Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,914)

Search Parameters:
Keywords = clinical isolates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 950 KiB  
Article
Synthesis and Antifungal Evaluation Against Candida spp. of 5-Arylfuran-2-Carboxamide Derivatives
by Salvatore Mirabile, Giovanna Ginestra, Rosamaria Pennisi, Davide Barreca, Giuseppina Mandalari and Rosaria Gitto
Microorganisms 2025, 13(8), 1835; https://doi.org/10.3390/microorganisms13081835 (registering DOI) - 6 Aug 2025
Abstract
Candidiasis arises from the proliferation of Candida species in the human body, especially in individuals with compromised immune systems. Efficient therapeutic management of candidiasis is often hampered by the limited availability of potent antifungal drugs and the emergence of drug-resistant strains. We have [...] Read more.
Candidiasis arises from the proliferation of Candida species in the human body, especially in individuals with compromised immune systems. Efficient therapeutic management of candidiasis is often hampered by the limited availability of potent antifungal drugs and the emergence of drug-resistant strains. We have previously identified the N-[(4-sulfamoylphenyl)methyl][1,1′-biphenyl]-4-carboxamide to have fungistatic and fungicidal properties, likely due to the hydrophobic biphenyl–chemical features affecting the structural organization of Candida spp. cell membrane. Here, we designed and synthesized a novel series of twelve 5-arylfuran-2-carboxamide derivatives bearing a new hydrophobic tail as bioisosteric replacement of the diphenyl fragment. Its antifungal effectiveness against C. albicans, C. glabrata, and C. parapsilosis, including ATCC and clinically isolated strains, was assessed for all compounds. The most active compound was N-benzyl-5-(3,4-dichlorophenyl)furan-2-carboxamide (6), with fungistatic and fungicidal effects against C. glabrata and C. parapsilosis strains (MIC = 0.062–0.125 and 0.125–0.250 mg/mL, respectively). No synergistic effects were observed when combined with fluconazole. Interestingly, fluorescent microscopy analysis after staining with SYTO 9 and propidium iodide revealed that compound 6 affected the cell membrane integrity in C. albicans strain 16. Finally, carboxamide 6 exhibited a dose-dependent cytotoxicity on erythrocytes, based on assessing the LDH release. Full article
(This article belongs to the Collection Feature Papers in Antimicrobial Agents and Resistance)
Show Figures

Figure 1

18 pages, 3014 KiB  
Article
Biocide Tolerance, Biofilm Formation, and Efflux Pump Activity in Clinical Isolates of Trichosporon asahii
by Yasmim Passos Lima, Jamile de Paiva Macedo, Alessandra Barbosa Ferreira Machado, Cláudio Galuppo Diniz, Vania Lucia da Silva and Vanessa Cordeiro Dias
Infect. Dis. Rep. 2025, 17(4), 97; https://doi.org/10.3390/idr17040097 (registering DOI) - 6 Aug 2025
Abstract
Background: Trichosporon spp. are opportunistic fungi, capable of causing infection, especially in critically ill individuals who often use broad-spectrum antibiotics, invasive devices, and have comorbidities. Objectives The aim of this study was to analyze individuals’ clinical characteristics, evaluate tolerance to biocides, as well [...] Read more.
Background: Trichosporon spp. are opportunistic fungi, capable of causing infection, especially in critically ill individuals who often use broad-spectrum antibiotics, invasive devices, and have comorbidities. Objectives The aim of this study was to analyze individuals’ clinical characteristics, evaluate tolerance to biocides, as well as biofilm formation and efflux pump activity in isolates of Trichosporon asahii. Methods: Clinical isolates of T. asahii collected between 2020 and 2023 from both hospitalized and non-hospitalized individuals, of both sexes, regardless of age, were tested for tolerance to sodium hypochlorite, hydrogen peroxide, benzalkonium chloride, and ethyl alcohol. Efflux pump activity was also assessed using ethidium bromide, and biofilm formation was measured with the Safranin test. Clinical parameters such as outcomes, source, and length of hospitalization were analyzed through electronic medical records. Results: A total of 37 clinical isolates of T. asahii were identified. Thirty-three (83.8%) isolates were from hospitalized individuals, with 81.82% collected in ICUs, an average hospital stay of 35 days, and a mortality rate of 51.6%. The tested strains displayed the largest mean inhibition zone for 2% sodium hypochlorite, indicating lower tolerance. A high level of efflux pump expression was detected among clinical isolates. Biofilm formation was detected in 25/67.5% of the isolates. Conclusions: These findings highlight the clinical relevance of T. asahii, particularly in critically ill individuals, and underscore the pathogen’s ability to tolerate biocides, express efflux pumps, and form biofilms, all of which may contribute to its persistence and pathogenicity in hospital environments. Enhanced surveillance and effective microbial control measures are essential to mitigate the risks associated with T. asahii infections. Full article
(This article belongs to the Section Fungal Infections)
Show Figures

