Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,268)

Search Parameters:
Keywords = citric acids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1246 KiB  
Article
Simultaneous Determination of Reducing Sugars in Honey by Capillary Zone Electrophoresis with LIF Detection Using Low-Toxicity 2-Picoline Borane and APTS for Pre-Capillary Derivatization
by Joanna Bulesowska, Michał Pieckowski, Piotr Kowalski, Tomasz Bączek and Ilona Olędzka
Int. J. Mol. Sci. 2025, 26(15), 7569; https://doi.org/10.3390/ijms26157569 - 5 Aug 2025
Abstract
This study aimed to develop a reliable method for profiling reducing sugars in honey using capillary zone electrophoresis with laser-induced fluorescence detection (CZE-LIF). Reducing sugars were derivatized with 8-aminopyrene-1,3,6-trisulfonic acid (APTS) in the presence of 2-picoline borane, a safer alternative to sodium cyanoborohydride. [...] Read more.
This study aimed to develop a reliable method for profiling reducing sugars in honey using capillary zone electrophoresis with laser-induced fluorescence detection (CZE-LIF). Reducing sugars were derivatized with 8-aminopyrene-1,3,6-trisulfonic acid (APTS) in the presence of 2-picoline borane, a safer alternative to sodium cyanoborohydride. Key parameters influencing the derivatization efficiency—temperature, pH, incubation time, and reagent concentrations—were systematically optimized. The highest labeling efficiency for glucose, mannose, and maltose was achieved at 50 °C in 0.5 M citric acid with 0.1 M APTS, while fructose showed low reactivity due to its ketose structure. To reduce the background signal from excess reagents, three cleanup strategies were evaluated. Liquid–liquid extraction with ethyl acetate effectively removed unreacted APTS without significant analyte loss, whereas solid-phase extraction and microextraction caused substantial losses of hydrophilic sugars. The method showed good linearity (0.5–10 mM, R2 > 0.994), precision (RSD 0.81–13.73%), and accuracy (recoveries 93.47–119.75%). Stability studies indicated that sugar standards should be stored at –20 °C. The method was successfully applied to the analysis of four nectar honeys—rapeseed, acacia, phacelia, and dandelion—revealing differences in glucose and fructose content related to botanical origin. The results confirm the suitability of CZE-LIF for sensitive and selective carbohydrate analyses in complex food matrices. Full article
Show Figures

Figure 1

23 pages, 1298 KiB  
Article
Evaluation of the Quality and Nutritional Value of Modified Corn Wet Distillers’ Grains Plus Solubles (mcWDGS) Preserved in Aerobic and Anaerobic Conditions
by Mateusz Roguski, Marlena Zielińska-Górska, Andrzej Radomski, Janusz Zawadzki, Marlena Gzowska, Anna Rygało-Galewska and Andrzej Łozicki
Sustainability 2025, 17(15), 7097; https://doi.org/10.3390/su17157097 - 5 Aug 2025
Abstract
To enhance the effectiveness of sustainable preservation of modified corn wet distillers’ grains plus solubles (mcWDGS), various additives were tested under aerobic and anaerobic conditions. In Experiment I, the mcWDGS was stored under aerobic conditions for 5 days at 25 °C. Treatments included [...] Read more.
To enhance the effectiveness of sustainable preservation of modified corn wet distillers’ grains plus solubles (mcWDGS), various additives were tested under aerobic and anaerobic conditions. In Experiment I, the mcWDGS was stored under aerobic conditions for 5 days at 25 °C. Treatments included different organic acids applied at 0.3% or 0.6% of fresh matter (FM). In Experiment II, the mcWDGS was ensiled anaerobically for 8 weeks at 25 °C using organic acids, a commercial acid mixture, or a microbial inoculant at 0.2% FM. In aerobic conditions, the best preservability was achieved with propionic and formic acids at 0.6% FM, as indicated by the lowest temperature, pH, and microbial counts on days 3 and 5 (p ≤ 0.01). Under anaerobic storage, the highest lactic acid concentrations were recorded in the control, citric acid, and commercial acid mixture variants (p ≤ 0.01). Acetic acid levels were highest in the control (p ≤ 0.01). The highest NH3-N content was found in the formic acid variant and the lowest in the inoculant variant (p ≤ 0.01). Aerobic stability after ensiling was greatest in the control and propionic acid groups (p ≤ 0.01). Nutritional analysis showed that the citric acid group had the highest dry matter content (p ≤ 0.01), while the control group contained the most crude protein (p ≤ 0.01) and saturated fatty acids (p ≤ 0.05). The propionic acid and commercial acid mixture variants had the highest unsaturated fatty acids (p ≤ 0.05). Antioxidant capacity was also greatest in the control (p ≤ 0.01). In conclusion, mcWDGS can be effectively preserved aerobically with 0.6% FM of propionic or formic acid, and anaerobically via ensiling, even without additives. These findings support its potential as a stable and nutritious feed ingredient. Full article
Show Figures

