Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,273)

Search Parameters:
Keywords = co-research

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3134 KB  
Article
Combustion Performance of Commonly Used Softwood Species Glulam in Timber Structures
by Yinglu Zhang, Siyu Xue, Tianxiao Yin, Jun Dai, Yanjun Duan and Dan Zhu
Buildings 2025, 15(22), 4093; https://doi.org/10.3390/buildings15224093 (registering DOI) - 13 Nov 2025
Abstract
Wood is a renewable and sustainable environmentally friendly building material. With proper design, it can help buildings achieve lower carbon emissions. However, since wood is a flammable material, its combustion performance in fires has attracted attention. In modern timber structures, glulam is a [...] Read more.
Wood is a renewable and sustainable environmentally friendly building material. With proper design, it can help buildings achieve lower carbon emissions. However, since wood is a flammable material, its combustion performance in fires has attracted attention. In modern timber structures, glulam is a widely used engineered wood product. Thus, in this paper, glulam specimens made of four kinds of commonly used soft-wood species were used to compare their combustion performance, and the cone calorimeter method was employed. The indicators including time to ignition, heat release rate per unit area, total heat release per unit area, specific extinction area per unit mass, mass of residue, yield of CO and yield of CO2 were evaluated and compared. The results showed that all the glulam specimens would experience cracking wood and adhesive layer. The time to ignition and peak mass loss rate of the four softwood species in the study was positively correlated with their density. Among these species, Spruce exhibited the highest peak heat release rate and the highest peak CO2 yield but lowest smoke production, while Douglas fir had a relatively late CO production time and the lowest mass loss percentage, Larch had the lowest heat release rate and total heat release. This study provides fundamental data for the selection of wood structural materials and for future research on wood flame-retardant treatments. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

44 pages, 2549 KB  
Review
Natural Clay in Geopolymer Concrete: A Sustainable Alternative Pozzolanic Material for Future Green Construction—A Comprehensive Review
by Md Toriqule Islam, Bidur Kafle and Riyadh Al-Ameri
Sustainability 2025, 17(22), 10180; https://doi.org/10.3390/su172210180 (registering DOI) - 13 Nov 2025
Abstract
The ordinary Portland cement (OPC) manufacturing process is highly resource-intensive and contributes to over 5% of global CO2 emissions, thereby contributing to global warming. In this context, researchers are increasingly adopting geopolymers concrete due to their environmentally friendly production process. For decades, [...] Read more.
The ordinary Portland cement (OPC) manufacturing process is highly resource-intensive and contributes to over 5% of global CO2 emissions, thereby contributing to global warming. In this context, researchers are increasingly adopting geopolymers concrete due to their environmentally friendly production process. For decades, industrial byproducts such as fly ash, ground-granulated blast-furnace slag, and silica fume have been used as the primary binders for geopolymer concrete (GPC). However, due to uneven distribution and the decline of coal-fired power stations to meet carbon-neutrality targets, these binders may not be able to meet future demand. The UK intends to shut down coal power stations by 2025, while the EU projects an 83% drop in coal-generated electricity by 2030, resulting in a significant decrease in fly ash supply. Like fly ash, slag, and silica fume, natural clays are also abundant sources of silica, alumina, and other essential chemicals for geopolymer binders. Hence, natural clays possess good potential to replace these industrial byproducts. Recent research indicates that locally available clay has strong potential as a pozzolanic material when treated appropriately. This review article represents a comprehensive overview of the various treatment methods for different types of clays, their impacts on the fresh and hardened properties of geopolymer concrete by analysing the experimental datasets, including 1:1 clays, such as Kaolin and Halloysite, and 2:1 clays, such as Illite, Bentonite, Palygorskite, and Sepiolite. Furthermore, this review article summarises the most recent geopolymer-based prediction models for strength properties and their accuracy in overcoming the expense and time required for laboratory-based tests. This review article shows that the inclusion of clay reduces concrete workability because it increases water demand. However, workability can be maintained by incorporating a superplasticiser. Calcination and mechanical grinding of clay significantly enhance its pozzolanic reactivity, thereby improving its mechanical performance. Current research indicates that replacing 20% of calcined Kaolin with fly ash increases compressive strength by up to 18%. Additionally, up to 20% replacement of calcined or mechanically activated clay improved the durability and microstructural performance. The prediction-based models, such as Artificial Neural Network (ANN), Multi Expression Programming (MEP), Extreme Gradient Boosting (XGB), and Bagging Regressor (BR), showed good accuracy in predicting the compressive strength, tensile strength and elastic modulus. The incorporation of clay in geopolymer concrete reduces reliance on industrial byproducts and fosters more sustainable production practices, thereby contributing to the development of a more sustainable built environment. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Environmental Sustainability)
Show Figures

