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Abstract: Geothermal energy, a renewable energy source with enormous reserves independent of
the external environment, is essential for reducing carbon emissions. Spiral fin coaxial borehole
heat exchanger (SFCBHE) is vital for geothermal energy extraction. Its heat extraction performance
requires further improvements for efficient performance that consider the structural sizes and in-
stallation positions of the SFCBHE and the nonlinear coupling with respect to several factors. The
heat extraction performance of SFCBHE is optimized using a combination of genetic algorithm–
back-propagation neural network (GA–BPNN) and the Q-learning-based marine predator algorithm
(QLMPA). This study analyzes and compares the effects of geothermal energy extraction of smooth
pipe TY-1, structure before optimization TY-2, and optimized structure TY-3. Following optimization
with GA–BPNN–QLMPA, the heat extraction performance of TY-3 is enhanced by 30.8% and 23.6%,
respectively. The temperature of maximum extraction is improved by 26.8 K and 24.0 K, respectively.
The power of maximum heat extraction is increased by 148.2% and 109.5%, respectively. The opti-
mization method can quickly and accurately determine the heat extraction performance for different
structural sizes and installation positions of the SFCBHE. These findings are crucial for developing
high-performance SFCBHE and efficiently using geothermal energy.

Keywords: geothermal exploitation; coaxial borehole heat exchanger; performance evaluation factor;
Q-learning-based marine predator algorithm; heating power

1. Introduction

As a clean, low-carbon, safe, and stable renewable energy, geothermal energy is the
only indigenous renewable energy unaffected by weather and seasonal changes. It can be
used for heating, power generation, cooling, agricultural cultivation, and other fields. It
is gradually emerging as one of the most important means for countries to promote the
“Carbon Peak” and “Carbon neutrality” objectives [1–3]. Hydrothermal geothermal energy
is the primary geothermal energy that is currently exploited and utilized. It generally refers
to the geothermal energy buried in hot water at the depth range of 200~3000 m, primarily in
the form of liquid moisture or steam, etc. [4,5]. The coaxial drilled heat exchanger (CBHE)
has become the principal hydrothermal geothermal energy extraction method as a result
of its low costs, low development issues, and high heat extraction performance [6,7]. Its
heat extraction performance is a crucial factor affecting the effectiveness of geothermal
energy extraction. CBHE consists of the inner and outer casing, and the outer casing is
manufactured from steel pipe, which is fixed in the surrounding geotechnical stratum with
high thermal conductivity cement (its thermal conductivity can reach 3.0 W/m·K or higher)
to achieve efficient geothermal energy absorption. The inner casing is fastened in the outer
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casing. Low thermal conductivity materials, such as polyethene and polypropylene, are
used for heat insulation and adiabatic treatment to prevent the heat of the extracted water
from being transferred backward to the annular air channel and reduce thermal power
loss [8–12].

To increase the effects of geothermal energy extraction, how to strengthen the heat
extraction performance of CBHEs has been widely discussed by experts. The research pri-
marily focuses on two aspects: (1) changing the structure and material and (2) transforming
the medium or method. Among them, changing the structure and material has significantly
affected heat extraction performance, which has been the research focus in recent years.
For example, Zanchini et al. examined the effects of CBHE cross-section composition
materials and geometric configurations. They significantly reduced the impact of thermal
short-circuiting by adopting low thermal conductivity materials for the inner tube. The
performance of CBHE can be increased by increasing the diameter of the inner tube while
keeping the outer tube unchanged [13]. Chen et al. established three-dimensional geomet-
rical models of double-U BHE and intermittently arranged helical ring fin–enhanced CBHE
and used an equivalent cross-section area of the embedded tube to upgrade and replace the
double-U BHE model. The results demonstrate that the linear heat transfer of the enhanced
coaxial BHE is significantly better than that of the equivalent U-type BHE [14]. Gascuel
et al. analyzed the effect of depth, inner tube material, and well diameter on heat transfer
performance using numerical simulations. They concluded that optimal performance was
obtained from the deepest and largest diameter wells by selecting HDPE for the inner tube
material [15]. Linrui Jia et al. developed an improved varied heat flux model for the CBHE
using the superposition method, taking the vertical inhomogeneity of the specific heat
flux into account. The improved analytical model can provide an accurate and efficient
method for this inhomogeneous problem and a valuable tool for designing and optimizing
CBHEs for actual engineering applications [16]. Mostafa M. Abdelhafiz et al. presented an
application of a thermal transient model to a coaxial borehole heat exchanger system. The
results showed that the reverse circulation had a better heat extraction, while regular flow
performed better in the case of heat injection [17]. Taha Rajeh et al. introduced a detailed
comparative numerical study on a novel CGHE with an oval cross-section for enhancing the
performance of the GCHP. The results revealed that oval-CGHE significantly surpasses the
conventional circle-CGHE, improving the maximum and average heat transfer greatly [18].
Sun et al. compared and analyzed the heat transfer performance of three types of CBHE
with vortex generator with that of the conventional structure and concluded that the spiral
fin coaxial borehole heat exchanger (SFCBHE) has the best performance [19]. Previous stud-
ies examining the effect of a single influencing factor on the efficiency of geothermal energy
extraction have yielded many meaningful conclusions. The actual extraction process of
geothermal energy is affected by several nonlinear coupling factors, such as heat exchanger
structural parameters and process parameters. Therefore, considering the structural size
and installation position of SFCBHE and other nonlinear coupling factors, the study of
the heat extraction performance of SFCBHE can better fulfill the requirements of complex
working conditions.

Machine learning offers a decisive advantage in multifactor nonlinear coupling agent
models. Pérez-Zárate et al. used an artificial neural network (ANN) approach to predict
the deep reservoir temperature [20]. Tut Haklidir and Haklidir developed a deep learning
model to predict geothermal reservoir temperatures. Their results demonstrated that the
deep neural network (DNN) algorithm exhibits lower errors than linear regression and
support vector machine regression (SVR) [21]. Jery et al. simulated a geothermal heat ex-
changer, investigated the optimal diameter and nanoparticle concentration, and presented
the use of ANN models to predict the Nusselt number and entropy based on numerical
results. These models could achieve the mean absolute error (MAE) below 3% and R2

(goodness of fit) above 0.95 [22]. The above scholars used ANNs and DNNs to predict
geothermal reservoir temperatures, geothermal water temperatures in different regions,
and Nusselt numbers, thus achieving better results. However, ANNs and DNNs are ele-
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mentary to fall into the local minima, causing significant errors in the results. In sequence,
to obtain a model with higher accuracy, other algorithms can be implemented to optimize
the initial weights and thresholds to avoid the problem of falling into a local minimum.
A genetic algorithm (GA) can automatically acquire and accumulate knowledge of the
search space during the search process and adaptively control the search process to obtain
the optimal solution [23]. Therefore, the GA optimizing back-propagation neural network
(GA–BPNN) can be applied to construct the agent model for the case of multifactorial
nonlinear coupling of structural size and installation position of SFCBHE. The agent model
obtained by GA–BPNN is taken as the fitness function to determine the optimal parameter
combinations. Furthermore, an optimization algorithm must be used to determine the
global optimum value of the agent model and the corresponding parameter combinations.
Since the Marine Predator algorithm (MPA) has significant advantages in engineering
optimization problems [24,25], which, combined with the Q-learning algorithm, accelerates
the convergence of the standard MPA [26], QLMPA can be applied to optimize the heat
extraction performance of the SFCBHE.

In our previous research work [19,27], the heat transfer performance of coaxial drilled
heat exchangers with three different shapes vortex generators was compared with that
of traditional heat exchangers without vortex generators, and it was concluded that the
helical fin coaxial drilled heat exchangers had the best performance. To improve the heat
extraction performance of SFCBHE, based on previous research, a numerical simulation
model is constructed to optimize the heat extraction performance under the coupling
of structural size and installation position of SFCBHE using GA–BPNN–QLMPA with
PEC as the evaluation indicator. This optimization method can predict the heat transfer
performance of different structural sizes and installation positions of the heat exchanger and
calculate the optimal parameter combinations of the high-performance SFCBHE, providing
a theoretical foundation for the development of the high-performance SFCBHE and is
crucial for the advancement of highly efficient geothermal energy mining technology.

