure 1

21 pages, 6870 KiB  
Article
Thermal Performance Analysis and Multi-Factor Optimization of Middle–Deep Coaxial Borehole Heat Exchanger System for Low-Carbon Building Heating
by Mingshan Liang, Jianhua Tu, Lingwen Zeng, Zhaoqing Zhang, Nan Cheng and Yongqiang Luo
Sustainability 2023, 15(21), 15215; https://doi.org/10.3390/su152115215 - 24 Oct 2023
Cited by 6 | Viewed by 1528
Abstract
Ground-source heat pumps with deep borehole heat exchangers can fully utilize deep geothermal energy, effectively reducing the consumption of non-renewable energy for building air conditioning and achieving energy conservation and emissions reduction goals. However, the middle–deep coaxial borehole heat exchange (MDBHE) development is [...] Read more.
Ground-source heat pumps with deep borehole heat exchangers can fully utilize deep geothermal energy, effectively reducing the consumption of non-renewable energy for building air conditioning and achieving energy conservation and emissions reduction goals. However, the middle–deep coaxial borehole heat exchange (MDBHE) development is insufficient, and there is currently a lack of definitive guidelines for system optimal design and operation. This paper firstly establishes an effective and efficient system model and examines nine important parameters related to the design and operation of the MDBHE using a single-factor analysis. Thereafter, we compare and analyze the impact of different parameters through an orthogonal experimentation method. The findings reveal that the three most significant factors are borehole depth, inlet temperature, and mass flow rate, in descending order of importance. In addition, in terms of operation mode, this paper makes a comparative analysis of the operation of the MDBHE in variable flow mode and constant flow mode. The results showed that the average energy consumption of the pump in the variable flow mode decreased by 9.6%, and the surrounding ground temperature recovered at a faster rate. Full article
Show Figures

Figure 1

25 pages, 8456 KiB  
Article
Research on the Heat Extraction Performance Optimization of Spiral Fin Coaxial Borehole Heat Exchanger Based on GA–BPNN–QLMPA
by Biwei Fu, Zhiyuan Guo, Jia Yan, Lin Sun, Si Zhang and Ling Nie
Processes 2023, 11(10), 2989; https://doi.org/10.3390/pr11102989 - 17 Oct 2023
Cited by 6 | Viewed by 1572
Abstract
Geothermal energy, a renewable energy source with enormous reserves independent of the external environment, is essential for reducing carbon emissions. Spiral fin coaxial borehole heat exchanger (SFCBHE) is vital for geothermal energy extraction. Its heat extraction performance requires further improvements for efficient performance [...] Read more.
Geothermal energy, a renewable energy source with enormous reserves independent of the external environment, is essential for reducing carbon emissions. Spiral fin coaxial borehole heat exchanger (SFCBHE) is vital for geothermal energy extraction. Its heat extraction performance requires further improvements for efficient performance that consider the structural sizes and installation positions of the SFCBHE and the nonlinear coupling with respect to several factors. The heat extraction performance of SFCBHE is optimized using a combination of genetic algorithm–back-propagation neural network (GA–BPNN) and the Q-learning-based marine predator algorithm (QLMPA). This study analyzes and compares the effects of geothermal energy extraction of smooth pipe TY-1, structure before optimization TY-2, and optimized structure TY-3. Following optimization with GA–BPNN–QLMPA, the heat extraction performance of TY-3 is enhanced by 30.8% and 23.6%, respectively. The temperature of maximum extraction is improved by 26.8 K and 24.0 K, respectively. The power of maximum heat extraction is increased by 148.2% and 109.5%, respectively. The optimization method can quickly and accurately determine the heat extraction performance for different structural sizes and installation positions of the SFCBHE. These findings are crucial for developing high-performance SFCBHE and efficiently using geothermal energy. Full article
Show Figures