Figure 1

27 pages, 1083 KB  
Article
Uneven Progress in Circular Economy Practices: Local Government Approaches to Waste Management in Australia
by Karishma Don, Ayon Chakraborty, Tim Harrison and Harpinder Sandhu
Sustainability 2025, 17(22), 10177; https://doi.org/10.3390/su172210177 (registering DOI) - 13 Nov 2025
Abstract
Household waste systems are a frontline test of Australia’s circular economy transition, yet progress remains highly uneven and structurally constrained. Despite strong national targets for resource recovery and emissions reduction, local governments are expected to deliver circular outcomes without uniform access to infrastructure, [...] Read more.
Household waste systems are a frontline test of Australia’s circular economy transition, yet progress remains highly uneven and structurally constrained. Despite strong national targets for resource recovery and emissions reduction, local governments are expected to deliver circular outcomes without uniform access to infrastructure, funding, or technical capability. This study assesses the status, implementation, and progress of household waste management, energy recovery, and circular economy initiatives at the local government level in Australia. Using content analysis of data from 520 local government areas across six states, the study maps differences in service provision (e.g., general waste, mixed recycling, and food organics and garden organics [FOGO] collection), policy instruments, public-facing education, and participation in circular economy programs. The findings reveal that while a majority (92.5%) of councils provide general waste bins, 47% offer FOGO bins, and 78% supply mixed recyclable bins, only a small fraction (2.6%) offers a separate glass bin stream. Fewer than one in ten councils reference any form of energy recovery or waste-to-energy initiative, indicating that resource–energy integration remains emergent and geographically concentrated. Despite national policies such as the National Waste Policy Action Plan, significant regional disparities persist, particularly between metropolitan and rural councils. Guided by environmental governance theory and systems thinking, the study shows how policy fragmentation, funding limitations, and infrastructure inequities create systemic barriers to circularity. The study concludes by recommending targeted co-funding for rural councils, stronger policy support for organics and energy recovery infrastructure, and more coherent multi-level governance to achieve Australia’s 2030 waste and circular economy targets. This research contributes an evidence-based framework for understanding how governance structures and resource asymmetries shape local progress toward a circular economy. Full article
(This article belongs to the Section Waste and Recycling)
22 pages, 3092 KB  
Article
Catalytic Co-Pyrolysis of Chinese Oil Shales for Enhanced Shale Oil Yield and Quality: A Kinetic and Experimental Study
by Yang Meng, Feng Xu, Jiayong Feng, Hang Xiao and Chengheng Pang
Catalysts 2025, 15(11), 1076; https://doi.org/10.3390/catal15111076 (registering DOI) - 13 Nov 2025
Abstract
In response to the urgent need for sustainable energy solutions and efficient fossil resource utilization, the current research is conducted to examine the catalytic co-pyrolysis of four typical Chinese oil shales. The study assesses the ability of synergistic interactions, which are the result [...] Read more.
In response to the urgent need for sustainable energy solutions and efficient fossil resource utilization, the current research is conducted to examine the catalytic co-pyrolysis of four typical Chinese oil shales. The study assesses the ability of synergistic interactions, which are the result of organic and inorganic components, to improve the aspect of thermal behavior, decrease the activation energy and improve the shale oil quality. Thermogravimetric analysis in conjunction as Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS) and integral master-plots approaches showed that there were low activation energies and better reaction kinetics in blended systems. Fischer assay and GC-MS were utilized in product distribution and product composition evaluation, respectively. Optimization increased gas yield and oil composition stabilization in the blended gas, which is found due to the catalytic functions of AAEMs and clay minerals. This contribution facilitates the development of catalytic co-processing solutions where better conversion and reduced carbon intensity are achieved in the production of fossil-based energy. Full article
Show Figures