Figure 1

25 pages, 816 KiB  
Article
Bioactive Compounds and Antioxidant Activity of Boletus edulis, Imleria badia, Leccinum scabrum in the Context of Environmental Conditions and Heavy Metals Bioaccumulation
by Zofia Sotek, Katarzyna Malinowska, Małgorzata Stasińska and Ireneusz Ochmian
Molecules 2025, 30(15), 3277; https://doi.org/10.3390/molecules30153277 - 5 Aug 2025
Abstract
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria [...] Read more.
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria badia, and Leccinum scabrum collected from two forested regions of north-western Poland differing in anthropogenic influence and soil characteristics. The analysis encompassed structural polysaccharides (β- and α-glucans, chitin), carotenoids, L-ascorbic acid, phenolic and organic acids. B. edulis exhibited the highest β-glucan and lycopene contents, but also the greatest cadmium accumulation. I. badia was distinguished by elevated ascorbic and citric acid levels and the strongest DPPH radical scavenging activity, while L. scabrum showed the highest ABTS and FRAP antioxidant capacities and accumulated quinic acid and catechin. Principal component analysis indicated strong correlations between antioxidant activity and phenolic acids, while cadmium levels were inversely associated with antioxidant potential and positively correlated with chitin. Although all metal concentrations remained within EU food safety limits, B. edulis showed consistent cadmium bioaccumulation. From a practical perspective, the results highlight the importance of species selection and sourcing location when considering wild mushrooms for consumption or processing, particularly in the context of nutritional value and contaminant load. Importantly, regular or excessive consumption of B. edulis may result in exceeding the tolerable weekly intake (TWI) levels for cadmium and nickel, which warrants particular attention from a food safety perspective. These findings underscore the influence of species-specific traits and environmental conditions on mushroom biochemical profiles and support their potential as functional foods, provided that metal contents are adequately monitored. Full article
Show Figures

Figure 1

22 pages, 3520 KiB  
Article
Cellulose Ether/Citric Acid Systems Loaded with SrTiO3 Nanoparticles with Solvent-Tailored Features for Energy-Related Technologies
by Raluca Marinica Albu, Mihaela Iuliana Avadanei, Lavinia Petronela Curecheriu, Gabriela Turcanu, Iuliana Stoica, Marius Soroceanu, Daniela Rusu, Cristian-Dragos Varganici, Victor Cojocaru and Andreea Irina Barzic
Molecules 2025, 30(15), 3271; https://doi.org/10.3390/molecules30153271 - 5 Aug 2025
Abstract
This work aimed to advance the knowledge in the field of eco-friendly dielectrics with applicative relevance for future energy-related technologies. New multicomponent composites were prepared by using a cellulose ether/citric acid mixture as the matrix, which was gradually filled with strontium titanate nanoparticles [...] Read more.
This work aimed to advance the knowledge in the field of eco-friendly dielectrics with applicative relevance for future energy-related technologies. New multicomponent composites were prepared by using a cellulose ether/citric acid mixture as the matrix, which was gradually filled with strontium titanate nanoparticles (5–20 wt%). In this case, citric acid can act as a crosslinking agent for the polymer but also can react differently with the other counterparts from the composite as a function of the solvent used (H2O and H2O2). This led to considerable differences in the morphological, thermal, optical, and electrical characteristics due to distinct solvent-driven interactions, as revealed by the infrared spectroscopy investigation. Hence, in contrast to H2O, the oxidizing activity of H2O2 led to changes in the surface morphology, a greater transparency, a greater yellowness, an enhanced refractive index, and higher permittivity. These data provide new pathways to advance the optical and dielectric behavior of eco-compatible materials for energy devices by the careful selection of the composite’s components and the modulation of the molecular interactions via solvent features. Full article
Show Figures