2. Numerical Model and Validation
2.1. Geometric Model

SFCBHE is primarily applied to 200~3000-m-deep hydrothermal geothermal energy
resource extraction, which comprises cement, casing, heat pump, circulating pump, inner
tube, and vortex generator. The bottom of the well is blocked with cement to create a closed
circulating channel.

Principle of SFCBHE: The circulating pump injects the fluid at a lower temperature
into the hollow part. The fluid absorbs the heat from the formation rock and warms the
injected supercooled liquid. After passing through the spiral fins, the fluid strengthens the
mixing characteristics of the fluid flow. It destroys the boundary layer on the near-wall
surface to maintain the heat transfer [19].

After reaching the bottom of the well, due to the stratum and ground circulation pump
pressure, the bottom of the hot fluid flows to the inner tube. Under the action of the heat
pump for the city heating, the fluid after heating and then through the circulating pump
into the next cycle to achieve the effect of “taking heat but not water”. The principle of the
system is depicted in Figure 1a. As the ground temperature gradient effect, the bottom of
the well has the highest heat. For a better study of the heat transfer performance, the best
heat transfer performance was determined from the bottom of the 10-m-deep borehole for
the survey. Figure 1b presents its structural size. The geometric size is shown in Table 1.
The distance of the vortex generator (DOTVG) is an abbreviation for the distance of the
vortex generator from the bottom of the inner tube. The fin height is an abbreviation for
the size of the helical fins, the pitch is an abbreviation for the pitch of the vortex generator,
and the depth of insertion of the inner tube (TDIT) is an abbreviation for the distance of
the lower end of the insulated tube from the bottom of the well. TL is an abbreviation for
the total length of SFCBHE. OTD is an abbreviation for the outer tube diameter. ITI is an
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abbreviation for the insulation tube inner diameter. TVGD is an abbreviation for the vortex
generator’s diameter.
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Table 1. Fixed and optimized parameters for 10-m-deep SFCBHE.

Type Parameter Symbol Initial Value Ranges

Fixed
parameters

DOTVG L1 2850 mm —
TL L 10,000 mm —

OTD D1 210 mm —
ITI D2 100 mm —

TVGD D3 130 mm —

Optimized
parameters

fin height HC 15 mm 5~20 mm
pitch P 300 mm 100~400 mm

Number of fins F 1 1~4
Number of TVG G 1 1~4

TDIT H 200 mm 100~700 mm

2.2. Numerical Model and Evaluation Indicator
2.2.1. Model Assumption

The simulation of the numerical value is challenging for considering the complex heat
transfer process of the heat exchanger under actual working conditions. For this reason,
the following reasonable assumptions are made [19]:

(1) The geotechnical soil around the geothermal well is assumed to be a homogeneous
medium, groundwater seepage is neglected, and the heat transfer in the underground
geotechnical soil is considered pure heat conduction.

(2) The heat source at the well’s bottom and the surface temperature are considered
constant.

(3) The geotechnical soil’s surface temperature and thermophysical parameters change
only along the depth direction.

(4) It is assumed that the buried pipe, the backfill material, and the ground are closed in
contact and that there is no contact thermal resistance between them.

2.2.2. Control Equations and Boundary Conditions

(1) Control Models

Sun et al. [19] demonstrated that strong cyclonic flow forms after the fluid passes
through the SFCBHE, using the (RNG) k–ε turbulence model, which is better for eddies
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and strong curvature. Similarly, the Navier–Stokes (RANS) model is better for the control
equations [28].

(2) Boundary conditions and meshing

Heat conduction pipe and insulation pipe are placed between the annular region
for the inlet. The inlet boundary is defined as the velocity inlet. The middle insulation
pipe is the medium outlet after heat transfer, and the outlet boundary is identified as the
pressure outlet.

The heat transfer boundary condition between the circulating fluid in the tube and
the tube wall surface is defined as the coupled heat transfer boundary. In the analysis, the
surface temperature is taken as 300 K, the depth of the well is 2667 m, the temperature
gradient of the excellent wall is Tg = 4.5 K/100 m [29,30], and the temperature at the bottom
boundary of SFCBHE is 420 K according to Equation (1). The temperature boundary is
applied to the excellent wall by using the UDF control in the model. Figure 2a depicts the
specific boundary setting.
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(1) Rock temperature
TW = Tsur + Tgz (1)

where TW is the rock temperature, K; Tsur is the ground surface temperature, K; Tg is
the land temperature gradient, K/m; z is the well depth, m.

(2) Outlet pressure
Pout = ρgz (2)

Figure 2b shows the meshing scheme of the SFCBHE, with a hexahedral structured
mesh for the insulated tube and an unstructured tetrahedral mesh for the spiral fin part.
The impact of the near-wall boundary layer on heat transfer is considered. Boundary layer
encryption and mesh refinement are conducted at the interface between the tube wall and
the fluid and on the spiral fin surface to better capture the turbulence characteristics and
deal with the viscous sublayer effect near the tube wall. The grid independence verification
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has been performed. When the inlet velocity Vin = 0.1 m/s, the variation of Nussel number
Nu and friction coefficient f of SFCBHE with the number of grids are shown in Figure 3. As
shown in Figure 3, when the number of grids exceeds 620 thousands, Nu and f basically
remain unchanged with the increase of grids number. Therefore, considering the computing
time, the grid number of this numerical model is about 620 thousands. The average skew
of the grids is 0.178, the average orthogonal mass is 0.927, and the average aspect ratio is
2.108. The computer is configured with i5-10400F CPU and RAM16GB for calculation. The
CPU running time is 321 minutes, and the residual value is 10−5.
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(3) Physical parameters

The fluid medium in the SFCBHE is water. The outer heat conduction tube is made of
steel with high thermal conductivity, and the inner insulation tube is made of polyethene, a
material with low thermal conductivity. Table 2 shows its physical parameters.

Table 2. Physical parameters of the numerical model.

Parameter Symbol Water Outlet
Tube

Inlet
Tube Unit

Density P 998.2 7850 962 kg·m−3

Specific heat capacity cρ 4182 502.48 2630 J·(kg·K)−1

Thermal conductivity k 0.6 44.19 0.02 W·(m·K)
Viscosity M 0.001003 — — kg·(m·s)−1

2.2.3. Evaluation Indicator

Regarding the enhanced heat transfer, researchers have proposed several evaluation
indicators based on the first and second laws of thermodynamics, respectively. Webb [31]
et al. presented a comprehensive performance evaluation factor (PEC) integrating the
Nusselt number (Nu) and friction coefficient (f ). It can be used to evaluate the overall
enhanced heat transfer effect that is influenced by both heat transfer and drag loss of the
heat exchanger. It is the most widely applied and used as the evaluation indicator for
the performance of heat harvesting. It can be used as the evaluation indicator of the heat
extraction performance of SFCBHE. It is expressed as follows:

PEC =
(Nu/Nus)

( f / fs)
1/3 (3)
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where Nu is the Nusselt number for new heat exchangers; f is the friction coefficient of
new heat exchangers; Nus is the Nusselt number for smooth tubes; and fs is the friction
coefficient of the smooth tube.

When PEC is less than 1, the heat transfer efficiency is low. When PEC is equal to
1, the heat transfer efficiency of the new and smooth tube heat exchangers is the same,
and the heat transfer is not enhanced. When PEC is greater than 1, it shows that the
comprehensive performance of the new heat exchanger is significantly improved compared
with the smooth tube heat exchanger.

2.3. Model Validation

For validating the numerical simulation results, the Nusselt number Nu and the
friction factor f of the smooth tube heat exchanger are compared with those obtained by
other authors [32–34]. Figure 4 compares the simulation results of the smooth tube heat
exchanger with the results of the empirical equations, and the shaded area is the ±6%
region of the observed correlations. This demonstrates that the simulation results are within
the overlap interval of the two empirical correlations, verifying the numerical model.

Processes 2023, 11, x FOR PEER REVIEW 7 of 25 
 

 

Nusselt number (Nu) and friction coefficient (f). It can be used to evaluate the overall en-

hanced heat transfer effect that is influenced by both heat transfer and drag loss of the 

heat exchanger. It is the most widely applied and used as the evaluation indicator for the 

performance of heat harvesting. It can be used as the evaluation indicator of the heat ex-

traction performance of SFCBHE. It is expressed as follows: 

1/3

( / )

( / )

s

s

Nu Nu
PEC

f f
=

 
(3) 

where Nu is the Nusselt number for new heat exchangers; f is the friction coefficient of 

new heat exchangers; Nus is the Nusselt number for smooth tubes; and fs is the friction 

coefficient of the smooth tube. 