Graphical abstract

20 pages, 16078 KB  
Article
Shielding Gas Effect on Dendrite-Reinforced Composite Bronze Coatings via WAAM Cladding: Minimizing Defects and Intergranular Bronze Penetration into 09G2S Steel
by Artem Okulov, Yulia Khlebnikova, Olga Iusupova, Lada Egorova, Teona Suaridze, Yury Korobov, Boris Potekhin, Michael Sholokhov, Tushar Sonar, Majid Naseri, Tao He and Zaijiu Li
Technologies 2025, 13(11), 525; https://doi.org/10.3390/technologies13110525 (registering DOI) - 13 Nov 2025
Abstract
Bronze materials are indispensable across numerous industries for enhancing the durability and performance of components, primarily due to their excellent tribological properties, corrosion resistance, and machinability. This study investigates the impact of different atmospheric conditions on the properties of WAAM (wire arc additive [...] Read more.
Bronze materials are indispensable across numerous industries for enhancing the durability and performance of components, primarily due to their excellent tribological properties, corrosion resistance, and machinability. This study investigates the impact of different atmospheric conditions on the properties of WAAM (wire arc additive manufacturing) cladded bronze coatings on 09G2S steel substrate. Specifically, the research examines how varying atmospheres—including ambient air (N2/O2, no shielding gas), pure argon (Ar), carbon dioxide (CO2), and 82% Ar + 18% CO2 (Ar/CO2) mixture—influence coating defectiveness (porosity, cracks, non-uniformity), wettability (manifested as uniform layer formation and strong adhesion), and the extent of intergranular penetration (IGP), leading to the formation of characteristic infiltrated cracks or “bronze whiskers”. Modern investigative techniques such as optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were employed for comprehensive material characterization. Microhardness testing was also carried out to evaluate and confirm the homogeneity of the coating structure. The findings revealed that the bronze coatings primarily consisted of a dominant, highly textured FCC α-Cu phase and a minor BCC α-Fe phase, with Rietveld refinement quantifying a α-Fe volume fraction of ~5%, lattice parameters of a = 0.3616 nm for α-Cu and a = 0.2869 nm for α-Fe, and a modest microstrain of 0.001. The bronze coating deposited under a pure Ar atmosphere exhibited superior performance, characterized by excellent wettability, a uniform, near-defect-free structure with minimal porosity and cracks, and significantly suppressed formation of bronze whiskers, both in quantity and size. Conversely, the coating deposited without a protective atmosphere demonstrated the highest degree of defectiveness, including agglomerated pores and cracks, leading to an uneven interface and extensive whisker growth of varied morphologies. Microhardness tests confirmed that while the Ar-atmosphere coating displayed the lowest hardness (~130 HV0.1), it maintained consistent values across the entire analyzed area, indicating structural homogeneity. These results underscore the critical role of atmosphere selection in WAAM processing for achieving high-quality bronze coatings with enhanced interfacial integrity and functional performance. Full article
Show Figures