Figure 1

16 pages, 3158 KiB  
Article
Comparative Metabolomics Analysis of Four Pineapple (Ananas comosus L. Merr) Varieties with Different Fruit Quality
by Ping Zheng, Jiahao Wu, Denglin Li, Shiyu Xie, Xinkai Cai, Qiang Xiao, Jing Wang, Qinglong Yao, Shengzhen Chen, Ruoyu Liu, Yuqin Liang, Yangmei Zhang, Biao Deng, Yuan Qin and Xiaomei Wang
Plants 2025, 14(15), 2400; https://doi.org/10.3390/plants14152400 - 3 Aug 2025
Viewed by 161
Abstract
Understanding the metabolic characteristics of pineapple varieties is crucial for market expansion and diversity. This study performed comparative metabolomic analysis on the “Comte de Paris” (BL) and three Taiwan-introduced varieties: “Tainong No. 11” (XS), “Tainong No. 23” (MG), and “Tainong No. 13” (DM). [...] Read more.
Understanding the metabolic characteristics of pineapple varieties is crucial for market expansion and diversity. This study performed comparative metabolomic analysis on the “Comte de Paris” (BL) and three Taiwan-introduced varieties: “Tainong No. 11” (XS), “Tainong No. 23” (MG), and “Tainong No. 13” (DM). A total of 551 metabolites were identified across the four varieties, with 231 metabolites exhibiting no significant differences between all varieties. This included major sugars such as sucrose, glucose, and fructose, as well as key acids like citric, malic, and quinic acids, indicating that the in-season maturing fruits of different pineapple varieties can all achieve good sugar–acid accumulation under suitable conditions. The differentially accumulated metabolites (DAMs) that were identified among the four varieties all primarily belonged to several major subclasses, including phenolic acids, flavonoids, amino acids and derivatives, and alkaloids, but the preferentially accumulated metabolites in each variety varied greatly. Specifically, branched-chain amino acids (L-leucine, L-isoleucine, and L-valine) and many DAMs in the flavonoid, phenolic acid, lignan, and coumarin categories were most abundant in MG, which might contribute to its distinct and enriched flavor and nutritional value. XS, meanwhile, exhibited a notable accumulation of aromatic amino acids (L-phenylalanine, L-tryptophan), various phenolic acids, and many lignans and coumarins, which may be related to its unique flavor profile. In DM, the dominant accumulation of jasmonic acid might contribute to its greater adaptability to low temperatures during autumn and winter, allowing off-season fruits to maintain good quality. The main cultivar BL exhibited the highest accumulation of L-ascorbic acid and many relatively abundant flavonoids, making it a good choice for antioxidant benefits. These findings offer valuable insights for promoting different varieties and advancing metabolome-based pineapple improvement programs. Full article
Show Figures