Figure 1

14 pages, 1252 KiB  
Article
Non-Invasive Prediction of Atrial Fibrosis Using a Regression Tree Model of Mean Left Atrial Voltage
by Javier Ibero, Ignacio García-Bolao, Gabriel Ballesteros, Pablo Ramos, Ramón Albarrán-Rincón, Leire Moriones, Jean Bragard and Inés Díaz-Dorronsoro
Biomedicines 2025, 13(8), 1917; https://doi.org/10.3390/biomedicines13081917 (registering DOI) - 6 Aug 2025
Abstract
Background: Atrial fibrosis is a key contributor to atrial cardiomyopathy and can be assessed invasively using mean left atrial voltage (MLAV) from electroanatomical mapping. However, the invasive nature of this procedure limits its clinical applicability. Machine learning (ML), particularly regression tree-based models, [...] Read more.
Background: Atrial fibrosis is a key contributor to atrial cardiomyopathy and can be assessed invasively using mean left atrial voltage (MLAV) from electroanatomical mapping. However, the invasive nature of this procedure limits its clinical applicability. Machine learning (ML), particularly regression tree-based models, may offer a non-invasive approach for predicting MLAV using clinical and echocardiographic data, improving non-invasive atrial fibrosis characterisation beyond current dichotomous classifications. Methods: We prospectively included and followed 113 patients with paroxysmal or persistent atrial fibrillation (AF) undergoing pulmonary vein isolation (PVI) with ultra-high-density voltage mapping (uHDvM), from whom MLAV was estimated. Standardised two-dimensional transthoracic echocardiography was performed before ablation, and clinical and echocardiographic variables were analysed. A regression tree model was constructed using the Classification and Regression Trees—CART-algorithm to identify key predictors of MLAV. Results: The regression tree model exhibited moderate predictive accuracy (R2 = 0.63; 95% CI: 0.55–0.71; root mean squared error = 0.90; 95% CI: 0.82–0.98), with indexed minimum LA volume and passive emptying fraction emerging as the most influential variables. No significant differences in AF recurrence-free survival were found among MLAV tertiles or model-based generated groups (log-rank p = 0.319 and p = 0.126, respectively). Conclusions: We present a novel ML-based regression tree model for non-invasive prediction of MLAV, identifying minimum LA volume and passive emptying fraction as the most significant predictors. This model offers an accessible, non-invasive tool for refining atrial cardiomyopathy characterisation by reflecting the fibrotic substrate as a continuum, a crucial advancement over existing dichotomous approaches to guide tailored therapeutic strategies. Full article
Show Figures

Figure 1

19 pages, 2475 KiB  
Article
Phage Host Range Expansion Through Directed Evolution on Highly Phage-Resistant Strains of Klebsiella pneumoniae
by Kevin A. Burke, Tracey L. Peters, Olga A. Kirillina, Caitlin D. Urick, Bertran D. Walton, Jordan T. Bird, Nino Mzhavia, Martin O. Georges, Paphavee Lertsethtakarn, Lillian A. Musila, Mikeljon P. Nikolich and Andrey A. Filippov
Int. J. Mol. Sci. 2025, 26(15), 7597; https://doi.org/10.3390/ijms26157597 - 6 Aug 2025
Abstract
Multidrug-resistant (MDR) strains of Klebsiella pneumoniae present an acute threat as they continue to disseminate globally. Phage therapy has shown promise as a powerful approach to combat MDR infections, but narrow phage host ranges make development of broad acting therapeutics more challenging. The [...] Read more.
Multidrug-resistant (MDR) strains of Klebsiella pneumoniae present an acute threat as they continue to disseminate globally. Phage therapy has shown promise as a powerful approach to combat MDR infections, but narrow phage host ranges make development of broad acting therapeutics more challenging. The goal of this effort was to use in vitro directed evolution (the “Appelmans protocol”) to isolate K. pneumoniae phages with broader host ranges for improved therapeutic cocktails. Five myophages in the genus Jiaodavirus (family Straboviridae) with complementary activity were mixed and passaged against a panel of 11 bacterial strains including a permissive host and phage-resistant clinical isolates. Following multiple rounds of training, we collected phage variants displaying altered specificity or expanded host ranges compared with parental phages when tested against a 100 strain diversity panel of K. pneumoniae. Some phage variants gained the ability to lyse previously phage-resistant strains but lost activity towards previously phage-susceptible strains, while several variants had expanded activity. Whole-genome sequencing identified mutations and recombination events impacting genes associated with host tropism including tail fiber genes that most likely underlie the observed changes in host ranges. Evolved phages with broader activity are promising candidates for improved K. pneumoniae therapeutic phage cocktails. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies (6th Edition))
Show Figures