When PEC is less than 1, the heat transfer efficiency is low. When PEC is equal to 1, 

the heat transfer efficiency of the new and smooth tube heat exchangers is the same, and 

the heat transfer is not enhanced. When PEC is greater than 1, it shows that the compre-

hensive performance of the new heat exchanger is significantly improved compared with 

the smooth tube heat exchanger. 

2.3. Model Validation 

For validating the numerical simulation results, the Nusselt number Nu and the fric-

tion factor f of the smooth tube heat exchanger are compared with those obtained by other 

authors [32–34]. Figure 4 compares the simulation results of the smooth tube heat ex-

changer with the results of the empirical equations, and the shaded area is the ±6% region 

of the observed correlations. This demonstrates that the simulation results are within the 

overlap interval of the two empirical correlations, verifying the numerical model. 

10,000 15,000 20,000 25,000 30,000
80

100

120

140

160

180

200

10,000 15,000 20,000 25,000 30,000
0.022

0.024

0.026

0.028

0.030

0.032

N
u

Re

 Simulation

 Gnielinski

 Dittus-Boelter

f

Re

 Simulation

 Blasius

 Petukhov

 
(a) Nu result verification (b) f result verification 

Figure 4. Model validation [19]. 

2.4. Taguchi Method Program 

Another study [27] investigated the fin height and pitch of SFCBHE. It concluded that 

increasing the fin height or decreasing the pitch of spiral fins can effectively enhance heat 

extraction performance. Meanwhile, the number of fins, vortex generators, and TDIT also 

influence the heat extraction performance of the SFCBHE. Therefore, the Taguchi method 

was used to analyze the effects of fin height Hc, pitch P, number of fins F, the number of 

vortex generators G (uniform arrangement), and TDIT (H) on heat extraction perfor-

mance. The calculation results can provide an initial database for the optimization analy-

sis of the heat extraction performance of SFCBHE. According to the fixed parameter di-

mensions in Table 1 and the range of the fin height and pitch values provided in the liter-

Figure 4. Model validation [19].

2.4. Taguchi Method Program

Another study [27] investigated the fin height and pitch of SFCBHE. It concluded that
increasing the fin height or decreasing the pitch of spiral fins can effectively enhance heat
extraction performance. Meanwhile, the number of fins, vortex generators, and TDIT also
influence the heat extraction performance of the SFCBHE. Therefore, the Taguchi method
was used to analyze the effects of fin height Hc, pitch P, number of fins F, the number of
vortex generators G (uniform arrangement), and TDIT (H) on heat extraction performance.
The calculation results can provide an initial database for the optimization analysis of the
heat extraction performance of SFCBHE. According to the fixed parameter dimensions in
Table 1 and the range of the fin height and pitch values provided in the literature [27,35,36],
the initial values and scopes of the five optimization parameters are determined. Finally,
the L16(45)Taguchi method test scheme for multi-parameter optimization is formulated.
The results of the schemes are calculated using simulation and analysis software. Table 3
presents the test schemes and their corresponding calculation results.
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Table 3. Taguchi Method Program and Results.

Levels
Experimental Factors

PEC
Hc (mm) P (mm) F (N/A) G (N/A) H (mm)

1 5 100 1 1 100 1.036
2 5 200 2 2 300 1.038
3 5 300 3 3 500 1.035
4 5 400 4 4 700 1.012
5 10 100 2 3 700 1.119
6 10 200 1 4 500 1.102
7 10 300 4 1 300 1.042
8 10 400 3 2 100 1.075
9 15 100 3 4 300 1.275

10 15 200 4 3 100 1.224
11 15 300 1 2 700 1.073
12 15 400 2 1 500 1.049
13 20 100 4 2 500 1.314
14 20 200 3 1 700 1.138
15 20 300 2 4 100 1.250
16 20 400 1 3 300 1.155

To verify the representativeness of the optimized parameters, the principal effect
analysis of the aforementioned Taguchi method was conducted to investigate the effects
of different levels of each factor on the PEC. These results are presented in Figure 5.
Here, the more extensive span of the curve indicates that the element is considered to
be more representative. The fin height Hc, pitch P, and the number of vortex generators
G significantly affect the PEC. The PEC increases with increasing the fin height Hc and
number of vortex generators G and decreases with increasing pitch P. The PEC also affects
the number of vortex generators G and P. Therefore, it is representative to use these five
influencing factors (fin height Hc, pitch P, number of fins F, number of vortex generators G
[uniformly arranged], and TDIT (H)) to construct the optimization agent model.
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3. Optimization Models and Methods
3.1. PEC Optimization Model

For the heat exchanger performance to reach the global optimum level within the
optimization interval, it is ensured that all other conditions remain unchanged. Based on
the Taguchi method, the fin height Hc, pitch P, and TDIT (H) are uniformly varied. The
corresponding PEC values are calculated. Finally, a training library of agent models with
135 sets of data is formed. The heat extraction performance of the SFCBHE is optimized
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using a combination of GA–BPNN and QLMPA. In the optimization model, Hc, P, F, G,
and H are the optimization variables; PEC is the optimization objective, and a larger PEC
indicates a better heat transfer performance. The optimization model is shown as follows:

maxPEC(X),
X = (Hc, P, F, G, H),

s.t


Hcmin ≤ Hc ≤ Hcmax
Pmin ≤ P ≤ Pmax
Fmin ≤ F ≤ Fmax
Gmin ≤ G ≤ Gmax
Hmin ≤ H ≤ Hmax

(4)

where (Hcmin, Hcmax), (Pmin, Pmax), (Fmin, Fmax), (Gmin, Gmax), and (Hmin, Hmax) are the
constraint intervals for the fin height, pitch, number of fins, number of vortex generators
(uniform arrangement), and TDIT(H), respectively.

The decision solution of the optimization model (Equation (4)) is determined by first
constructing the mapping relationship model between the comprehensive performance
evaluation indicator PEC and the optimization parameters using the GA–BPNN and
identifying the parameter optimization model with the maximum PEC as the objective.
Then the solution is optimized using QLMPA. Next, the number of fins F and vortex
generator G are rounded and substituted into the GA–BPNN model to solve the PEC. The
solution flow is shown in Figure 6.
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3.2. GA–BPNN Principles and Processes

Using machine learning algorithms allows for establishing an agent model with high
accuracy in predicting the PEC value while considering the multifactor nonlinear coupling
relationship between the structural size of the SFCBHE and the installation position. The
commonly used BPNN for optimization analysis faces the problem of falling into local
minima, leading to inaccurate optimization and prediction models. The GA can select
crossover and mutation operations on the initial weights and thresholds of BPNN so that
the BPNN can get the best initial weights and thresholds, thus improving the prediction
model’s accuracy. This can effectively address the problem of BPNN falling into local
optimum by combining GA and BPNN.

Figure 7 shows the GA–BPNN workflow. First, according to the set network topology,
parameters are initialized, the initial weights and thresholds are determined, and the GA
structure is identified. Next, the BPNN is trained, and the fitness function is calculated
using selection, crossover, and mutation to determine the fitness value until the fitness
value meets the end condition to calculate the optimal weights and thresholds. Finally, the
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weights and thresholds of the BPNN are updated according to the error back-propagation,
and the neural network is trained until the end conditions are met. Ultimately, the optimal
agent model is obtained.
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3.3. QLMPA Optimization Principles and Processes

To enhance the heat extraction performance of the SFCBHE, an optimization study of
the heat extraction performance of the heat exchanger was conducted using an optimization
algorithm based on the GA–BPNN agent model by considering the multifactor nonlinear
coupling relationship. The MPA is a swarm intelligence (SI) algorithm proposed by Afshin
Faramarzi et al. [37] in recent years, which is inspired by the different foraging strategies
among marine predators and the optimal encounter rate strategies in biological interactions,
including both Le’vy and Brownian motions [38]. The MPA is uniformly initialized with its
solution X0 on the search space by the following equation:

X0
ij = rij(ubj − lbj) + lbj, i = 1, . . . , n j = 1, . . . , d (5)

where X0
ij is the element of the ith row and jth column of matrix X0; ubj and lbj are the

upper and lower limits of the range of values of each optimization parameter in Table 1. rij
is a uniform random number between 0 and 1; n is the total number of search agents; and d
is the dimensionality of the solution, denoted as the number of optimization parameters.