Graphical abstract

23 pages, 5337 KB  
Article
Hydrogeochemical Characteristics of Hot Springs and Mud Volcanoes and Their Short-Term Seismic Precursor Anomalies Around the Muji Fault Zone, Northeastern Pamir Plateau
by Shihan Cui, Fenna Zhang, Xiaocheng Zhou, Jingchao Li, Jiao Tian, Zhaojun Zeng, Yuwen Wang, Bingyu Yao, Gaoyuan Xing, Jinyuan Dong, Miao He, Han Yan, Ruibin Li, Wan Zheng, Kayimu Saimaiernaji, Chengguo Wang, Wei Yan and Rong Ma
Water 2025, 17(22), 3241; https://doi.org/10.3390/w17223241 (registering DOI) - 13 Nov 2025
Abstract
The Muji Fault Zone (MJF) in the northeastern Pamir Plateau hosts a well-developed non-volcanic geothermal system, characterized by widespread hot springs and mud volcanoes—where core processes of geothermal fluids, including atmospheric precipitation recharge, shallow crustal circulation, carbonate-driven water–rock interactions, and CO2-rich [...] Read more.
The Muji Fault Zone (MJF) in the northeastern Pamir Plateau hosts a well-developed non-volcanic geothermal system, characterized by widespread hot springs and mud volcanoes—where core processes of geothermal fluids, including atmospheric precipitation recharge, shallow crustal circulation, carbonate-driven water–rock interactions, and CO2-rich fluid discharge, are tightly coupled with regional intense crustal deformation and frequent seismic activity. We collected and analyzed 22 geothermal water samples and 8 bubbling gas samples from the MJF periphery, finding that the geothermal waters are predominantly of the HCO3-Ca·Mg hydrochemical type, with hydrogen (δD: −103.82‰ to −70.21‰) and oxygen (δ18O: −14.89‰ to −10.10‰) isotopes indicating atmospheric precipitation as the main recharge source. The Na-K-Mg ternary diagram classified the waters as immature, reflecting low-temperature water–rock interactions in the shallow crust (<3 km), while noble gas isotopes (3He/4He: 0.03–0.09 Ra, Ra = 1.43 × 10−6) and carbon isotopes (δ13C-CO2) confirmed fluid origin from crustal carbonate dissolution; SiO2 geothermometry estimated thermal reservoir temperatures at 67–155 °C. Long-term monitoring (May 2019–April 2024) of Tahman (THM) and Bulake (BLK) springs revealed significant pre-seismic anomalies: before the 2023 Tajikistan Ms7.2 and 2024 Wushi Ms7.1 earthquakes, Na+, Cl, and SO42− concentrations showed notable negative anomalies (exceeding 2σ of background values) with synchronous trends between the two springs. Integrating these findings, a “Fault-Spring-Mud Volcano-Earthquake” fluid response model was established, providing direct evidence of deep-shallow fluid coupling in mud volcano–geothermal fluid interactions. This study enhances understanding of the dynamic evolution of non-volcanic geothermal systems under tectonic stress and clarifies the mechanisms of hydrogeochemical variations in fault-controlled geothermal systems, offering a robust scientific basis for advancing research on tectonic–fluid interactions in active fault zones of the northeastern Pamir Plateau. Full article
Show Figures

Figure 1

28 pages, 7219 KB  
Article
The Right to the City in Urban Parks: The Role of Co-Governance in Fostering a Sense of Belonging
by Yuan Liu, Manfredo Manfredini, Yuan Fang, Zihao Guo and Jianqing Weng
Land 2025, 14(11), 2250; https://doi.org/10.3390/land14112250 (registering DOI) - 13 Nov 2025
Abstract
This study investigates how urban park co-governance fosters a sense of belonging among residents and advances the Right to the City. It examines the role of parks in mitigating spatial fragmentation, inadequate living conditions, and relational disconnection in high-density urban environments. As essential [...] Read more.
This study investigates how urban park co-governance fosters a sense of belonging among residents and advances the Right to the City. It examines the role of parks in mitigating spatial fragmentation, inadequate living conditions, and relational disconnection in high-density urban environments. As essential green infrastructure, urban parks play a vital role in promoting spatial justice, community cohesion, and resident well-being. Drawing on Henri Lefebvre’s Right to the City framework, this study introduces the concept of the Right to Urban Park, conceptualised as a bundle of rights: freedom (appropriation), individualisation (socialisation), habitat and to inhabit (differentiation), and key point participation. Focusing on the governance and self-governance of parks in high-density cities, this research mixed qualitative and quantitative methods to analyse a representative case in central Shanghai. The findings show that participation, collective action, and co-governance in urban parks effectively support the Right to the City. Integrating the Right to Urban Park framework into park planning and management enhances diversity, equality, and inclusion, thereby improving urban well-being. This framework plays an important role in fostering enfranchisement, individuation, and association processes that strengthen recognition, sense of belonging, and well-being. Full article
Show Figures