Figure 1

24 pages, 1777 KiB  
Article
Development of a Bacterial Lysate from Antibiotic-Resistant Pathogens Causing Hospital Infections
by Sandugash Anuarbekova, Azamat Sadykov, Dilnaz Amangeldinova, Marzhan Kanafina, Darya Sharova, Gulzhan Alzhanova, Rimma Nurgaliyeva, Ardak Jumagaziyeva, Indira Tynybayeva, Aikumys Zhumakaeva, Aralbek Rsaliyev, Yergali Abduraimov and Yerkanat N. Kanafin
Microorganisms 2025, 13(8), 1831; https://doi.org/10.3390/microorganisms13081831 - 6 Aug 2025
Abstract
Biotechnological research increasingly focuses on developing new drugs to counter the rise of antibiotic-resistant strains in hospitals. This study aimed to create bacterial lysates from antibiotic-resistant pathogens isolated from patients and medical instruments across hospital departments. Identification was performed based on morphological, cultural, [...] Read more.
Biotechnological research increasingly focuses on developing new drugs to counter the rise of antibiotic-resistant strains in hospitals. This study aimed to create bacterial lysates from antibiotic-resistant pathogens isolated from patients and medical instruments across hospital departments. Identification was performed based on morphological, cultural, and biochemical characteristics, as well as 16S rRNA gene sequencing using the BLAST algorithm. Strain viability was assessed using the Miles and Misra method, while sensitivity to eight antibacterial drug groups and biosafety between cultures were evaluated using agar diffusion. From 15 clinical sources, 25 pure isolates were obtained, and their phenotypic and genotypic properties were studied. Carbohydrate fermentation testing confirmed that the isolates belonged to the genera Escherichia, Citrobacter, Klebsiella, Acinetobacter, Pseudomonas, Staphylococcus, Haemophilus, and Streptococcus. The cultures exhibited good viability (109–1010 CFU/mL) and compatibility with each other. Based on prevalence and clinical significance, three predominant hospital pathogens (Klebsiella pneumoniae 12 BL, Pseudomonas aeruginosa 3 BL, and Acinetobacter baumannii 24 BL) were selected to develop a bacterial lysate consortium. Lysates were prepared with physical disruption using a French press homogenizer. The resulting product holds industrial value and may stimulate the immune system to combat respiratory pathogens prevalent in Kazakhstan’s healthcare settings. Full article
(This article belongs to the Special Issue Antimicrobial Resistance: Challenges and Innovative Solutions)
Show Figures

Figure 1

24 pages, 3027 KiB  
Article
Resisting the Final Line: Phenotypic Detection of Resistance to Last-Resort Antimicrobials in Gram-Negative Bacteria Isolated from Wild Birds in Northern Italy
by Maria Cristina Rapi, Joel Filipe, Laura Filippone Pavesi, Stefano Raimondi, Maria Filippa Addis, Maria Pia Franciosini and Guido Grilli
Animals 2025, 15(15), 2289; https://doi.org/10.3390/ani15152289 - 5 Aug 2025
Abstract
Antimicrobial resistance (AMR) is a growing global health threat, with wild birds increasingly recognized as potential reservoirs of resistant pathogens and as sentinels of environmental AMR. This study investigated the occurrence and AMR profiles of Gram-negative bacteria isolated from wild birds that died [...] Read more.
Antimicrobial resistance (AMR) is a growing global health threat, with wild birds increasingly recognized as potential reservoirs of resistant pathogens and as sentinels of environmental AMR. This study investigated the occurrence and AMR profiles of Gram-negative bacteria isolated from wild birds that died at the Wildlife Rescue Center in Vanzago, Lombardy, in 2024. Cloacal swabs were collected from 112 birds representing various ecological categories. A total of 157 Gram-negative bacteria were isolated and identified, including clinically relevant genera and species, such as Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Salmonella spp., Pseudomonas aeruginosa, and Acinetobacter baumannii. Antimicrobial susceptibility testing revealed resistance to first-line and critically important antimicrobials, including those exclusively authorized for human use. Notably, a phenotype compatible with Extended-Spectrum Beta-Lactamase (ESBL) production was detected in four out of ten (40%) K. pneumoniae isolates. In addition, 20 out of the 157 (12.7%) isolated bacteria phenotypically exhibited a resistance profile indicative of AmpC beta-lactamase (AmpC) production, including Enterobacter spp. and P. aeruginosa. Resistance patterns were particularly interesting in birds with carnivorous, scavenging, or migratory-associated behaviors. These findings highlight the role of wild birds in the ecology and dissemination of antimicrobial-resistant bacteria (ARB) and highlight the need for wildlife-based AMR monitoring programs as part of a One Health approach. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

