Potential of Commercial Biorational and Conventional Pesticides to Manage the Ruellia Erinose Mite in Ornamental Landscapes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ruellia Simplex Stock Population
2.2. Acalitus Simplex Stock Population
2.3. Infestations of Ruellia Simplex Plants for Laboratory and Greenhouse Experiments
2.4. Pesticide Testing in the Laboratory
2.4.1. Curative Spray Application Tests
2.4.2. Prophylactic Spray Application Tests
2.5. Greenhouse Evaluation of Top Lab-Selected Pesticides
2.6. Statistical Analysis
2.6.1. Pesticide Testing in the Laboratory
2.6.2. Greenhouse Evaluation of Top Lab-Selected Pesticides
3. Results
3.1. Pesticide Testing in the Laboratory
3.1.1. Curative Spray Application Tests
3.1.2. Prophylactic Spray Application Tests
3.2. Greenhouse Evaluation of Top Lab-Selected Pesticides
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, T.T. The Ecological Roles of Golf Courses in Urban Landscapes. Doctoral Dissertation, Murdoch University, Perth, Australia, 2022. [Google Scholar]
- Clark, J.M.; Scott, J.G.; Campos, F.; Bloomquist, J.R. Resistance to avermectins: Extent, mechanisms, and management implications. Annu. Rev. Entomol. 1995, 40, 1–30. [Google Scholar] [CrossRef]
- US, E.P.A. Benefits and Risks Associated with Landscapes. 2025. Available online: https://www.epa.gov/ (accessed on 10 March 2025).
- Freyre, R.; Moseley, A.; Wilson, S.B.; Knox, G.W. Breeding and evaluating for landscape performance and fruitlessness in Mexican petunia (Ruellia, Acanthaceae). HortScience 2012, 47, 1245–1251. [Google Scholar] [CrossRef]
- Franck, A.R.; Daniel, T.F. Florida Nelsonia canescens, a Genus and Species New to the Adventive Flora of the United States. Castanea 2011, 76, 429–431. [Google Scholar] [CrossRef]
- Gann, G.D.; Trotta, L.B.; Floristic Inventory of South Florida Database Online. The Institute for Regional Conservation. Delray Beach, Florida. Available online: https://www.regionalconservation.org/ircs/FISFBackground.asp (accessed on 2 February 2025).
- Wirth, F.F.; Davis, K.J.; Wilson, S.B. Florida nursery sales and economic impacts of 14 potentially invasive landscape plant species. J. Environ. Hortic. 2004, 22, 12–16. [Google Scholar] [CrossRef]
- Wood, R.A.; Orwell, R.L.; Tarran, J.; Torpy, F.; Burchett, M. Potted–plant/growth media interactions and capacities for removal of volatiles from indoor air. J. Hortic. Sci. Biotechnol. 2002, 77, 120–129. [Google Scholar] [CrossRef]
- Bethke, J.A.; Cloyd, R.A. Pesticide use in ornamental production: What are the benefits? Pest Manag. Sci. 2009, 65, 345–350. [Google Scholar] [CrossRef]
- Konvipasruang, P.; Kongchuensin, M.; Chaowattanawong, P.; Chotiwong, W.; Prasoetphon, A. Study of Eriophyid mite pest in Thailand. Thai. Agric. Res. J. 2016, 34, 219. [Google Scholar] [CrossRef]
- Navia, D.; Duarte, M.E.; Flechtmann, C.H. Eriophyoid mites (Acari: Prostigmata) from Brazil: An annotated checklist. Zootaxa 2021, 4997, 1–152. [Google Scholar] [CrossRef] [PubMed]
- de la Torre Santana, P.E. Presencia de Eriophyidae (Acari: Trombidiformes) sobre Ruellia simplex Wright (Acanthaceae) en Cuba. Rev. Ibérica Aracnol. 2024, 44, 143–145. [Google Scholar]
- De Giosa, M.; Ataide, L.M.; Dale, A.G.; Hahn, D.A.; Wu, X.; Ochoa, R.; Bolton, S.; Cloonan, K.R.; Revynthi, A.M. Scrutinizing Acalitus simplex Flechtmann et Etienne (Eriophyidae): An eriophyoid mite associated with Ruellia spp. (Acanthaceae). Exp. Appl. Acarol. 2025, 95, 1–13. [Google Scholar] [CrossRef]
- Karioti, A.; Tooulakou, G.; Bilia, A.R.; Psaras, G.K.; Karabourniotis, G.; Skaltsa, H. Erinea formation on Quercus ilex leaves: Anatomical, physiological and chemical responses of leaf trichomes against mite attack. Phytochemistry 2011, 72, 230–237. [Google Scholar] [CrossRef]
- Nuzzaci, G.; Alberti, G. Internal Anatomy and Physiology. In Eriophyoid Mites: Their Biology, Natural Enemies and Control; Lindquist, E.E., Sabelis, M.W., Bruin, J., Eds.; World Crop Pests; Elsevier: Amsterdam, The Netherlands, 1996; Volume 6, pp. 101–150. [Google Scholar]
- de Lillo, E.; Di Palma, A.; Nuzzaci, G. Cheliceral morphology and trophic behaviour in mites of economical importance. Entomologica 2002, 34, 125–180. [Google Scholar]
- Lindquist, E.E.; Bruin, J.; Sabelis, M.W. Eriophyoid Mites: Their Biology, Natural Enemies and Control; Lindquist, E.E., Sabelis, M.W., Bruin, J., Eds.; World Crop Pests; Elsevier: Amsterdam, The Netherlands, 1996; Volume 6, pp. 1–790. [Google Scholar]