Figure 1

32 pages, 2398 KB  
Review
Factors Affecting CO2, CH4, and N2O Fluxes in Temperate Forest Soils
by Amna Saher, Gaeun Kim, Jieun Ahn, Namyi Chae, Haegeun Chung and Yowhan Son
Forests 2025, 16(11), 1723; https://doi.org/10.3390/f16111723 (registering DOI) - 13 Nov 2025
Abstract
Greenhouse gas (GHG) fluxes from forests, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), are regulated by complex interactions of abiotic and biotic factors. A better understanding of these interactions involving GHGs can help manage [...] Read more.
Greenhouse gas (GHG) fluxes from forests, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), are regulated by complex interactions of abiotic and biotic factors. A better understanding of these interactions involving GHGs can help manage forests and enhance their sequestration potential. This review examines how soil properties (moisture, temperature, and pH) and tree species-specific traits (litter quality, carbon storage, and microbial regulation) interactively control GHG dynamics in temperate forest soils, moving beyond a single-factor perspective. This literature review confirms that temperate forest soils are CH4 sinks and sources of CO2 and N2O; however, flux direction and magnitude differ across spatial and temporal scales. CH4 fluxes show high spatial variability and are sensitive to biogeochemical conditions. While soil temperature and moisture are well studied, their combined effects with site-specific variables such as substrate availability, soil texture, and canopy structure remain underexplored. Tree litter plays a dual role: chemically influencing microbial physiological/functional traits through priming, thereby affecting CO2 and N2O, and physically limiting CH4 diffusion. These mechanisms collectively determine whether soils act as GHG sources or sinks, and future research should account for how litter priming may override their carbon sink function while integrating site-specific factors to improve GHG predictions and forest management. Full article
(This article belongs to the Section Forest Soil)
28 pages, 3526 KB  
Article
How Can Stakeholder Co-Creation Foster Climate-Resilient Coastal Tourism Through Integrated Management of Climate, Water-Energy, and Beach-Dune Systems?
by Anna Boqué-Ciurana, Òscar Saladié, Maria Trinitat Rovira-Soto, Carla Garcia-Lozano, Carolina Martí, Marta Tonda, Gabriel Borràs and Enric Aguilar
Sustainability 2025, 17(22), 10163; https://doi.org/10.3390/su172210163 (registering DOI) - 13 Nov 2025
Abstract
This research examines the pursuit of behavioral change for climate-resilient tourism along the Catalan coast by engaging territorial stakeholders in a co-creation process. This study is guided by the following research question: how can the co-creation of integrated climate services, water and energy [...] Read more.
This research examines the pursuit of behavioral change for climate-resilient tourism along the Catalan coast by engaging territorial stakeholders in a co-creation process. This study is guided by the following research question: how can the co-creation of integrated climate services, water and energy management, and beach-dune conservation foster behavioral change among stakeholders towards climate-resilient tourism along the Catalan coast? Focusing on two destinations in Catalonia (Costa Daurada and Terres de l’Ebre), it examines three interconnected dimensions of tourism activity: (1) weather, climate, and climate change; (2) energy and water; and (3) beach-dune systems. Through our analysis, we pursue three secondary objectives: (1) to assess the influence of meteo-climatic conditions on tourist activity, (2) to identify necessary adaptation measures related to water and energy management, and (3) to explore how historical photographs can shape stakeholders’ perceptions regarding the relevance and conservation of the beach-dune system. By bringing together expertise in climate services, resource management, and ecosystem conservation, this study explores how collaborative engagement with public and private stakeholders can foster adaptive strategies that enhance the sustainability and resilience of coastal tourism. The findings directly respond to the research question by showing that co-creation processes integrating climate, resource, and ecosystem management can effectively foster behavioral change among stakeholders. Specifically, the main results highlight (1) a clear relationship between meteo-climatic conditions and tourism activities, underscoring the importance of climate awareness; (2) stakeholder recognition of practical adaptation measures focused on water and energy management to increase sector resilience; and (3) the use of the historical photographs as an effective tool to enhance participants’ understanding of beach-dune systems, improving their knowledge of these ecosystems’ dynamics, formation, and evolution. Full article
(This article belongs to the Special Issue Sustainable Tourism: Climate Change Effect on Tourist Behaviour)
Show Figures