17 pages, 3344 KiB  
Article
Connectiveness of Antimicrobial Resistance Genotype–Genotype and Genotype–Phenotype in the “Intersection” of Skin and Gut Microbes
by Ruizhao Jia, Wenya Su, Wenjia Wang, Lulu Shi, Xinrou Zheng, Youming Zhang, Hai Xu, Xueyun Geng, Ling Li, Mingyu Wang and Xiang Li
Biology 2025, 14(8), 1000; https://doi.org/10.3390/biology14081000 - 5 Aug 2025
Abstract
The perianal skin is a unique “skin–gut” boundary that serves as a critical hotspot for the exchange and evolution of antibiotic resistance genes (ARGs). However, its role in the dissemination of antimicrobial resistance (AMR) has often been underestimated. To characterize the resistance patterns [...] Read more.
The perianal skin is a unique “skin–gut” boundary that serves as a critical hotspot for the exchange and evolution of antibiotic resistance genes (ARGs). However, its role in the dissemination of antimicrobial resistance (AMR) has often been underestimated. To characterize the resistance patterns in the perianal skin environment of patients with perianal diseases and to investigate the drivers of AMR in this niche, a total of 51 bacterial isolates were selected from a historical strain bank containing isolates originally collected from patients with perianal diseases. All the isolates originated from the skin site and were subjected to antimicrobial susceptibility testing, whole-genome sequencing, and co-occurrence network analysis. The analysis revealed a highly structured resistance pattern, dominated by two distinct modules: one representing a classic Staphylococcal resistance platform centered around mecA and the bla operon, and a broad-spectrum multidrug resistance module in Gram-negative bacteria centered around tet(A) and predominantly carried by IncFIB and other IncF family plasmids. Further analysis pinpointed IncFIB-type plasmids as potent vehicles driving the efficient dissemination of the latter resistance module. Moreover, numerous unexplained resistance phenotypes were observed in a subset of isolates, indicating the potential presence of emerging and uncharacterized AMR threats. These findings establish the perianal skin as a complex reservoir of multidrug resistance genes and a hub for mobile genetic element exchange, highlighting the necessity of enhanced surveillance and targeted interventions in this clinically important ecological niche. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