Figure 1

18 pages, 957 KiB  
Article
Potential of Commercial Biorational and Conventional Pesticides to Manage the Ruellia Erinose Mite in Ornamental Landscapes
by Marcello De Giosa, Adam G. Dale, Xingbo Wu and Alexandra M. Revynthi
Insects 2025, 16(8), 801; https://doi.org/10.3390/insects16080801 - 2 Aug 2025
Viewed by 253
Abstract
Acalitus simplex is an eriophyoid mite pest of the ornamental plant Ruellia simplex. Acalitus simplex compromises the esthetics of R. simplex by inducing erinea formation. Management practices for A. simplex are currently lacking. This study assessed the potential of commercial biorational (citric [...] Read more.
Acalitus simplex is an eriophyoid mite pest of the ornamental plant Ruellia simplex. Acalitus simplex compromises the esthetics of R. simplex by inducing erinea formation. Management practices for A. simplex are currently lacking. This study assessed the potential of commercial biorational (citric acid, potassium salt of fatty acids, garlic, thyme, and mineral oil) and conventional (abamectin, fenpyroximate, bifenthrin, spiromesifen) pesticides under laboratory conditions, using two types of spray applications: (A) curative, after erinea formation, and (B) prophylactic, before erinea formation. In the curative application, abamectin, garlic oil, and mineral oil were most effective; in the prophylactic application, abamectin and mineral oil showed the highest efficacies. Abamectin and mineral oil were further tested under greenhouse conditions. Both treatments effectively controlled A. simplex by preventing erinea formation over a four-week post-application period, regardless of the application type. At the end of the experiment, mites were extracted from R. simplex plants. In the curative application, significantly fewer mites were extracted from abamectin and mineral oil treatments than in the control. In the prophylactic application, mites were absent in abamectin and mineral oil treatments but present in the control. Abamectin and mineral oil can be used to manage A. simplex in landscapes. Full article
(This article belongs to the Special Issue Advances in the Bio-Ecology and Control of Plant-Damaging Acari)
Show Figures

Figure 1

17 pages, 5354 KiB  
Article
Carboxymethyl Polysaccharides/Montmorillonite Biocomposite Films and Their Sorption Properties
by Adrian Krzysztof Antosik, Marcin Bartkowiak, Magdalena Zdanowicz and Katarzyna Wilpiszewska
Polymers 2025, 17(15), 2130; https://doi.org/10.3390/polym17152130 - 1 Aug 2025
Viewed by 266
Abstract
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result [...] Read more.
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result of abrasions or tattoos. Carboxymethyl cellulose (CMC), carboxymethyl starch (CMS), and potato starch were used as the raw materials for film manufacturing. Citric acid was used as a crosslinking agent and glycerol as a plasticizer. The following parameters were evaluated for the obtained films: solubility in water, swelling behavior, moisture absorption, and mechanical durability (tensile strength, elongation at break, and Young’s modulus). This study revealed that filler concentration has a significant influence on the stability, durability, and moisture absorption parameters of films. The best nanocomposite with a high absorption capacity was a two-component film CMS/CMC containing 5 pph of sodium montmorillonite and can be used as a base material for wound dressing, among other applications. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

12 pages, 1161 KiB  
Article
Power Ultrasound and Organic Acid-Based Hurdle Technology to Reduce Listeria monocytogenes and Salmonella enterica on Fresh Produce
by Megan L. Fay, Priya Biswas, Xinyi Zhou, Bashayer A. Khouja, Diana S. Stewart, Catherine W. Y. Wong, Wei Zhang and Joelle K. Salazar
Microbiol. Res. 2025, 16(8), 172; https://doi.org/10.3390/microbiolres16080172 - 1 Aug 2025
Viewed by 142
Abstract
The increasing demand for fresh fruits and vegetables has been accompanied by a rise in foodborne illness outbreaks linked to fresh produce. Traditional antimicrobial washing treatments, such as chlorine and peroxyacetic acid, have limitations in efficacy and pose environmental and worker health concerns. [...] Read more.
The increasing demand for fresh fruits and vegetables has been accompanied by a rise in foodborne illness outbreaks linked to fresh produce. Traditional antimicrobial washing treatments, such as chlorine and peroxyacetic acid, have limitations in efficacy and pose environmental and worker health concerns. This study evaluated the effectiveness of organic acids (citric, malic, and lactic acid) and power ultrasound, individually and in combination, for the reduction in Salmonella enterica and Listeria monocytogenes on four fresh produce types: romaine lettuce, cucumber, tomato, and strawberry. Produce samples were inoculated with bacterial cocktails at 8–9 log CFU/unit and treated with organic acids at 2 or 5% for 2 or 5 min, with or without power ultrasound (40 kHz). Results showed that pathogen reductions varied based on the produce matrix with smoother surfaces such as tomato, exhibiting greater reductions than rougher surfaces (e.g., romaine lettuce and strawberry). Lactic and malic acids were the most effective treatments, with 5% lactic acid achieving a reduction of >5 log CFU/unit for S. enterica and 4.53 ± 0.71 log CFU/unit for L. monocytogenes on tomatoes. The combination of organic acids and power ultrasound demonstrated synergistic effects, further enhancing pathogen reduction by <1.87 log CFU/unit. For example, S. enterica on cucumbers was reduced by an additional 1.87 log CFU/unit when treated with 2% malic acid and power ultrasound for 2 min compared to malic acid alone. Similarly, L. monocytogenes on strawberries was further reduced by 1.84 log CFU/unit when treated with 5% malic acid and power ultrasound for 2 min. These findings suggest that organic acids, particularly malic and lactic acids, combined with power ultrasound, may serve as an effective hurdle technology for enhancing the microbial safety of fresh produce. Future research can include validating these treatments in an industrial processing environment. Full article
Show Figures