Figure 1

14 pages, 1669 KB  
Review
A Bibliometric Review of Genetic Research on Methamphetamine
by Caroline Anastasia Fernando, Akila Randika Jayamaha, Nafeesa Noordeen, Tibutius Thanesh Pramanayagam Jayadas, Chinthika Gunasekara, Chandima Jeewandara and Neluka Fernando
Psychoactives 2025, 4(4), 40; https://doi.org/10.3390/psychoactives4040040 (registering DOI) - 13 Nov 2025
Abstract
Methamphetamine is a highly addictive stimulant with severe health and psychosocial consequences. Over recent decades, genetic and molecular research on methamphetamine use disorders has expanded considerably, yet a comprehensive synthesis of this growing body of literature is lacking. This study conducted a bibliometric [...] Read more.
Methamphetamine is a highly addictive stimulant with severe health and psychosocial consequences. Over recent decades, genetic and molecular research on methamphetamine use disorders has expanded considerably, yet a comprehensive synthesis of this growing body of literature is lacking. This study conducted a bibliometric analysis to map the scientific landscape of genetic and molecular biology research on methamphetamine use, identifying key contributors, influential publications, publication trends, and co-occurring keywords and citations. A systematic search of the Scopus database retrieved 1550 documents. After applying the inclusion criteria and manual screening, 449 peer-reviewed articles published between 1993 and 2025 were included. Performance analysis and scientific mapping were conducted using VOSviewer software through bibliographic coupling and keyword co-occurrence. The study followed the BIBLIO checklist for reporting bibliometric reviews in biomedical literature. Publication output increased markedly after 2005, peaking in 2022, followed by a decline that may reflect a shift in research priorities. The United States, China, and Japan emerged as leading contributors, underscoring their significant investment in addiction and molecular research. Keyword co-occurrence revealed strong emphasis on addiction, dopamine, neurotoxicity, gene expression, and genetic polymorphisms, highlighting their central role in the pathophysiology of methamphetamine use disorders. This bibliometric analysis demonstrates substantial growth and influence of genetic research on methamphetamine use. Despite a recent decline in publications, the field provides a solid foundation for future interdisciplinary research and funding priorities in addiction genetics. Full article
Show Figures

Figure 1

41 pages, 3504 KB  
Article
Redefining Development Through Logistics Performance and ESG Metrics
by Panagiotis Karountzos, Damianos P. Sakas, Dimitrios K. Nasiopoulos and Kanellos Toudas
Account. Audit. 2025, 1(3), 11; https://doi.org/10.3390/accountaudit1030011 - 13 Nov 2025
Abstract
This study investigates the systemic interrelations between logistics performance, environmental performance, sustainable development progress, and institutional governance. While the existing literature often examines these dimensions separately, this research conceptualizes them as co-determined drivers of national development. Using data from 123 countries, the analysis [...] Read more.
This study investigates the systemic interrelations between logistics performance, environmental performance, sustainable development progress, and institutional governance. While the existing literature often examines these dimensions separately, this research conceptualizes them as co-determined drivers of national development. Using data from 123 countries, the analysis integrates four composite indices—Logistics Performance Index (LPI), Environmental Performance Index (EPI), Sustainable Development Goals Index (SDG), and Worldwide Governance Indicators (WGI)—alongside GDP per capita. Methodologically, this study applies multiple linear regressions and correlation analyses to assess the associations among these variables and employs Fuzzy Cognitive Mapping (FCM) to simulate scenario-based systemic interactions. Results show that all ESG indicators are positively and significantly associated with LPI, with WGI exerting the strongest effect. In turn, LPI, EPI, SDG, and WGI jointly explain 81.7% of the variance in GDP per capita, confirming their integrated role in shaping economic performance. FCM simulations further reveal that both environmental and institutional improvements generate reinforcing effects on logistics capacity and GDP outcomes. This study’s originality lies in its multiple-method approach and its synthesis of ESG and logistics performance metrics into a unified explanatory framework. It contributes to development studies by highlighting the structural embeddedness of logistics within broader institutional and sustainability ecosystems. Its policy implication lies in suggesting that integrated reforms—combining infrastructure, regulatory quality, and environmental stewardship—are essential for enhancing long-term national competitiveness and resilience. Full article
Show Figures