In marine ecosystems, both predators and prey are considered search agents, and the
best of them is considered Elite with the expression:

Elite =


X I

1,1 X I
1,2 · · · X I

1,d
X I

2,1 X I
2,2 · · · X I

2,d
...

...
...

...

X I
n,1 X I

n,2
... X I

n,d


n×d

(6)
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The others are called Prey, and their proxy matrices are of the same dimension as Elite,
shown by the following expression:

Pery =


X1,1 X1,2 · · · X1,d
X2,1 X2,2 · · · X2,d

...
...

...
...

Xn,1 Xn,2 · · · Xn,d


n×d

(7)

MPA selects the appropriated motion based on the relationship between the number
of iterations and the maximum number of iterations and does not utilize the information
generated from previous iterations, increasing the computational cost and running time
and reducing the convergence speed to address this shortcoming. The use of reinforcement
learning Q-learning to fully use the iteration information can improve the convergence
speed of MPA and avoid prematurely falling into the development phase [26]. In the Q-
learning algorithm, the Q-table is updated according to the Bellman equation (Equation (8))
to gain experience.

Q(sIter+1, aIter+1) = Q(sIter, aIter) + λ
[
rIter+1 + γmax

a
(Q(s′, a))−Q(sIter, aIter)

]
(8)

where λ is the learning rate, γ is the discount factor between 0~1, and rIter+1 is the instant
reward calculated by sIter and aIter.

Based on the GA–BPNN agent model and QLMPA optimization principle, combined
with the optimization objective (maximum PEC) and optimization variables (Hc, P, F, G,
and H), the workflow is shown in Figure 8. The specific process can be divided into the
following steps:
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(1) Initialize the search agent (Preyi) population i = 1,. . ., n, Q-table, and Reward table, as
well as the current state s0;

(2) When the number of iterations is less than the maximum, the trained GA–BPNN
prediction output is used as old_ fitness. The Elite matrix is constructed;
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(3) If Q(SIter,a1) is the maximum value in the Q-table, which is the initial phase of op-
timization, the predator moves faster than the prey, and Prey is updated using the
following equation:

→
stepsizei =

→
RB ⊗

( →
Elitei −

→
RB ⊗

→
Preyi

)
i = 1, . . . , n

→
Preyi =

→
Preyi + P ·

→
R ⊗

→
stepsizei

(9)

where RB is a vector of random numbers containing the Brownian motion normal
distribution; the symbol ⊗ denotes term-by-term multiplication; P is a constant, taken
as 0.5; and R is a vector of uniform random numbers in the interval 0~1.

(4) If Q(SIter,a2) is the maximum value in the Q-table, this is an optimized intermediate
stage where the predator moves at a speed equal to the prey, and the setting is
designed to be half for exploration and half for exploitation. For the exploration part
of the population, Prey is updated according to Equation (10);

−−−−−→
stepsize i =

→
RL ⊗

(−−−→
Elite i −

→
RL ⊗

−−→
Preyi

)
i = 1, . . . , n/2

−−→
Preyi =

−−→
Preyi + P ·

→
R ⊗
−−−−−→
stepsizei

(10)

where RL is a vector of random numbers with Le’vy distribution.
For another part of the population, Prey is updated according to the following equation:

−−−−−→
stepsize i =

→
RB ⊗

(→
RB ⊗

−−−→
Elite i −

−−→
Preyi

)
i = n/2 + 1, . . . , n

CF = (1− Iter
Max_Iter )

(2 Iter
Max_Iter )

−−→
Preyi =

−−−→
Elite i + P · CF⊗

−−−−−→
stepsizei

(11)

where
→
RB ⊗

−−−→
Elite i simulates the Brownian motion of the predator; and CF is an

adaptive parameter to control the step size of the predator.
(5) If Q(SIter,a3) is the maximum value in the Q-table, this is the final stage of optimization,

and Prey is updated using the following equation:

−−−−−→
stepsize i =

→
RL ⊗

(→
RL ⊗

−−−→
Elite i −

−−→
Preyi

)
i = 1, . . . , n

−−→
Preyi =

−−−→
Elite i + 0.5CF⊗

−−−−−→
stepsizei

(12)

where
→
RL ⊗

−−−→
Elite i simulates the predator Lev’y flight motion. Other factors influence

the predator behavior, with eddy currents and fish aggregating devices (FADs) effects
being the most significant [39,40].

(6) Calculate fitness based on Prey; if fitness < old_ fitness, Reward = 1, otherwise, Reward = −1;
(7) Update the Q-table with Equation (8), complete the Elite update, apply the FADs effect

and update;
(8) Add one to the number of iterations and go back to step 2;
(9) At the end of the iteration, the best fitness and its corresponding Prey are returned.

fitness is the optimal PEC obtained with QLMPA, and Prey is the optimal value of
SFCBHE optimization variables (Hc, P, F, G, H);

(10) The number of fins F and the number of vortex generators G in the optimal optimiza-
tion variables obtained in step 9 are circularly substituted into the trained PEC agent
model to find the PEC values;

(11) Compare the results of the parameter combinations obtained in step 10 with the
simulation analysis results to evaluate the optimized model’s accuracy.
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4. PEC Prediction Model and Optimization Analysis
4.1. PEC Prediction Model

The PEC prediction model is built using GA–BPNN, and the model sample data are 135
sets. The training, validation, and test sets are selected using random sampling. Moreover,
the training set: the validation set: the test set = 0.7:0.15:0.15. The data are normalized using
the min-max normalization method to reduce the error. The input layer of the BPNN is the
fin height Hc, screw pitch P, number of fins F, number of vortex generators G, TDIT (H).
The output layer is the PEC value. The GA and BPNN parameters are presented in Table 4.

Table 4. Parameters of GA–BPNN.

Parameter Symbol Value

GA

Population size 10
Number of iterations 30
Crossover probability 0.8

Probability of variation 0.2

BPNN

Input Variables 5
Number of hidden layers 1

Number of neurons in the hidden layer 10
Maximum number of iterations 1000

Learning rate 0.01
Precision 0.0001

The fitness curve describes the process of finding the optimal weights and thresholds
of BPNN by GA, including the average fitness and the best fitness curve (Figure 9). The
average adaptation tends to decrease with the number of iterations. The optimal fitness
value reaches stability at 23 iterations, which is 6.25 × 10−4. The PEC prediction model
can be built by substituting the initial weight threshold under the optimal fitness into
the BPNN.
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Model prediction accuracy is a prerequisite for accurately evaluating the heat trans-
fer performance of SFCBHE. Both test set’s prediction accuracy and error analysis are
investigated to obtain a high-precision prediction model.
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(1) Test set prediction accuracy

The test set prediction accuracy directly affects the model accuracy. Figure 10 depicts
the GA–BPNN prediction results, in which the mauve dots are the data points determined
according to the PEC prediction model with the simulation value as the coordinates. The
red straight line indicates the zero error line, and the blue dashed line indicates the +5%
upper limit and –5% lower limit of the error. The blue data points fluctuate around the
zero error line and are within upper and lower error limits. The histogram of the frequency
distribution of the relative errors of the PEC prediction model is depicted in the lower
right corner. The green line is the Gaussian fitting curve, representing the relationship
between the relative errors and the frequencies. The relative error is 90% between ±1.5%
and 10% between −3.5% and −2.5%. Together, they validate the accuracy of the PEC
prediction model.
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(2) Error analysis

The superiority of the PEC prediction model is evaluated by comparing it with the
BPNN and SVR models, commonly used in the existing literature. The relative error of each
model concerning the simulation results is taken as the absolute value using the simulation
results as the benchmark. The results are shown in Figure 11. In BPNN and SVR, compared
to GA–BPNN, the lower contour map is darker in color, and the upper 3D peak map has
steeper wave crests. The absolute value of the maximum relative error of BPNN and SVR
models is 7.23% and 15.11%, respectively. In contrast, the absolute value of the maximum
relative error of the GA–BPNN model is 3.44%, indicating that the PEC prediction model
established by GA–BPNN predicts the training set more accurately.