5 pages, 144 KiB  
Case Report
Multidisciplinary Care Approach to Asymptomatic Brugada Syndrome in Pregnancy: A Case Report
by Isabella Marechal-Ross and Kathryn Austin
Reports 2025, 8(3), 138; https://doi.org/10.3390/reports8030138 - 5 Aug 2025
Abstract
Background and Clinical Significance: Brugada syndrome (BrS) is a rare inherited cardiac channelopathy, often associated with SCN5A loss-of-function mutations. Clinical presentations range from asymptomatic to malignant arrhythmias and sudden cardiac death. Physiological and pharmacological stressors affecting sodium channel function—such as pyrexia, certain medications, [...] Read more.
Background and Clinical Significance: Brugada syndrome (BrS) is a rare inherited cardiac channelopathy, often associated with SCN5A loss-of-function mutations. Clinical presentations range from asymptomatic to malignant arrhythmias and sudden cardiac death. Physiological and pharmacological stressors affecting sodium channel function—such as pyrexia, certain medications, and possibly pregnancy—may unmask or exacerbate arrhythmic risk. However, there is limited information regarding pregnancy and obstetric outcomes. Obstetric management remains largely informed by isolated case reports and small case series. A literature review was conducted using OVID Medline and Embase, identifying case reports, case series, and one retrospective cohort study reporting clinical presentation, obstetric management, and outcomes in maternal BrS. A case is presented detailing coordinated multidisciplinary input, antenatal surveillance, and intrapartum and postpartum care to contribute to the growing evidence base guiding obstetric care in this complex setting. Case Presentation: A 30-year-old G2P0 woman with asymptomatic BrS (SCN5A-positive) was referred at 31 + 5 weeks’ gestation for multidisciplinary antenatal care. Regular review and collaborative planning involving cardiology, anaesthetics, maternal–fetal medicine, and obstetrics guided a plan for vaginal delivery with continuous cardiac and fetal monitoring. At 38 + 0 weeks, the woman presented with spontaneous rupture of membranes and underwent induction of labour. A normal vaginal delivery was achieved without arrhythmic events. Epidural block with ropivacaine and local anaesthesia with lignocaine were well tolerated, and 24 h postpartum monitoring revealed no abnormalities. Conclusions: This case adds to the limited but growing literature suggesting that with individualised planning and multidisciplinary care, pregnancies in women with BrS can proceed safely and without complication. Ongoing case reporting is essential to inform future guidelines and optimise maternal and fetal outcomes. Full article
(This article belongs to the Section Obstetrics/Gynaecology)
12 pages, 388 KiB  
Article
Evolution of Respiratory Pathogens and Antimicrobial Resistance over the COVID-19 Timeline: A Study of Hospitalized and Ambulatory Patient Populations
by Luigi Regenburgh De La Motte, Loredana Deflorio, Erika Stefano, Matteo Covi, Angela Uslenghi, Carmen Sommese and Lorenzo Drago
Antibiotics 2025, 14(8), 796; https://doi.org/10.3390/antibiotics14080796 - 5 Aug 2025
Abstract
Background: The COVID-19 pandemic has profoundly altered the clinical and microbiological landscape of respiratory tract infections (RTIs), potentially reshaping pathogen distribution and antimicrobial resistance (AMR) profiles across care settings. Objectives: The objective of this study was to assess temporal trends in respiratory bacterial [...] Read more.
Background: The COVID-19 pandemic has profoundly altered the clinical and microbiological landscape of respiratory tract infections (RTIs), potentially reshaping pathogen distribution and antimicrobial resistance (AMR) profiles across care settings. Objectives: The objective of this study was to assess temporal trends in respiratory bacterial pathogens, antimicrobial resistance, and polymicrobial infections across three pandemic phases—pre-COVID (2018–2019), COVID (2020–2022), and post-COVID (2022–2024)—in hospitalized and ambulatory patients. Methods: We retrospectively analyzed 1827 respiratory bacterial isolates (hospitalized patients, n = 1032; ambulatory patients, n = 795) collected at a tertiary care center in Northern Italy. Data were stratified by care setting, anatomical site, and pandemic phase. Species identification and susceptibility testing followed EUCAST guidelines. Statistical analysis included chi-square and Fisher’s exact tests. Results: In hospitalized patients, a significant increase in Pseudomonas aeruginosa (from 45.5% pre-COVID to 58.6% post-COVID, p < 0.0001) and Acinetobacter baumannii (from 1.2% to 11.1% during COVID, p < 0.0001) was observed, with 100% extensively drug-resistant (XDR) rates for A. baumannii during the pandemic. Conversely, Staphylococcus aureus significantly declined from 23.6% pre-COVID to 13.7% post-COVID (p = 0.0012). In ambulatory patients, polymicrobial infections peaked at 41.2% during COVID, frequently involving co-isolation of Candida spp. Notably, resistance to benzylpenicillin in Streptococcus pneumoniae reached 80% (4/5 isolates) in hospitalized patients during COVID, and carbapenem-resistant P. aeruginosa (CRPA) significantly increased post-pandemic in ambulatory patients (0% pre-COVID vs. 23.5% post-COVID, p = 0.0014). Conclusions: The pandemic markedly shifted respiratory pathogen dynamics and resistance profiles, with distinct trends observed in hospital and community settings. Persistent resistance phenotypes and frequent polymicrobial infections, particularly involving Candida spp. in outpatients, underscore the need for targeted surveillance and antimicrobial stewardship strategies. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

8 pages, 1182 KiB  
Case Report
The First Schaalia (Formerly Actinomyces) Canis-Related Osteomyelitis Requiring Surgical Intervention
by Patrick Nugraha, Tzong-Yang Pan, Paul Di Giovine, Nigel Mann and William Murphy
Infect. Dis. Rep. 2025, 17(4), 94; https://doi.org/10.3390/idr17040094 (registering DOI) - 4 Aug 2025
Abstract
Schaalia canis is a Gram-positive, facultatively anaerobic, rod-shaped bacterium originally isolated from the mucosa and skin of dogs. While it is a part of the normal canine oral flora, it has rarely been implicated in human disease, with only one prior case of [...] Read more.
Schaalia canis is a Gram-positive, facultatively anaerobic, rod-shaped bacterium originally isolated from the mucosa and skin of dogs. While it is a part of the normal canine oral flora, it has rarely been implicated in human disease, with only one prior case of cellulitis reported following a dog bite. Case Presentation: We present the case of a 57-year-old immunocompetent man who developed osteomyelitis of the left index finger following a delayed presentation after a dog bite. Despite initial conservative management with empirical oral antibiotics, the infection progressed, eventually requiring surgical debridement and the terminalisation of the finger at the proximal interphalangeal joint. Cultures from intraoperative bone specimens yielded the growth of Schaalia canis, with no other pathogenic organisms identified on the extended culture. Conclusions: This is the first documented case of Schaalia canis-associated osteomyelitis in a human and the first to necessitate a surgical intervention, expanding the known clinical spectrum of this organism. This case underscores the risks of delayed intervention in polymicrobial animal bite wounds and highlights the emerging role of Schaalia species as opportunistic zoonotic pathogens, particularly in the setting of deep, refractory infections. Full article
(This article belongs to the Section Bacterial Diseases)
Show Figures