Figure 1

14 pages, 5469 KB  
Article
Synthesis of ZIF-67/CoX-LDH-Derived Composites Through Cation Engineering Strategy: The Electromagnetic Wave Absorbers with Dielectric–Magnetic Loss Synergy
by Aixiong Ge, Anqi Ju and Shaobo Qu
Molecules 2025, 30(22), 4386; https://doi.org/10.3390/molecules30224386 - 13 Nov 2025
Abstract
Electromagnetic wave interference has escalated into a pervasive global issue, driving intensified research efforts across both civilian and military domains. However, the development of advanced electromagnetic wave (EMW) absorbers with finely tunable dielectric and magnetic loss properties has emerged as a pivotal strategy [...] Read more.
Electromagnetic wave interference has escalated into a pervasive global issue, driving intensified research efforts across both civilian and military domains. However, the development of advanced electromagnetic wave (EMW) absorbers with finely tunable dielectric and magnetic loss properties has emerged as a pivotal strategy for mitigating electromagnetic pollution. Herein, we propose a cation engineering strategy to tailor the absorption properties of ZIF-67-derived layered double hydroxide (LDH) composites through systematic substitution of Co2+ with Fe, Mn, Zn, or Ni and stoichiometric control (Co/X = 1:4, 1:1). Mn/Zn doping enhances dipole polarization via lattice distortion, while structural analysis confirms that higher Co/X ratios preserve core–shell architectures, optimizing impedance matching. In contrast, Fe incorporation leads to excessive conductivity and impedance mismatch. The optimized CoNi1-4 composite exhibits superior broadband absorption (EAB = 4.52 GHz at 1.8 mm thickness, RLmin = −24.5 dB), attributed to synergistic interface polarization and magnetic coupling. This study delivers a highly tailorable materials platform that enables a deeper fundamental understanding of the synergy between dielectric and magnetic loss processes, thereby offering new pathways for optimizing electromagnetic wave absorption. Full article
Show Figures

Figure 1

17 pages, 3098 KB  
Review
Current Knowledge of Carnauba Plant (Copernicia prunifera): Current Stage, Trends, and Future Perspectives
by Elane Bezerra da Silva, Vanessa Nessner Kavamura, Francisco Matheus Medeiros de Freitas, Adijailton José de Souza and Arthur Prudêncio de Araujo Pereira
Environments 2025, 12(11), 437; https://doi.org/10.3390/environments12110437 - 13 Nov 2025
Abstract
Carnauba (Copernicia spp.) is a palm tree native to the Brazilian semi-arid region, valued for its significant economic, social, and environmental importance. This resilient species possesses adaptive mechanisms that enable it to endure prolonged periods of soil water scarcity and conditions of [...] Read more.
Carnauba (Copernicia spp.) is a palm tree native to the Brazilian semi-arid region, valued for its significant economic, social, and environmental importance. This resilient species possesses adaptive mechanisms that enable it to endure prolonged periods of soil water scarcity and conditions of flooding and salinity. However, despite its relevance, there is a notable lack of scientometric data on this species in the literature, representing a significant research gap. This study aimed to analyze the state of research on carnauba palm from 2007 to 2022. Datasets were collected from the Web of Science central database, totaling 658 publications related to the terms “carnauba” or “copernicia”. The bibliometric software VOSviewer was used to create visual maps of keyword co-occurrence networks, providing deeper insights into the progress and research trends on the topic. Since 2014, the number of publications on carnauba has steadily increased, peaking between 2019 and 2021. The most prominent focus in these articles is on carnauba wax, with extensive research on its properties and applications in the food production chain. This significance is also reflected in the keyword co-occurrence networks. However, studies combining carnauba with soil sciences remain underexplored. Given carnauba’s importance in environmental and soil conservation, future research linking these areas could become a key avenue for advancing knowledge on the subject. Full article
Show Figures