To further evaluate the prediction effect of GA–BPNN, BPNN, and SVR models, the
mean square error (MSE), mean absolute percentage error (MAPE), and goodness of fit (R2)
are used as the evaluation indicators of prediction accuracy. The smaller the values of MSE
and MAPE, the closer the predicted value is to the actual value. The closer R2 is to 1, the
more accurately the model describes the mapping between the inputs and outputs. The
expressions of the three evaluation indicators are as follows:

MSE =
1
m

m

∑
i=1

(P(i)− y(i))2 (13)
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MAPE =
1
m

m

∑
i=1

∣∣∣∣P(i)− y(i)
y(i)

∣∣∣∣ (14)

R2 =
m

∑
i=1

(P(i)− y(i))2

/
m

∑
i=1

(y− y(i))2 (15)

where P(i) is the predicted value of the ith test sample; y(i) is the measured value of the ith
test sample; y is the average of the measured values; and m is the number of test samples.
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The comparison of the prediction results of the three models is shown in Figure 12,
which shows that the MSE and MAPE of the GA–BPNN model are smaller than that of
the BPNN and SVR. The R2 reaches 0.9611, which is 11.28% and 8.96% higher than that of
the BPNN and SVR, respectively. The results demonstrate that the PEC prediction model
obtained using GA–BPNN has more precision.
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In summary, the PEC prediction model constructed using GA–BPNN has high accuracy
obtained by studying the test set prediction accuracy and error analysis.
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4.2. PEC Optimization Analysis
4.2.1. SFCBHE Parameter Optimization Results

Constructing a high-precision PEC prediction model using GA–BPNN is the foun-
dation for optimizing the heat extraction performance of SFCBHE. Furthermore, iterative
optimization using QLMPA with the GA–BPNN prediction output as the adaptation value
is the key to this optimization. The QLMPA parameters are determined by the grid search
method and in combination with the literature [26], and the specific parameters are shown
in Table 5.

Table 5. QLMPA parameter setting.

Parameter Symbol Value

Discount factor γ 0.5
Learning rates λ 0.01

FADs N/A 0.2
Step size factors P 0.5

Number of iterations I 500
Search agent N/A 25

Discount factor γ 0.5

The PEC results satisfying the optimization model (Equation (4)) are obtained using
QLMPA and are shown in Figure 13. The horizontal coordinate is the number of iterations,
and the vertical coordinate is the optimal PEC value corresponding to each iteration. The
optimal PEC increases with the increase in the number of iterations, and the fastest rise of
PEC is observed when the number of iterations is in 0~4. When the number of iterations is
in the interval of 5~45, the PEC shows a stepwise increase. When the number of iterations
is 45, it has already reached the globally optimal PEC value, which is attributed to the
fact that the Q-learning algorithm fully use iterative information, making the exploration
and development phase of MPA more effective and improving the convergence speed of
MPA. The maximum value of PEC is 1.423, and its corresponding heat exchanger structural
parameters are Hc = 20.00 mm, P = 100.00 mm, F = 4, G = 3.45, and H = 408.5 mm.
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4.2.2. QLMPA Optimization Performance Evaluation

For evaluating the performance of QLMPA on the optimization problem of heat extrac-
tion performance of SFCBHE, QLMPA is compared with several optimization algorithms
most commonly used in the current literature, such as the MPA algorithm (MPA), grey wolf
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optimization algorithm (GWO), and particle swarm algorithm (PSO). Table 6 presents the
parameter settings for MPA, GWO, and PSO.

Table 6. Parameter settings for MPA, GWO, and PSO.

MPA
Value

GWO
Value

PSO
Value

Parameter Parameter Parameter

FADs 0.2 Dimension 5 Population size 50
Step size factors 0.5 Number of Iterations 500 Dimension 5

Number of Iterations 500 Search Agent 25 Acceleration constant 0.2
FADs 0.2 Dimension 5 Population size 50

The optimal PEC value obtained by each algorithm and the number of iterations
(Ibest) to bring the optimal PEC value are used as evaluation indicators, wherein the more
significant the PEC indicates, the better the optimization effect. Moreover, the smaller the
number of iterations (Ibest), the higher the optimization efficiency.

Figure 14 shows the variation of the optimal PEC with the number of iterations for
each optimization algorithm. Table 7 presents the parameter combinations of the SFCBHE
calculated by each optimization algorithm and the corresponding PEC and Ibest. Figure 14
and Table 7 demonstrate that the QLMPA, MPA, and GWO algorithms obtain the exact
optimal PEC through iterations. The local zoom in Figure 14a shows that QLMPA converges
faster than MPA and GWO in 0–100 iterations, which is due to the fact that MPAs can store
information about the searches that they have obtained throughout the iteration process
with the help of Q-learning, making the exploration and development phases of MPA more
effective and improving the convergence speed of MPA. The local zoom in Figure 14b shows
that QLMPA has reached the optimal value in 45 iterations, and the computational speed is
33.8%, 47.7%, and 31.8% higher than that of MPA, GWO, and PSO, respectively. Therefore,
QLMPA can be used to quickly calculate the optimal SFCBHE parameter combinations and
significantly enhance the design efficiency.
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Table 7. Best parameter combinations for each optimization algorithm. 

Type Hc P F G H PEC Ibest 
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PSO 19.5 100 3.83 4 294.9 1.419 66 

Figure 14. Iteration optimization process comparison of the algorithms. (a) Locally enlarged image
of iteration of the algorithms; (b) Locally enlarged image of iteration of QLMPA and MPA.

Table 7. Best parameter combinations for each optimization algorithm.

Type Hc P F G H PEC Ibest

QLMPA 20 100 4 3.45 408.5 1.423 45
MPA 20 100 4 3.45 408.5 1.423 68
GWO 20 100 4 3.45 408.5 1.423 86
PSO 19.5 100 3.83 4 294.9 1.419 66
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The number of vortex generators G obtained from QLMPA was rounded to 3 and 4.
It was then substituted into the PEC prediction model, simulation, and analysis software.
The results are shown in Figure 15. The best PEC value is obtained from the simulation and
GA–BPNN model when the number of vortex generators is 4, and the relative error is only
–0.58%. Therefore, the optimal parameter combination is Hc = 20 mm, P = 100 mm, F = 4,
G = 4, and H = 408.5 mm.
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5. Optimized SFCBHE Heat Extraction Analysis
5.1. Heat Extraction Performance Comparison before and after Optimization

For the analysis of the PEC enhancement effect after optimization, the smooth pipe TY-
1 structure is widely used in engineering practice. The TY-2 structure before optimization
(considering the single-factor optimization of SFCBHE) and the TY-3 structure obtained by
considering the multifactorial coupling effect are compared. Table 8 presents the structural
parameters of each scheme and the corresponding PEC values. According to the data in
Table 8, the structural diagrams of the three schemes is obtained as shown in Figure 16,
where H1 = H2 = 300 mm and H3 = 408.5 mm.

Table 8. Comparison of three structures.

Type Hc P F G H PEC

Unit mm mm pieces pieces mm N/A

TY-1 – – – – 300 1.04
TY-2 15 300 1 1 300 1.10
TY-3 20 100 4 4 408.5 1.36
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As shown in Figure 17, it is the distribution of turbulent kinetic energy in the vortex
generator segment of the three different structures TY-1, TY-2 and TY-3. Figure 17 shows
that the turbulent kinetic energy of structure TY-3 is the strongest, that of structure TY-
2 is the second, and that of structure TY-1 is the weakest. The introduction of vortex
generator reduces the cross-sectional area of the flow channel and increases the flow
velocity. Moreover, the fins on the vortex generator make the fluid move from a straight
line to a spiral motion, which produces a guiding and shearing effect on the fluid. As a
result, the disturbance characteristics of the fluid are enhanced. Compared with structure
TY-2, the number of fins F and fin height Hc of structure TY-3 are larger, which results in a
larger increase of the flow velocity and turbulent kinetic energy. Therefore, the structure of
TY-3 is more conducive to geothermal exploitation.
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Figure 17. Distribution of turbulent kinetic energy in vortex generator segment of three different
structures TY-1, TY-2 and TY-3.