Figure 1

11 pages, 673 KiB  
Article
Genetic Parameters of Conilon Coffee Cultivated Under an Irrigation System in the Cerrado
by Felipe Augusto Alves Brige, Renato Fernando Amabile, Juaci Vitória Malaquias, Adriano Delly Veiga, Gustavo Barbosa Cobalchini Santos, Arlini Rodrigues Fialho and Marcelo Fagioli
Agronomy 2025, 15(8), 1863; https://doi.org/10.3390/agronomy15081863 - 31 Jul 2025
Viewed by 149
Abstract
Coffee beverage quality is determined by a complex interaction of genetic and environmental factors, including specific biochemical characteristics. In this context, the present study aimed to estimate the genetic parameters of elite irrigated Conilon coffee genotypes in the Cerrado over two consecutive years [...] Read more.
Coffee beverage quality is determined by a complex interaction of genetic and environmental factors, including specific biochemical characteristics. In this context, the present study aimed to estimate the genetic parameters of elite irrigated Conilon coffee genotypes in the Cerrado over two consecutive years based on the biochemical characteristics of the beans, assessed by near-infrared spectroscopy (NIRS). The research was conducted at the Embrapa Cerrados experimental field, using the unit’s elite collection. Levels of chlorogenic acid (5-ACQ), caffeine, sucrose, citric acid and trigonelline were analyzed in the raw beans of 18 genotypes harvested in two consecutive years. Data were subjected to analysis of variance in a time-subdivided plot design, considering genotypes as plots and years as subplots, with means grouped by the Scott-Knott test at 5% significance. Results showed significant genetic variability for caffeine, sucrose and trigonelline, while chlorogenic and citric acid levels did not differ significantly among genotypes. A significant genotype × year interaction was observed for caffeine, sucrose, and 5-ACQ. Estimated heritabilities were high for caffeine (85.5%), trigonelline (80.1%), sucrose (62%) and citric acid (60%). Selection gains were positive for sucrose (5.58%), citric acid (10.01%) and trigonelline (8.27%), and negative for caffeine (−6.87%) and 5-ACQ (−0.47%). It is concluded that among the compounds evaluated, caffeine shows the greatest potential for selection, enabling effective gains in raw bean composition, while sucrose and trigonelline present moderate potential for genetic improvement. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

16 pages, 1101 KiB  
Article
Nutritional Characterization of Fruits from Three African Plant Species: Dialium guineense Willd, Parkia biglobosa Jacq. and Andansonia digitata L.
by Manuela Lageiro, Jaime Fernandes, Ana C. Marques, Manuela Simões and Ana Rita F. Coelho
Plants 2025, 14(15), 2344; https://doi.org/10.3390/plants14152344 - 29 Jul 2025
Viewed by 274
Abstract
Dialium guineense (velvet tamarind), Parkia biglobosa Jacq. (African locust bean) and Adanosonia digitata L. (baobab) are fruits from African plants whose nutritional potential remains poorly characterised. As such, their pulps and seeds were analysed for colour (CIELab system), moisture, ash, protein, fat, soluble [...] Read more.
Dialium guineense (velvet tamarind), Parkia biglobosa Jacq. (African locust bean) and Adanosonia digitata L. (baobab) are fruits from African plants whose nutritional potential remains poorly characterised. As such, their pulps and seeds were analysed for colour (CIELab system), moisture, ash, protein, fat, soluble and insoluble dietary fibre, free sugars (HPLC-RI), organic acids (HPLC-PDA), macro and microelements (XRF analyser) and amygdalin (HPLC-PDA). The colours of their pulps differed considerable (ΔE > 38 between the velvet tamarind and African locust bean) and the moisture content was lower in seeds (about 7%) compared to pulps (9–13%). Seeds were more concentrated in protein (20–28%) and fat (5–22%), whereas pulps were richer in sugar (1–12%). African locust bean pulp was the sweetest (39% total sugar), while baobab pulp contained the highest soluble fibre (>30%) and citric acid (3.2%), and velvet tamarind pulp was distinguished by its tartaric acid content (3.4%). Seeds of the African fruits presented higher Ca, P, S and Fe contents, whereas pulps had higher K content. No amygdalin (<6.34 mg per 100 g of dry weight) or toxic heavy metal contents were detected. The PCA segregated samples by pulp and seed and the PC1 explains the sugar and moisture of the pulps, while protein, fat and minerals are associated with the seeds. These data confirm that African fruit pulps and seeds have distinct functional profiles, are safe for food use and can be consumed, which is important for efforts to promote the conservation of these tropical plant species. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