Figure 1

13 pages, 2127 KiB  
Article
Assessing SARS-CoV-2 Rare Mutations and Transmission in New York City by NGS
by Dakai Liu, Harlan Pietz, George D. Rodriguez, Yuexiu Wu, Yihan Cao, Vishnu Singh, Hui Li, Eric Konadu, Keither K. James, Calvin Lui, Bright Varghese, Mingyu Shao, Gary Chen, Andrew Schreiner, Jiankun Tong, Carl Urban, Nishant Prasad, Ameer Hassoun, Manish Sharma and William Harry Rodgers
Microorganisms 2025, 13(8), 1821; https://doi.org/10.3390/microorganisms13081821 - 4 Aug 2025
Abstract
SARS-CoV-2 undergoes frequent mutations that drive viral evolution and genomic diversity, influencing transmissibility, immune escape, and disease severity. In this study, we performed whole-genome sequencing on SARS-CoV-2 isolates from patients in New York City and identified several globally rare mutations across multiple viral [...] Read more.
SARS-CoV-2 undergoes frequent mutations that drive viral evolution and genomic diversity, influencing transmissibility, immune escape, and disease severity. In this study, we performed whole-genome sequencing on SARS-CoV-2 isolates from patients in New York City and identified several globally rare mutations across multiple viral lineages. The isolates analyzed for rare mutations belonged to three lineages: B.1.1.7 (Alpha), B.1.526 (Iota), and B.1.623. We identified 16 rare mutations (global incidence <1000) in non-structural protein genes, including nsp2, nsp3, nsp4, nsp6, nsp8, nsp13, nsp14, ORF7a, and ORF8. Three of these mutations—located in nsp2, nsp13, and ORF8—have been reported in fewer than 100 individuals worldwide. We also detected five rare mutations in structural proteins (S, M, and N), including two—one in M and one in N—previously reported in fewer than 100 cases globally. We present clinical profiles of three patients, each infected with genetically distinct viral isolates from the three lineages studied. Furthermore, we illustrate a local transmission chain inferred from unique mutation patterns identified in the Omicron genome. These findings underscore the importance of whole-genome sequencing for detecting rare mutations, tracking community spread, and identifying emerging variants with clinical and public health significance. Full article
(This article belongs to the Special Issue The Molecular Epidemiology of Infectious Diseases)
Show Figures

Figure 1

18 pages, 1942 KiB  
Article
Surveillance and Characterization of Vancomycin-Resistant and Vancomycin-Variable Enterococci in a Hospital Setting
by Claudia Rotondo, Valentina Antonelli, Alberto Rossi, Silvia D’Arezzo, Marina Selleri, Michele Properzi, Silvia Turco, Giovanni Chillemi, Valentina Dimartino, Carolina Venditti, Sara Guerci, Paola Gallì, Carla Nisii, Alessia Arcangeli, Emanuela Caraffa, Stefania Cicalini and Carla Fontana
Antibiotics 2025, 14(8), 795; https://doi.org/10.3390/antibiotics14080795 - 4 Aug 2025
Abstract
Background/Objectives: Enterococci, particularly Enterococcus faecalis and Enterococcus faecium, are Gram-positive cocci that can cause severe infections in hospitalized patients. The rise of vancomycin-resistant enterococci (VRE) and vancomycin-variable enterococci (VVE) poses significant challenges in healthcare settings due to their resistance to multiple [...] Read more.
Background/Objectives: Enterococci, particularly Enterococcus faecalis and Enterococcus faecium, are Gram-positive cocci that can cause severe infections in hospitalized patients. The rise of vancomycin-resistant enterococci (VRE) and vancomycin-variable enterococci (VVE) poses significant challenges in healthcare settings due to their resistance to multiple antibiotics. Methods: We conducted a point prevalence survey (PPS) to assess the prevalence of VRE and VVE colonization in hospitalized patients. Rectal swabs were collected from 160 patients and analyzed using molecular assays (MAs) and culture. Whole-genome sequencing (WGS) and core-genome multilocus sequence typing (cgMLST) were performed to identify the genetic diversity. Results: Of the 160 rectal swabs collected, 54 (33.7%) tested positive for the vanA and/or vanB genes. Culture-based methods identified 47 positive samples (29.3%); of these, 44 isolates were identified as E. faecium and 3 as E. faecalis. Based on the resistance profiles, 35 isolates (74.5%) were classified as VRE, while 12 (25.5%) were classified as VVE. WGS and cgMLST analyses identified seven clusters of E. faecium, with sequence type (ST) 80 being the most prevalent. Various resistance genes and virulence factors were identified, and this study also highlighted intra- and inter-ward transmission of VRE strains. Conclusions: Our findings underscore the potential for virulence and resistance of both the VRE and VVE strains, and they highlight the importance of effective infection control measures to prevent their spread. VVE in particular should be carefully monitored as they often escape detection. Integrating molecular data with clinical information will hopefully enhance our ability to predict and prevent future VRE infections. Full article
(This article belongs to the Special Issue Hospital-Associated Infectious Diseases and Antibiotic Therapy)
Show Figures