To investigate the temperature distribution of the SFCBHE by the structural differences
before and after optimizing, the simulation analysis was performed for the three structures
of TY-1, TY-2, and TY-3. The longitudinal sectional temperature distribution of the three
structures was obtained, as shown in Figure 18a. The guidance and shearing effect of the
vortex generator on the fluid changes the flow direction and flow velocity. The spiral flow
is formed and prolong the heat transfer path between fluid and high-temperature wall.
Meanwhile, the decrease of the cross-sectional area increases the average flow velocity of the
cross-sectional fluid and strengthens the disturbance performance of the fluid. Furthermore,
the boundary layer destruction of the high temperature wall is stronger, and the mixing
effect of the high temperature fluid and the low temperature fluid is better. As a result, a
better heat exchange effect between the fluid and the high temperature wall is obtained.
As shown in Figure 18a, the fluid temperature in the annulus of structure TY-2 and TY-3
increases significantly.

Figure 18b is the cross-section temperature distribution of structure TY-3. It can be
seen from the figure that the fluid flows from the annular inlet of the heat exchanger to
the bottom of the well, the temperature rises rapidly, and the temperature stays basically
unchanged after flowing into the insulation pipe. This suggests that the insulation pipe has
better insulation performance.
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Figure 18. Temperature distribution cloud of three structures. (a) Temperature distribution cloud
diagrams of longitudinal sections of three structures; (b) cross-section temperature distribution of
structure TY-3.

Figure 19 shows the temperature distribution curves along the radial direction for
six cross-sections from A-A to F-F. The figure shows that the fluid temperature near the
high temperature wall is higher. Since the thermal conductivity of the fluid is small, the
temperature of the fluid away from the high temperature wall drops sharply. The thermal
is not transferred to the center of the fluid, and the temperature of the fluid in the center
area is basically the same. As the fluid moves along the flow direction, from inlet cross
section F-F to bottom hole cross section A-A, the average fluid temperature increases from
300K to 350K. Figure 19 also shows that the fluid outlet temperature in the insulation tube
is about 349K, 49K higher than the inlet temperature, and the lift rate is 16.3%.
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Figure 19. Temperature comparison of six groups of cross-sections for structure TY-3.

Figure 20 shows the velocity distribution and 2D and 3D flow maps of the annulus
region extracted from the three structures TY-1, TY-2, and TY-3 at the positions of 1 m,
3.67 m, 6.33 m, and 9 m from the bottom of the well, respectively. The flow lines in the
annulus of the TY-1 smooth tube are linear, and the perturbation characteristics are not
prominent. However, the cross-sectional flow line figure shows that the annulus fluid is
also perturbed under turbulence. Compared with the TY-1, TY-2 with a vortex generator,
the flow line shows a spiral shape after the fluid passes through the vortex generator, the
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turbulent kinetic energy of the fluid increases. Meanwhile, the spiral flow prolongs the
heat conduction time between the fluid and the hot wall surface, which is conducive to
improving the geothermal mining effect. The cross-sectional velocity cloud and streamline
figures show that the fluid is spinning better. The flow perturbation characteristics are
enhanced to improve the mixing effect of the hot fluid near the wall and the cold fluid
inside, strengthening the flow heat transfer effect. Compared with TY-2, the number of
vortex generators in TY-3 is increased, the turbulent kinetic energy of the fluid is further
strengthened, so that the cyclonic intensity of the fluid in the annulus is significantly
higher than that of the TY-2 structure. The thermal conductivity path of the fluid is also
considerably enhanced, which is conducive to absorbing more heat from the hot rock
wall. The cross-section cloud diagram and flow line figures demonstrate that the cyclonic
intensity of TY-3 is more noticeable or significant. The perturbation effect of the fluid is the
best. In conclusion, the optimized TY-3 exhibits a better heat transfer effect and is more
suitable for geothermal energy extraction.
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5.2. Heating Effect Assessment before and after Optimization

The heat extraction capability of the SFCBHE is primarily evaluated in terms of heat
extraction temperature and heat extraction power. Among other things, the heat extraction
power Qout is affected by the physical parameters of the fluid, the size of the flow channel,
the flow velocity of the extracted fluid, and the temperature difference between the inlet
and outlet, which is expressed as follows [41,42]:

Qout = cρρArVout(Tout − Tin) (16)

where cρ is the specific heat capacity of water, J/(kg·k); ρ is the density of water, kg/m3; Ar
is the production well flow area, m2; Vout is the extracted fluid flow velocity, m/s; Tout is
the extraction temperature, K; and Tin is the injection temperature, K.

Figure 21 shows the variation of extracted water temperature for the three heat ex-
changer configurations at different flow velocities. I-1 and I-2 indicate the elevated temper-
ature of TY-3 relative to TY-1 and TY-2 at different flow velocities, respectively. Since the
vortex generator brings stronger disturbance to the flow field, it leads to stronger boundary
layer effect and fluid mixing effect. Therefore, as shown in the column diagram in Figure 21,
the extracted water temperature of TY-3 and TY-2 is higher than that of TY-1. Compared
with TY-2, the extracted water temperature of TY-3 is significantly higher, indicating that
TY-3 has better thermal recovery performance and is more suitable for geothermal mining.
With the increase of inlet flow velocity, the increase of turbulent kinetic energy is conducive
to heat transfer. But the mass flow velocity of low-temperature fluid increases as well, and
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the temperature rise rate slows down. Then when the heat transfer increment caused by the
increase of flow velocity cannot meet the energy required by the temperature rise of more
low-temperature fluid, the extracted water temperature presents a slow downward trend.
The curves in Figure 21 shows that the temperature lift rate of TY-3 firstly increases and
then decreases with the increase of inlet flow velocity. The maximum fluid temperature is
obtained when the inlet velocity is 0.2 m/s.

Processes 2023, 11, x FOR PEER REVIEW 22 of 25 
 

 

0.1 0.2 0.3 0.4 0.5
300

310

320

330

340

350

360

370

380

T
o
u

t /
K

Vin/(m/s)

 TY-1  TY-2  TY-3

4

8

12

16

20

24

28

32

 I-1

 I-2

T
o
u

t I
n

cr
ea

se
 /

K

26.8

24.0

 

Figure 21. Water temperature changes of three heat exchangers at different flow velocities. 

Figure 22 shows the variation curves of heat extraction power with flow velocity for 

the three heat exchangers. L-1 and L-2 denote the enhancement rate of heat extraction 

power of TY-3 relative to TY-1 and TY-2 at different flow velocities, respectively. As shown 

in the column diagram in Figure 22, TY-3 has the highest heat extraction power at the 

same flow velocity. When the inlet flow velocity increases, the flow rate of low tempera-

ture fluid increases and the temperature rise rate slows down. Then, the temperature dif-

ference between the fluid and the high temperature wall becomes larger, and the turbu-

lence characteristics are enhanced. It is conducive to the heat transfer performance be-

tween the fluid and the wall, and finally the heat extraction power is gradually increased. 

As shown in the curves in Figure 22, with the increase of inlet flow velocity, the fluid flow 

rate increases. More energy can be absorbed from the high temperature wall by the fluid, 

then the heat extraction power increases. But with the increase of inlet flow velocity, the 

flow rate of lower temperature fluid increases as well, so the rate of increase rate gradually 

decreases. When the inlet flow velocity is 0.5 m/s, the thermal extraction power of TY-1, 

TY-2 and TY-3 is 41.4 kW, 49.1 kW and 102.8 kW, respectively. Compared with the thermal 

recovery power of TY-1, the thermal recovery power of TY-2 is increased by 109.5%, and 

the thermal recovery power of TY-3 is increased by 148.2%. 

0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

Q
o
u

t/
k

W

vin/(m/s)

 TY-1  TY-2  TY-3

30

45

60

75

90

105

120

135

150
 L-1

 L-2

Q
o
u

t l
if

t 
ra

te
(%

)

95.8

75.1

148.2

109.5

 

Figure 22. Variation of heat extraction power of three heat exchangers at different flow velocities. 
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Figure 21. Water temperature changes of three heat exchangers at different flow velocities.