23 pages, 1907 KiB  
Article
Lacmellea oblongata and Other Undervalued Amazonian Fruits as Functional, Antioxidant, and Antimicrobial Matrices
by Elena Coyago-Cruz, Gabriela Méndez, Ruth Escobar-Quiñonez, Marco Cerna and Jorge Heredia-Moya
Antioxidants 2025, 14(8), 924; https://doi.org/10.3390/antiox14080924 - 29 Jul 2025
Viewed by 303
Abstract
The Amazon represents a key source of food biodiversity and is home to native fruits with high nutritional and functional potential, many of which remain largely unstudied. This research aimed to evaluate the presence of bioactive compounds, as well as the antioxidant and [...] Read more.
The Amazon represents a key source of food biodiversity and is home to native fruits with high nutritional and functional potential, many of which remain largely unstudied. This research aimed to evaluate the presence of bioactive compounds, as well as the antioxidant and antimicrobial activity of Miconia crenata, Grias neuberthii, Lacmellea oblongata, Pourouma cecprofiilia, and Annona edulis. Physical and chemical parameters, mineral content (atomic absorption), vitamin C, organic acid, carotenoids, chlorophylls, and phenols (liquid chromatography), antioxidant activity (ABTS, DPPH), and antimicrobial activity (against Candida albicans, Candida tropicalis, Escherichia coli, Staphylococcus aureus, and Streptococcus mutans) were determined. High concentrations of calcium, syringic acid, and antioxidant activity were found in the fruits of Miconia crenata; malic and caffeic acids in Grias neuberthii; citric acid, naringenin, and antioxidant activity in Lactuca oblongata; potassium, chlorogenic acid, and ferulic acid in Pourouma cecropiifolia; and tartaric acid and gallic acid in Annona edulis. Additionally, low antimicrobial activity was observed in M. crenata against E. coli (2.7 mg/mL), G. neuberthii against S. aureus (10.3 mg/mL), and L. oblongata against S. mutans (10.4 mg/mL), C. albicans (20.8 mg/mL), and C. tropicalis (20.8 mg/mL). The results confirm that these Amazonian fruits are a relevant source of functional bioactive compounds, highlighting their potential for use in the food, pharmaceutical, and biotechnology sectors. Full article
(This article belongs to the Special Issue Polyphenolic Antioxidants in Food)
Show Figures