Figure 1

26 pages, 1978 KiB  
Article
Fluorescent Peptides Internalize HeLa Cells and Kill Multidrug-Resistant Clinical Bacterial Isolates
by Daniel Castellar-Almonacid, Kelin Johana Cuero-Amu, Jose David Mendoza-Mendoza, Natalia Ardila-Chantré, Fernando José Chavez-Salazar, Andrea Carolina Barragán-Cárdenas, Jhon Erick Rivera-Monroy, Claudia Parra-Giraldo, Zuly Jenny Rivera-Monroy, Javier García-Castañeda and Ricardo Fierro-Medina
Antibiotics 2025, 14(8), 793; https://doi.org/10.3390/antibiotics14080793 - 4 Aug 2025
Abstract
Palindromic antimicrobial peptides (PAMs) constitute versatile scaffolds for the design and optimization of anticancer agents with applications in therapy, diagnosis, and/or monitoring. In the present study, fluorolabeled peptides derived from the palindromic sequence RWQWRWQWR containing fluorescent probes, such as 2-Aminobenzoyl, 5(6)-Carboxyfluorescein, and Rhodamine [...] Read more.
Palindromic antimicrobial peptides (PAMs) constitute versatile scaffolds for the design and optimization of anticancer agents with applications in therapy, diagnosis, and/or monitoring. In the present study, fluorolabeled peptides derived from the palindromic sequence RWQWRWQWR containing fluorescent probes, such as 2-Aminobenzoyl, 5(6)-Carboxyfluorescein, and Rhodamine B, were obtained. RP-HPLC analysis revealed that the palindromic peptide conjugated to Rhodamine B (RhB-RWQWRWQWR) exhibited the presence of isomers, likely corresponding to the open-ring and spiro-lactam forms of the fluorescent probe. This equilibrium is dependent on the peptide sequence, as the RP-HPLC analysis of dimeric peptide (RhB-RRWQWR-hF-KKLG)2K-Ahx did not reveal the presence of isomers. The antibacterial activity of the fluorescent peptides depends on the probe attached to the sequence and the bacterial strain tested. Notably, some fluorescent peptides showed activity against reference strains as well as sensitive, resistant, and multidrug-resistant clinical isolates of E. coli, S. aureus, and E. faecalis. Fluorolabeled peptides 1-Abz (MIC = 62 µM), RhB-1 (MIC = 62 µM), and Abz-1 (MIC = 31 µM) exhibited significant activity against clinical isolates of E. coli, S. aureus, and E. faecalis, respectively. The RhB-1 (IC50 = 61 µM), Abz-1 (IC50 = 87 µM), and RhB-2 (IC50 = 35 µM) peptides exhibited a rapid, significant, and concentration-dependent cytotoxic effect on HeLa cells, accompanied by morphological changes characteristic of apoptosis. RhB-1 (IC50 = 18 µM) peptide also exhibited significant cytotoxic activity against breast cancer cells MCF-7. These conjugates remain valuable for elucidating the possible mechanisms of action of these novel anticancer peptides. Rhodamine-labeled peptides displayed cytotoxicity comparable to that of their unlabeled analogues, suggesting that cellular internalization constitutes a critical early step in their mechanism of action. These findings suggest that cell death induced by both unlabeled and fluorolabeled peptides proceeds predominantly via apoptosis and is likely contingent upon peptide internalization. Functionalization at the N-terminal end of the palindromic sequence can be evaluated to develop systems for transporting non-protein molecules into cancer cells. Full article
Show Figures