Figure 22 shows the variation curves of heat extraction power with flow velocity for
the three heat exchangers. L-1 and L-2 denote the enhancement rate of heat extraction
power of TY-3 relative to TY-1 and TY-2 at different flow velocities, respectively. As shown
in the column diagram in Figure 22, TY-3 has the highest heat extraction power at the same
flow velocity. When the inlet flow velocity increases, the flow rate of low temperature
fluid increases and the temperature rise rate slows down. Then, the temperature difference
between the fluid and the high temperature wall becomes larger, and the turbulence
characteristics are enhanced. It is conducive to the heat transfer performance between
the fluid and the wall, and finally the heat extraction power is gradually increased. As
shown in the curves in Figure 22, with the increase of inlet flow velocity, the fluid flow
rate increases. More energy can be absorbed from the high temperature wall by the fluid,
then the heat extraction power increases. But with the increase of inlet flow velocity, the
flow rate of lower temperature fluid increases as well, so the rate of increase rate gradually
decreases. When the inlet flow velocity is 0.5 m/s, the thermal extraction power of TY-1,
TY-2 and TY-3 is 41.4 kW, 49.1 kW and 102.8 kW, respectively. Compared with the thermal
recovery power of TY-1, the thermal recovery power of TY-2 is increased by 109.5%, and
the thermal recovery power of TY-3 is increased by 148.2%.
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6. Conclusions

The heat extraction performance is optimized by combining GA–BPNN and QLMPA
algorithms to improve the geothermal energy extraction efficiency while considering the
multifactorial coupling effects of structural size and installation position of the SFCBHE.
The primary conclusions of this study are as follows:

(1) Orthogonal test and principal effect analysis were used to analyze the influence
of main structural parameters on PEC. The results show that the degree of their
influences was as follows: the fin height Hc > pitch P > number of vortex generators
G > the distance of the lower end of the inlet tube from the bottom of the well H >
number of fins F.

(2) The PEC prediction model is constructed using GA–BPNN, its prediction accuracy is
96.11%, which is 11.28% and 8.96% higher than that of the BPNN and SVR, respec-
tively.

(3) A fast design method is proposed for the SFCBHE based on the intelligence algorithm
GA-BPNN-QLMPA. The PEC of the optimized SFCBHE is 1.36, it has been enhanced
by 30.8% compared with traditional CBHE. The heat recovery performance of the
optimized SFCBHE has been greatly improved.

(4) When the flow rate is 0.2 m/s, the optimized SFCBHE has the highest extracted
temperature, which is increased by 26.8 K compared to the smooth tube and 24.0 K
compared to the pre-optimized SFCBHE. When the flow rate is 0.5 m/s, the optimized
SFCBHE has the highest extracted power 102.8 kW, which is increased by 148.2% and
109.5% compared to the smooth pipe and the pre-optimized SFCBHE, respectively.
Therefore, it is crucial to consider the extraction temperature and heat extraction
power to determine the injection flow rate to achieve the optimal heat extraction.
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Nomenclature

SFCBHE Spiral fin coaxial borehole heat exchanger
PEC performance evaluation factor
GA-BPNN gen-etic algorithm–back-propagation neural network
QLMPA Q-learning-based marine predator algorithm
CBHE coaxial borehole heat exchanger
BHE borehole heat exchanger
DOTVG the distance of the vortex generator from the bottom of the inner tube
TL the total length of SFCBHE
OTD the outer tube diameter
ITI the insulation tube inner diameter
TVGD the vortex generator’s diameter
TW the rock temperature, K
Tsur the ground surface temperature, K
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Tg the land temperature gradient, K/m
z the well depth, m
Hc fin height
P pitch
F number of fins
G the number of vortex generators (uniform arrangement)
TDIT(H) the distance of the lower end of the inlet tube from the bottom of the well
TY-1 the smooth pipe structure
TY-2 The structure of considering the single-factor optimization of SFCBHE
TY-3 the structure obtained by considering the multifactorial coupling effect
I-1 the elevated temperature of TY-3 relative to TY-1
I-2 the elevated temperature of TY-3 relative to TY-2
L-1 the enhancement rate of heat extraction power of TY-3 relative to TY-1
L-2 the enhancement rate of heat extraction power of TY-3 relative to TY-2

References
1. Rohit, R.V.; Kiplangat, D.C.; Veena, R.; Jose, R.; Pradeepkumar, A.P.; Kumar, K.S. Tracing the evolution and charting the future of

geothermal energy research and development. Renew. Sustain. Energy Rev. 2023, 184, 113531.
2. Dincer, I.; Rosen, M.A. Exergy Analysis of Heating, Refrigerating and Air Conditioning: Methods and Applications; Elsevier: Amsterdam,

The Netherlands, 2015.
3. Dor, J.; Wang, G.L.; Zheng, K.Y. Study on the Development and Utilization Strategy of Geothermal Resources in China; Science Press:

Beijing, China, 2017.
4. Dor, J. The basic characteristics of the Yangbajing geothermal field—A typical high temperature geothermal system. Eng. Sci.

2003, 5, 42.
5. Cao, R.; Dor, J.; Li, Y.; Meng, H.; Cai, Y. Occurrence characteristics, development status, and prospect of deep high-temperature

geothermal resources in China. Chin. J. Eng. 2022, 44, 1623–1631. [CrossRef]
6. Dai, C.; Li, J.; Shi, Y.; Zeng, L.; Lei, H. An experiment on heat extraction from a deep geothermal well using a downhole coaxial

open loop design. Appl. Energy 2019, 252, 113447. [CrossRef]
7. Huang, Y. Research on Heat Transfer Mechanism and Thermal Reservoir Enhancement of Deep Coaxial Borehole Heat Exchanger

in Cold Region. Ph.D. Thesis, Jilin University, Jilin, China, 2021. [CrossRef]
8. Holmberg, H.; Acuña, J.; Næss, E.; Sønju, O.K. Thermal evaluation of coaxial deep borehole heat exchangers. Renew. Energy 2016,

97, 65–76. [CrossRef]
9. Beier, R.A.; Acuña, J.; Mogensen, P.; Palm, B. Transient heat transfer in a coaxial borehole heat exchanger. Geothermics 2014, 51,

470–482. [CrossRef]
10. Ramesh, K.; Oudina, F.M.; Souayeh, B. Mathematical Modelling of Fluid Dynamics and Nanofluids; CRC Press: Boca Raton, FL, USA,

2023.
11. Mebarek-Oudina, F.; Chabani, I. Review on nano-fluids applications and heat transfer enhancement techniques in different

enclosures. J. Nanofluids 2022, 11, 155–168. [CrossRef]
12. Bouselsal, M.; Mebarek-Oudina, F.; Biswas, N.; Ismail, A.A.I. Heat Transfer Enhancement Using Al2O3-MWCNT Hybrid-

Nanofluid inside a Tube/Shell Heat Exchanger with Different Tube Shapes. Micromachines 2023, 14, 1072. [CrossRef]
13. Zanchini, E.; Lazzari, S.; Priarone, A. Improving the thermal performance of coaxial borehole heat exchangers. Energy 2010, 35,

657–666. [CrossRef]
14. Chen, K.; Zheng, J.; Li, J.; Shao, J.; Zhang, Q. Numerical study on the heat performance of enhanced coaxial borehole heat

exchanger and double U borehole heat exchanger. Appl. Therm. Eng. 2022, 203, 117916. [CrossRef]
15. Gascuel, V.; Raymond, J.; Rivard, C.; Marcil, J.S.; Comeau, F.A. Design and optimisation of deep coaxial borehole heat exchangers

for cold sedimentary basins. Geothermics 2022, 105, 102504. [CrossRef]
16. Jia, L.; Cui, P.; Liu, Y.; Lu, L.; Fang, Z. Analytical heat transfer model for coaxial heat exchangers based on varied heat flux with

borehole depth. Appl. Therm. Eng. 2023, 218, 119317. [CrossRef]
17. Abdelhafiz, M.M.; Oppelt, J.F.; Brenner, G.; Hegele, L.A., Jr. Application of a thermal transient subsurface model to a coaxial

borehole heat exchanger system. Geoenergy Sci. Eng. 2023, 227, 211815. [CrossRef]
18. Rajeh, T.; Al-Kbodi, B.H.; Yang, L.; Zhao, J.; Zayed, M.E. A novel oval-shaped coaxial ground heat exchanger for augmenting the

performance of ground-coupled heat pumps: Transient heat transfer performance and multi-parameter optimization. J. Build.
Eng. 2023, 79, 107781. [CrossRef]