- Westphal, E. Morphogenese, ultrastructure et etiologie de quelque galles d’Eriophyes (Acariens). Marcellia 1977, 39, 193–375. [Google Scholar]
- Desnitskiy, A.G.; Chetverikov, P.E.; Ozman–Sullivan, S.K. Advances in the study of mite gallogenesis and its comparison with the development of insect–induced galls. Acarina 2024, 32, 43–47. [Google Scholar] [CrossRef]
- Michalska, K.; Skoracka, A.; Navia, D.; Amrine, J.W. Behavioural studies on eriophyoid mites: An overview. Exp. Appl. Acarol. 2010, 51, 31–59. [Google Scholar] [CrossRef] [PubMed]
- De Azevedo, L.H.; Maeda, E.Y.; Inomoto, M.M.; De Moraes, G.J. A method to estimate the population level of Aceria litchii (Prostigmata: Eriophyidae) and a study of the population dynamics of this species and its predators on litchi trees in southern Brazil. J. Econ. Entomol. 2014, 107, 361–367. [Google Scholar] [CrossRef]
- Ferraz, C.S.; Ataide, L.M.S.; Gondim, M.G.C.; Pallini, A. First trials exploring the potential of phytoseiid mites in managing lychee erinose mite, Aceria litchii (Keifer) (Acari: Eriophyidae), infestations on lychee plants. Exp. Appl. Acarol. 2024, 93, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Sabelis, M.W.; Bruin, J. 1.5.3. Evolutionary ecology: Life history patterns, food plant choice and dispersal. In World Crop Pests; Lindquist, E.E., Sabelis, M.W., Bruin, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 6, pp. 329–366. [Google Scholar]
- de Lillo, E.; Pozzebon, A.; Valenzano, D.; Duso, C. An intimate relationship between eriophyoid mites and their host plants—A review. Front. Plant Sci. 2018, 9, 1786. [Google Scholar] [CrossRef]
- Smith, D.C.; Raupp, M.J. Economic and environmental assessment of an integrated pest management program for community-owned landscape plants. J. Econ. Entomol. 1986, 79, 162–165. [Google Scholar] [CrossRef]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.K.; Kiss, J.; Kudsk, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Childers, C.C.; Easterbrook, M.A.; Solomon, M.G. Chemical control of eriophyoid mites. In World Crop Pests; Lindquist, E.E., Sabelis, M.W., Bruin, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 695–726. [Google Scholar]
- Van Leeuwen, T.; Witters, J.; Nauen, R.; Duso, C.; Tirry, L. The control of eriophyoid mites: State of the art and future challenges. Exp. Appl. Acarol. 2010, 51, 205–224. [Google Scholar] [CrossRef]
- Vacante, V. The Handbook of Mites of Economic Plants: Identification, Bio–Ecology and Control; CABI International: Wallingford, UK, 2015; pp. 1–872. [Google Scholar]
- Revynthi, A.M.; Cruz, L.F.; Canon, M.A.; Crane, J.H.; Kendra, P.E.; Mannion, C.; Carrillo, D. Evaluation of abamectin as a potential chemical control for the lychee erinose mite (Acari: Eriophyidae), a new invasive pest in Florida. Fla. Entomol. 2022, 105, 1–5. [Google Scholar] [CrossRef]
- Bernard, M.B.; Cole, P.; Kobelt, A.; Horne, P.A.; Altmann, J.; Wratten, S.D.; Yen, A.L. Reducing the impact of pesticides on biological control in Australian vineyards: Pesticide mortality and fecundity effects on an indicator species, the predatory mite Euseius victoriensis (Acari: Phytoseiidae). J. Econ. Entomol. 2010, 103, 2061–2071. [Google Scholar] [CrossRef] [PubMed]
- Villavicencio, L.E.; Bethke, J.A.; Dahlke, B.; Vander Mey, B.; Corkidi, L. Curative and Preventive Control of Aceria aloinis (Acari: Eriophyidae) in Southern California. J. Econ. Entomol. 2014, 107, 2088–2094. [Google Scholar] [CrossRef]
- Navia, D.; Ochoa, R.; Welbourn, C.; Ferragut, F. Adventive eriophyoid mites: A global review of their impact, pathways, prevention and challenges. Exp. Appl. Acarol. 2010, 51, 225–255. [Google Scholar] [CrossRef] [PubMed]
- Perring, T.M.; Farrar, C.A.; Oldfield, G.N. Techniques 1.6. 1 Sampling techniques. In World Crop Pests; Lindquist, E.E., Sabelis, M.W., Bruin, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 6, pp. 367–376. [Google Scholar]
- Manson, D.C.M.; Oldfield, G.N. Biology and ecology 1.4. 1 Life forms, deuterogyny, diapause and seasonal development. In World Crop Pests; Lindquist, E.E., Sabelis, M.W., Bruin, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 6, pp. 173–183. [Google Scholar]
- IRAC. Insecticide Resistance Action Committee. 2025. Available online: https://irac-online.org/mode-of-action/classification-online/ (accessed on 12 March 2025).