Figure 1

13 pages, 2630 KiB  
Article
Photodynamic Therapy in the Management of MDR Candida spp. Infection Associated with Palatal Expander: In Vitro Evaluation
by Cinzia Casu, Andrea Butera, Alessandra Scano, Andrea Scribante, Sara Fais, Luisa Ladu, Alessandra Siotto-Pintor and Germano Orrù
Photonics 2025, 12(8), 786; https://doi.org/10.3390/photonics12080786 - 4 Aug 2025
Abstract
The aim of this work is to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) against oral MDR (multi-drug-resistant) Candida spp. infections related to orthodontic treatment with palatal expanders through in vitro study. Methods: PDT protocol: Curcumin + H2O2 was [...] Read more.
The aim of this work is to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) against oral MDR (multi-drug-resistant) Candida spp. infections related to orthodontic treatment with palatal expanders through in vitro study. Methods: PDT protocol: Curcumin + H2O2 was used as a photosensitizer activated by a 460 nm diode LED lamp, with an 8 mm blunt tip for 2 min in each spot of interest. In vitro simulation: A palatal expander sterile device was inserted into a custom-designed orthodontic bioreactor, realized with 10 mL of Sabouraud dextrose broth plus 10% human saliva and infected with an MDR C. albicans clinical isolate CA95 strain to reproduce an oral palatal expander infection. After 48 h of incubation at 37 °C, the device was treated with the PDT protocol. Two samples before and 5 min after the PDT process were taken and used to contaminate a Petri dish with a Sabouraud field to evaluate Candida spp. CFUs (colony-forming units). Results: A nearly 99% reduction in C. albicans colonies in the palatal expander biofilm was found after PDT. Conclusion: The data showed the effectiveness of using aPDT to treat palatal infection; however, specific patient oral micro-environment reproduction (Ph values, salivary flow, mucosal adhesion of photosensitizer) must be further analyzed. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

12 pages, 244 KiB  
Article
Predisposing Factors Associated with Third-Generation Cephalosporin-Resistant Escherichia coli in a Rural Community Hospital in Thailand
by Ratchadaporn Ungcharoen, Jindanoot Ponyon, Rapeepan Yongyod and Anusak Kerdsin
Antibiotics 2025, 14(8), 790; https://doi.org/10.3390/antibiotics14080790 - 4 Aug 2025
Viewed by 112
Abstract
Background: Various predisposing factors contribute to the emergence and dissemination of the multidrug-resistant (MDR) phenotype in Escherichia coli and Klebsiella pneumoniae. Understanding these factors is crucial for guiding appropriate antimicrobial therapy and infection control strategies. This study investigated the predisposing factors contributing [...] Read more.
Background: Various predisposing factors contribute to the emergence and dissemination of the multidrug-resistant (MDR) phenotype in Escherichia coli and Klebsiella pneumoniae. Understanding these factors is crucial for guiding appropriate antimicrobial therapy and infection control strategies. This study investigated the predisposing factors contributing to the MDR characteristics of E. coli and K. pneumoniae isolated in a community hospital in northeastern Thailand. Methods: This case–control study utilized retrospective data from bacterial culture, as well as demographic, clinical, and antibiotic susceptibility records collected during 5 years (January 2016–December 2020). E. coli and K. pneumoniae isolates were analyzed from various clinical samples, including blood, urine, pus, sputum, and other body fluids. Data were analyzed using descriptive statistics and univariate logistic regression. Results: In total, 660 clinical isolates were analyzed (421 E. coli and 239 K. pneumoniae). Blood was the most common source of the detection of E. coli (63.0%) and sputum was the most common source of K. pneumoniae (51.0%). The median ages of patients were 67 and 63 years for E. coli and K. pneumoniae, respectively. E. coli cases were significantly associated with prior antibiotic use (OR = 1.79, 95% CI: 1.17–2.74 p = 0.008). MDR was observed in 50.1% of E. coli and 29.7% of K. pneumoniae (p < 0.001). E. coli compared to K. pneumoniae had lower resistance to third-gen cephalosporins (64.9% versus 95.8%) and carbapenems (8.0% versus 6.9%). ICU admission was the only factor significantly associated with MDR E. coli (OR = 2.40, 95% CI: 1.11–5.20 p = 0.026). No significant differences were observed in gender, age, or comorbidities between MDR cases. Antibiotic usage patterns also differed, with E. coli more likely to receive third-gen cephalosporins compared to carbapenems (OR = 3.02, 95% CI:1.18–7.74 p = 0.021). Conclusions: The use of third-generation cephalosporin may drive MDR E. coli more than K. pneumoniae. Prior antibiotic exposure was linked to E. coli bloodstream infections, while MDR E. coli showed greater clinical severity. These findings highlighted the need for improved antibiotic stewardship in rural hospitals. Full article
Back to TopTop