Figure 1

16 pages, 3508 KiB  
Article
Stability of Carbon Quantum Dots for Potential Photothermal and Diagnostic Applications
by María Fernanda Amezaga Gonzalez, Abdiel Ramirez-Reyes, Monica Elvira Mendoza-Duarte, Alejandro Vega-Rios, Daniel Martinez-Ozuna, Claudia A. Rodriguez-Gonzalez, Santos-Adriana Martel-Estrada and Imelda Olivas-Armendariz
C 2025, 11(3), 56; https://doi.org/10.3390/c11030056 - 29 Jul 2025
Viewed by 306
Abstract
Theranostic agents enable the simultaneous diagnosis and treatment of diseases, and they are particularly useful in fluorescent imaging and cancer therapies. In this study, carbon quantum dots were synthesized via a microwave-assisted method using citric acid and bovine serum albumin (BSA) as precursors. [...] Read more.
Theranostic agents enable the simultaneous diagnosis and treatment of diseases, and they are particularly useful in fluorescent imaging and cancer therapies. In this study, carbon quantum dots were synthesized via a microwave-assisted method using citric acid and bovine serum albumin (BSA) as precursors. The resulting CQDs exhibited spherical morphology, an average size of 4 nm, and an amorphous graphitic structure. FT-IR characterization revealed the presence of amide bonds and oxygenated functional groups. At the same time, optical analysis showed excitation at 320 nm and emission between 360 and 400 nm, with fluorescent stability maintained for one month. Furthermore, the CQDs demonstrated good thermal stability and photothermal efficiency, reaching temperatures above 41 °C within 15 min under NIR irradiation, with a mass loss of less than 1%. Their stability was evaluated in media with different pH levels, simulating physiological and tumor environments. While their behavior was affected under acidic conditions, their excellent photothermal conversion capacity and overall stability in triple-distilled water positioned them as promising candidates for theranostic applications in cancer, effectively combining diagnostic imaging and thermal therapy. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

13 pages, 232 KiB  
Article
Baicalein and Citric Acid Modulate Intestinal Morphology and Health Status in Laying Hens
by Yefei Zhou, Cunyi Qiu, Zhiding Zhou, Yanjie Zhang, Dunlin Zhang, Yao Cai, Jun Yuan, Shangxin Song, Zhihua Feng and Xinglong Wang
Vet. Sci. 2025, 12(8), 706; https://doi.org/10.3390/vetsci12080706 - 28 Jul 2025
Viewed by 247
Abstract
This study aimed to investigate the effects of baicalin and citric acid on egg production performance, egg quality, and the intestinal morphology and function of laying hens. A total of 600 Hy-Line Brown laying hens, 59 weeks old, were randomly allocated to four [...] Read more.
This study aimed to investigate the effects of baicalin and citric acid on egg production performance, egg quality, and the intestinal morphology and function of laying hens. A total of 600 Hy-Line Brown laying hens, 59 weeks old, were randomly allocated to four dietary treatments, with 10 replicates per treatment and 15 hens per replicate. The control group was fed a basal diet, while the other three groups were fed the basal diet supplemented with 150 mg/kg baicalin (B), 2000 mg/kg citric acid (CA), or 150 mg/kg baicalin plus 2000 mg/kg citric acid (B + CA), respectively. The experimental period lasted for 12 weeks, and the results indicated that neither the individual addition nor the combined application of baicalin and citric acid had a significant impact on the laying performance. However, compared with the control group, the baicalin and/or citric acid supplementation significantly increased the eggshell strength and Haugh unit. Additionally, the combination of baicalin and citric acid significantly increased the villus height and the villus height/crypt depth ratio in the duodenum and jejunum. It also enhanced the population of beneficial bacteria, such as Lactobacillus and Bifidobacterium, in the cecum and improved the activity of intestinal digestive enzymes, primarily disaccharidases. Furthermore, the addition of baicalin to the diet significantly increased the content of Secretory Immunoglobulin A in the ileum and jejunum after 12 weeks of feeding. These results suggest that the combination of baicalin and citric acid had a synergistic effect on the improvement of egg quality and intestinal morphology and function in laying hens. Overall, our findings provide important insights into the potential benefits of supplementing baicalin and citric acid in the diet of laying hens and may have practical implications for improving egg quality and poultry health status. Full article
14 pages, 1439 KiB  
Article
Effects of Pre-Emergence Application of Organic Acids on Seedling Establishment of Weeds and Crops in Controlled Environments
by Mattia Alpi, Anne Whittaker, Elettra Frassineti, Enrico Toschi, Giovanni Dinelli and Ilaria Marotti
Agronomy 2025, 15(8), 1820; https://doi.org/10.3390/agronomy15081820 - 28 Jul 2025
Viewed by 274
Abstract
Within the framework of organic acid alternatives to chemical herbicides, pre-emergence weed control research is scarce. Citric acid (CA) and lactic acid (LA), considered significantly less effective than pelargonic acid (PA) and acetic acid (AA) from post-emergence (foliar spraying) studies, have largely been [...] Read more.
Within the framework of organic acid alternatives to chemical herbicides, pre-emergence weed control research is scarce. Citric acid (CA) and lactic acid (LA), considered significantly less effective than pelargonic acid (PA) and acetic acid (AA) from post-emergence (foliar spraying) studies, have largely been disregarded. This in vitro study was aimed at comparing the effects of 5–20% AA, AA + essential oils, PA, CA, and LA on radicle emergence inhibition (direct spraying of seeds) and shoot emergence inhibition (application to peat) on both weeds (perennial ryegrass, green foxtail, common vetch and chicory) and crops (soft wheat, alfalfa and millet). All tested compounds demonstrated concentration-dependent and species-specific effects on shoot emergence inhibition, with CA and LA (IC50 range: 3.4–19.3%) showing a comparable efficacy to PA and AA (IC50 range: 3.1–35.9%). The results also showed that CA and, to a lesser extent, LA were less inhibitory to soft wheat (CA IC50 = 62.5%; LA IC50 = 35.9%) and alfalfa (CA IC50 = 57.8%; LA IC50 = 44.1%) shoot emergence. CA and LA show potential promise for pre-emergence weed control in field testing, either on a stale seedbed in pre-crop sowing or concurrently with soft wheat and alfalfa sowing. Investigating organic compound herbicidal effects on crops of interest warrants attention. Full article
Show Figures