Figure 1

21 pages, 8964 KiB  
Article
An Analysis of the Heat Transfer Characteristics of Medium-Shallow Borehole Ground Heat Exchangers with Various Working Fluids
by Kexun Wang, Tishi Huang, Wenke Zhang, Zhiqiang Zhang, Xueqing Ma and Leyao Zhang
Sustainability 2023, 15(16), 12657; https://doi.org/10.3390/su151612657 - 21 Aug 2023
Cited by 4 | Viewed by 1923
Abstract
Medium-shallow borehole ground heat exchangers (BGHEs) utilize a burial depth ranging from 200 to 600 m. The heat exchange capacity of a single medium-shallow BGHE is higher than that of a single shallow BGHE. Compared to medium-deep BGHEs, the cost of medium-shallow BGHEs [...] Read more.
Medium-shallow borehole ground heat exchangers (BGHEs) utilize a burial depth ranging from 200 to 600 m. The heat exchange capacity of a single medium-shallow BGHE is higher than that of a single shallow BGHE. Compared to medium-deep BGHEs, the cost of medium-shallow BGHEs is lower, and both heating and cooling can be achieved, while the former can only be used for heating. However, there is a relative lack of research on the heat transfer characteristics of medium-shallow BGHEs, especially on the influence of the working fluid type on the heat transfer performance of BGHEs. This study aimed to investigate the impact of different working fluids on the performance of medium-shallow BGHEs. First, a heat transfer model for medium-shallow BGHEs was established considering the ground temperature gradient and geothermal heat flow, and its accuracy was validated using experimental test data. Second, the model was used to compare and analyze the effects of various working fluids on the heat transfer performance, pressure loss, and potential environmental benefits of BGHEs. Based on economic analysis, CO2 was determined to be the most suitable working fluid among the organic fluids considered. Finally, the influence of the number of boreholes and the type of working fluid on the heat transfer performance of borehole clusters consisting of 2 and 4 boreholes was analyzed using the superposition principle. The results indicated that CO2 could provide the highest heat transfer among the various working fluids selected in this study, as its heat extraction and heat dissipation were approximately 15% and 12% higher than those achieved by water. Isobutane (R600a) achieved the highest net heat and emission reduction, surpassing water by 66.7% and 73.6%, respectively. Regarding the four boreholes, the outlet temperature of the BGHEs gradually decreased at the end of each heating season. After 10 years of operation, the value decreased by approximately 2 °C. The results in this paper provide a theoretical basis and technical guidance for the rational selection of working fluids and improvements in the heat transfer performance of BGHEs, which could promote the development and application of medium-shallow geothermal energy sources. Full article
Show Figures

Figure 1

24 pages, 1893 KiB  
Article
Calibration and Uncertainty Quantification for Single-Ended Raman-Based Distributed Temperature Sensing: Case Study in a 800 m Deep Coaxial Borehole Heat Exchanger
by Willem Mazzotti Pallard, Alberto Lazzarotto, José Acuña and Björn Palm
Sensors 2023, 23(12), 5498; https://doi.org/10.3390/s23125498 - 11 Jun 2023
Cited by 2 | Viewed by 2073
Abstract
Raman-based distributed temperature sensing (DTS) is a valuable tool for field testing and validating heat transfer models in borehole heat exchanger (BHE) and ground source heat pump (GSHP) applications. However, temperature uncertainty is rarely reported in the literature. In this paper, a new [...] Read more.
Raman-based distributed temperature sensing (DTS) is a valuable tool for field testing and validating heat transfer models in borehole heat exchanger (BHE) and ground source heat pump (GSHP) applications. However, temperature uncertainty is rarely reported in the literature. In this paper, a new calibration method was proposed for single-ended DTS configurations, along with a method to remove fictitious temperature drifts due to ambient air variations. The methods were implemented for a distributed thermal response test (DTRT) case study in an 800 m deep coaxial BHE. The results show that the calibration method and temperature drift correction are robust and give adequate results, with a temperature uncertainty increasing non-linearly from about 0.4 K near the surface to about 1.7 K at 800 m. The temperature uncertainty is dominated by the uncertainty in the calibrated parameters for depths larger than 200 m. The paper also offers insights into thermal features observed during the DTRT, including a heat flux inversion along the borehole depth and the slow temperature homogenization under circulation. Full article
(This article belongs to the Special Issue Advanced Sensing Technology for Environment Monitoring)
Show Figures

Figure 1

Back to TopTop