19. Sun, L.; Fu, B.; Wei, M.; Zhang, S. Analysis of Enhanced Heat Transfer Characteristics of Coaxial Borehole Heat Exchanger.
Processes 2022, 10, 2057. [CrossRef]

20. Pérez-Zárate, D.; Santoyo, E.; Acevedo-Anicasio, A.; Díaz-González, L.; García-López, C. Evaluation of artificial neural networks
for the prediction of deep reservoir temperatures using the gas-phase composition of geothermal fluids. Comput. Geosci. 2019,
129, 49–68. [CrossRef]

https://doi.org/10.13374/j.issn2095-9389.2022.04.07.003
https://doi.org/10.1016/j.apenergy.2019.113447
https://doi.org/10.27162/d.cnki.gjlin.2021.000188
https://doi.org/10.1016/j.renene.2016.05.048
https://doi.org/10.1016/j.geothermics.2014.02.006
https://doi.org/10.1166/jon.2022.1834
https://doi.org/10.3390/mi14051072
https://doi.org/10.1016/j.energy.2009.10.038
https://doi.org/10.1016/j.applthermaleng.2021.117916
https://doi.org/10.1016/j.geothermics.2022.102504
https://doi.org/10.1016/j.applthermaleng.2022.119317
https://doi.org/10.1016/j.geoen.2023.211815
https://doi.org/10.1016/j.jobe.2023.107781
https://doi.org/10.3390/pr10102057
https://doi.org/10.1016/j.cageo.2019.05.004


Processes 2023, 11, 2989 25 of 25

21. Tut Haklidir, F.S.; Haklidir, M. Prediction of reservoir temperatures using hydrogeochemical data, Western Anatolia geothermal
systems (Turkey): A machine learning approach. Nat. Resour. Res. 2020, 29, 2333–2346. [CrossRef]

22. El Jery, A.; Khudhair, A.K.; Abbas, S.Q.; Abed, A.M.; Khedher, K.M. Numerical simulation and artificial neural network prediction
of hydrodynamic and heat transfer in a geothermal heat exchanger to obtain the optimal diameter of tubes with the lowest
entropy using water and Al2O3/water nanofluid. Geothermics 2023, 107, 102605. [CrossRef]

23. Tan, Y.; Guo, L.; Gao, H.; Zhang, L. Deep coupled joint distribution adaptation network: A method for intelligent fault diagnosis
between artificial and real damages. IEEE Trans. Instrum. Meas. 2020, 70, 3507212. [CrossRef]

24. Zhong, K.; Zhou, G.; Deng, W.; Zhou, Y.; Luo, Q. MOMPA: Multi-objective marine predator algorithm. Comput. Methods Appl.
Mech. Eng. 2021, 385, 114029. [CrossRef]

25. Ramezani, M.; Bahmanyar, D.; Razmjooy, N. A new improved model of marine predator algorithm for optimisation problems.
Arab. J. Sci. Eng. 2021, 46, 8803–8826. [CrossRef]

26. Zhao, S.; Wu, Y.; Tan, S.; Wu, J.; Cui, Z.; Wang, Y.G. QQLMPA: A quasi-opposition learning and Q-learning based marine predators
algorithm. Expert Syst. Appl. 2023, 213, 119246. [CrossRef]

27. Sun, L.; Fu, B.; Wei, M.; Zhang, S. New Coaxial Borehole Heat Exchanger Strengthens Heat Transfer Research. Chin. Hydraul.
Pneum. 2023, 47, 164–173.

28. Nakhchi, M.E.; Esfahani, J.A. Numerical investigation of heat transfer enhancement inside heat exchanger tubes fitted with
perforated hollow cylinders. Int. J. Therm. Sci. 2020, 147, 106153. [CrossRef]

29. Caulk, R.A.; Tomac, I. Reuse of abandoned oil and gas wells for geothermal energy production. Renew. Energy 2017, 112, 388–397.
[CrossRef]

30. Xing, L.; Spitler, J.D. Prediction of undisturbed ground temperature using analytical and numerical modeling. Part I: Model
development and experimental validation. Sci. Technol. Built Environ. 2016, 23, 787–808. [CrossRef]

31. Webb, R.L. Perform ance evaluation criteria for use of enhanced heat transfer surfacesin heat exchanger design. Int. J. Heat Mass
Transf. 1981, 24, 715–726. [CrossRef]

32. Mei, R. An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Int. J. Multiph. Flow
1992, 18, 145–147. [CrossRef]

33. Gnielinski, V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng. 1976, 16, 359–368.
34. Petukhov, B.S. Heat transfer and friction in turbulent pipe flow with variable physical properties. Adv. Heat Transf. 1970, 6,

503–564.
35. Garcia, A.; Vicente, P.G.; Viedma, A. Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-

turbulent regimes at different Prandtl numbers. Int. J. Heat Mass Transf. 2005, 48, 4640–4651. [CrossRef]
36. Liu, Y.; Zhang, Y.; Pei, C.; Wang, Z.; Zhang, W. Evaluation on heat transfer performance of horizontal liquid-solid circulating

fluidised bed heat exchanger. Chem. Ind. Eng. Prog. 2016, 35, 3421–3425.
37. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic.

Expert Syst. Appl. 2020, 152, 113377. [CrossRef]
38. Hassan, M.H.; Yousri, D.; Kamel, S.; Rahmann, C. A modified marine predators algorithm for solving single-and multi-objective

combined economic emission dispatch problems. Comput. Ind. Eng. 2021, 164, 107906. [CrossRef]
39. Bartumeus, F.; Catalan, J.; Fulco, U.L.; Lyra, M.L.; Viswanathan, G.M. Optimising the encounter rate in biological interactions:

Lévy versus Brownian strategies. Phys. Rev. Lett. 2002, 88, 097901. [CrossRef] [PubMed]
40. Filmalter, J.D.; Dagorn, L.; Cowley, P.D.; Taquet, M. First descriptions of the behavior of silky sharks, Carcharhinus falciformis,

around drifting fish aggregating devices in the Indian Ocean. Bull. Mar. Sci. 2011, 87, 325–337. [CrossRef]
41. Mohammed, H.A.; Abbas, A.K.; Sherif, J.M. Influence of geometrical parameters and forced convective heat transfer in transversely

corrugated circular tubes. Int. Commun. Heat Mass Transf. 2013, 44, 116–126. [CrossRef]
42. Ran, Y.; Bu, X. Influence analysis of insulation on performance of single well geothermal heating system. CIESC J. 2019, 70,

4191–4198.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11053-019-09596-0
https://doi.org/10.1016/j.geothermics.2022.102605
https://doi.org/10.1109/TIM.2020.3043510
https://doi.org/10.1016/j.cma.2021.114029
https://doi.org/10.1007/s13369-021-05688-3
https://doi.org/10.1016/j.eswa.2022.119246
https://doi.org/10.1016/j.ijthermalsci.2019.106153
https://doi.org/10.1016/j.renene.2017.05.042
https://doi.org/10.1080/23744731.2016.1258371
https://doi.org/10.1016/0017-9310(81)90015-6
https://doi.org/10.1016/0301-9322(92)90012-6
https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.024
https://doi.org/10.1016/j.eswa.2020.113377
https://doi.org/10.1016/j.cie.2021.107906
https://doi.org/10.1103/PhysRevLett.88.097901
https://www.ncbi.nlm.nih.gov/pubmed/11864054
https://doi.org/10.5343/bms.2010.1057
https://doi.org/10.1016/j.icheatmasstransfer.2013.02.005

	Introduction 
	Numerical Model and Validation 
	Geometric Model 
	Numerical Model and Evaluation Indicator 
	Model Assumption 
	Control Equations and Boundary Conditions 
	Evaluation Indicator 

	Model Validation 
	Taguchi Method Program 

	Optimization Models and Methods 
	PEC Optimization Model 
	GA–BPNN Principles and Processes 
	QLMPA Optimization Principles and Processes 

	PEC Prediction Model and Optimization Analysis 
	PEC Prediction Model 
	PEC Optimization Analysis 
	SFCBHE Parameter Optimization Results 
	QLMPA Optimization Performance Evaluation 


	Optimized SFCBHE Heat Extraction Analysis 
	Heat Extraction Performance Comparison before and after Optimization 
	Heating Effect Assessment before and after Optimization 

	Conclusions 
	References