Figure 1

21 pages, 3185 KB  
Article
BPEI-Based N-Doped Carbon Dots with Sensitive and Selective Cu2+ Ion-Sensing Ability
by Sahin Demirci, Jorge H. Torres and Nurettin Sahiner
Micromachines 2025, 16(11), 1275; https://doi.org/10.3390/mi16111275 - 13 Nov 2025
Abstract
In this research, we examined the potential sensor characteristics of branched polyethyleneimine (BPEI)-derived carbon dots (CDs) synthesized using BPEI as a nitrogen source and citric acid (CA) as a carbon source, specifically for the recognition of various metal ions. Among the BPEI CDs [...] Read more.
In this research, we examined the potential sensor characteristics of branched polyethyleneimine (BPEI)-derived carbon dots (CDs) synthesized using BPEI as a nitrogen source and citric acid (CA) as a carbon source, specifically for the recognition of various metal ions. Among the BPEI CDs produced with different amounts of BPEI to CA BPEI:CA ratios of 0.5:1, 1:1, and 2:1 w/w, named as BPEI0.5 CD, BPEI1 CD, and BPEI2 CD, respectively. The BPEI0.5 CD, which contains the least BPEI, exhibited the highest fluorescence intensity: 50,300 a.u. in a 0.6 mg/mL solution were recorded as λem: 420 nm at λex: 360 nm and 600 V PMT voltage with 5 nm of slit width for both excitation and emission. We investigated the fluorescence variations in BPEI CD-based CDs in 2 mL solutions containing Cd2+, Co2+, Cu2+, Ni2+, and Pb2+ metal ions at various concentrations. Amongst these metal ions, the most pronounced sensitivity was noted for Cu2+ ions with a limit of detection (LOD) value of 0.39 ppm. For BPEI CDs created with BPEI:CA ratios of 0.5:1, 1:1, and 2:1 w/w, the sensitivity to Cu2+ ions increased with a higher BPEI ratio, with a LOD value of 0.30 ppm recorded for BPEI2 CDs. Moreover, Cu2+ ion solutions were prepared from various salts, including chloride, acetate, nitrate, and sulfate; aside from some fluorescence variation observed for BPEI0.5 CDs, no significant difference in BPEI CD fluorescence change was observed with the use of the various salt solutions of Cu2+ ion. In quenching experiments conducted on mixtures of Cd2+, Co2+, Cu2+, Ni2+, and Pb2+ metal ions with Cu2+, it was noted that BPEI CDs displayed selectivity for Cu2+ ions. Furthermore, the structures of BPEI CDs have been effectively utilized in real water samples, such as tap water and seawater, demonstrating a quenching capability of over 65% in the presence of 50 ppm Cu2+ ions. Full article
(This article belongs to the Special Issue Micro/Nano Optical Devices and Sensing Technology)
Show Figures

Figure 1

25 pages, 5177 KB  
Article
Process Control via Electrical Impedance Tomography for Energy-Aware Industrial Systems
by Krzysztof Król, Grzegorz Kłosowski, Tomasz Rymarczyk, Konrad Gauda, Monika Kulisz, Ewa Golec and Agnieszka Surowiec
Energies 2025, 18(22), 5956; https://doi.org/10.3390/en18225956 (registering DOI) - 13 Nov 2025
Abstract
Conventionally, tomography is an inspection technique in which tomographic images are intended for human perception and interpretation. In this work, we shift this paradigm by transforming tomography into an autonomous estimator of industrial reactor states, enabling fully automated process control. Alcoholic fermentation was [...] Read more.
Conventionally, tomography is an inspection technique in which tomographic images are intended for human perception and interpretation. In this work, we shift this paradigm by transforming tomography into an autonomous estimator of industrial reactor states, enabling fully automated process control. Alcoholic fermentation was employed as an example of a controlled process in the current study. The work presents an original concept utilizing transfer learning in conjunction with a ResNet-type artificial neural network, which converts electrical measurements into a sequence of values correlated with the conductivity of pixels constituting the cross-section of the examined biochemical reactor. The conductivity vector is transformed into a parameter determining substrate concentration, enabling dynamic process regulation in response to signals generated from EIT (Electrical Impedance Tomography). Within the scope of the described research, calibration of the conductivity vector against substrate concentrations was performed, and a Matlab/Simulink-based dynamic Monod kinetics model was developed. The obtained results demonstrate high accuracy in substrate concentration estimation relative to reference values throughout a forty-six-hour process. The same signals enable energy-efficient process control, in which cooling and mixing intensity are regulated according to energy prices and renewable energy availability. This strategy may possess particular application in facilities where fermentation installations are co-located with bioenergy production units. Full article
Show Figures

Figure 1

Back to TopTop