Figure 1

24 pages, 4861 KiB  
Article
Impact of Abiotic Stress-Reducing Cultivation Technologies and Long-Term Storage on the Oxidative Potential of Edible Potato Tubers (Solanum tuberosum L.)
by Jarosław Pobereżny, Elżbieta Wszelaczyńska, Jarosław Chmielewski, Barbara Gworek, Wiesław Szulc, Beata Rutkowska and Joanna Korczyk-Szabó
Agriculture 2025, 15(15), 1629; https://doi.org/10.3390/agriculture15151629 - 27 Jul 2025
Viewed by 263
Abstract
Currently, in the context of the emphasis on introducing a reduction in mineral fertilization and the increase in pressure on sustainable agriculture, magnesium fertilization and the use of biostimulants are becoming an alternative tool to increase the quality of potato tuber yield. This [...] Read more.
Currently, in the context of the emphasis on introducing a reduction in mineral fertilization and the increase in pressure on sustainable agriculture, magnesium fertilization and the use of biostimulants are becoming an alternative tool to increase the quality of potato tuber yield. This study aimed to assess the impact of potato genotype, cultivation technology, and long-term storage on the susceptibility of tubers to enzymatic browning. Two edible potato varieties were examined: the early ‘Wega’ and the mid-early ‘Soraya’. It was demonstrated that the varieties maintained their characteristic browning susceptibility consistent with their breeding descriptions. The ‘Wega’ variety exhibited decreasing browning susceptibility immediately after harvest; however, after 6 months of storage, its susceptibility significantly increased, exceeding that of the ‘Soraya’ variety. Additionally, the application of magnesium fertilization (90 kg ha−1) and biostimulant treatment (3 L ha−1) most effectively reduced the oxidative potential of the tubers, thereby decreasing browning susceptibility. This is due to a significant change in the concentration of organic acids responsible for enzymatic browning processes. A decrease in the content of chlorogenic acid by 9.4% and 8.4% and an increase in the content of citric and ascorbic acid by 11.1%, 5.3%, and 13.6% were achieved. Storage significantly affected the chemical composition of the tubers. An increase in chlorogenic (7.3%) and citric (5.8%) acids and a decrease in ascorbic (34%) acid content were observed. These changes correlated with the intensification of browning, with the increase in chlorogenic acid and the decrease in ascorbic acid having the greatest influence. The results indicate that the technology based on supplementary fertilization and biostimulation improves the quality of potato raw material without a significant increase in production costs. Further research on varieties with different vegetation lengths and those intended for food processing and starch production is advised. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

Back to TopTop