- National Pesticide Information Retrieval System (NPIRS). 2025. Available online: https://www.npirs.org/ (accessed on 2 February 2025).
- Monfreda, R.; Nuzzaci, G.; De Lillo, E. Detection, extraction, and collection of eriophyoid mites. Zootaxa 2007, 1662, 35–43. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.r-project.org/ (accessed on 2 February 2025).
- Brooks, M.; Bolker, B.; Kristensen, K.; Maechler, M.; Magnusson, A.; Skaug, H.; Nielsen, A.; Berg, C.; van Bentham, K.; glmmTMB: Generalized Linear Mixed Models Using Template Model Builder. R Package. 2023. Available online: https://glmmtmb.github.io/glmmTMB/ (accessed on 2 February 2025).
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least–Squares Means, R Package Version 1.7. 2. 2022. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 13 February 2025).
- Wickham, H.; Chang, W.; Wickham, M.H. Package ‘Ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. Version. 2016, Version 2, pp. 1–189. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=af53fd2f5b9e81b6edec0c13e1b3babd34bda399 (accessed on 2 February 2025).
- Divine, G.; Norton, H.J.; Hunt, R.; Dienemann, J. A review of analysis and sample size calculation considerations for Wilcoxon tests. Anesth. Analg. 2013, 117, 699–710. [Google Scholar] [CrossRef]
- Turner, J.A. The Pesticide Manual: A World Compendium, 18th ed.; BCPC: Aldershot, UK, 2018. [Google Scholar]
- Beers, E.H.; Hoyt, S.C.; Burts, E.C. Effect of tree fruit species on residual activity of avermectin B1 to Tetranychus urticae and Panonychus ulmi. J. Econ. Entomol. 1990, 83, 961–964. [Google Scholar] [CrossRef]
- Oldfield, G.N.; Proeseler, G. 1.4. 9 Eriophyoid mites as vectors of plant pathogens. In World Crop Pests; Lindquist, E.E., Sabelis, M.W., Bruin, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 6, pp. 259–275. [Google Scholar]
- Najar-Rodriguez, A.J.; Lavidis, N.A.; Mensah, R.K.; Choy, P.T.; Walter, G.H. The toxicological effects of petroleum spray oils on insects–Evidence for an alternative mode of action and possible new control options. Food Chem. Toxicol. 2008, 46, 3003–3014. [Google Scholar] [CrossRef]
- Najar-Rodríguez, A.J.; Walter, G.H.; Mensah, R.K. The efficacy of a petroleum spray oil against Aphis gossypii Glover on cotton. Part 2: Indirect effects of oil deposits. Pest Manag. Sci. Former. Pestic. Sci. 2007, 63, 596–607. [Google Scholar] [CrossRef]
- Buteler, M.; Stadler, T. A review on the mode of action and current use of petroleum distilled spray oils. In Pesticides in the Modern World–Pesticides Use and Management; Intech: Rijeka, Croatia, 2011; pp. 119–136. [Google Scholar]
- El–Banhawy, E.M.; El–Bagoury, M.E. Toxicity of avermectin and fenvalerate to the eriophyid gall mite Eriophyes dioscoridis and the predacious mite Phytoseius finitimus (Acari: Eriophyidae; Phytoseiidae). Int. J. Acarol. 1985, 11, 237–240. [Google Scholar] [CrossRef]
- De Azevedo, L.H.; Moraes, G.D.; Yamamoto, P.T.; Zanardi, O.Z. Development of a methodology and evaluation of pesticides against Aceria litchii and its predator Phytoseius intermedius (Acari: Eriophyidae, Phytoseiidae). J. Econ. Entomol. 2013, 106, 2183–2189. [Google Scholar] [CrossRef]
- de Assis, C.P.; de Morais, E.G.; Gondim, M.G., Jr. Toxicity of acaricides to Raoiella indica and their selectivity for its predator, Amblyseius largoensis (Acari: Tenuipalpidae: Phytoseiidae). Exp. Appl. Acarol. 2013, 60, 357–365. [Google Scholar] [CrossRef]
- Jakubowska, M.; Dobosz, R.; Zawada, D.; Kowalska, J. A review of crop protection methods against the twospotted spider mite—Tetranychus urticae Koch (Acari: Tetranychidae)—With special reference to alternative methods. Agriculture 2022, 12, 898. [Google Scholar] [CrossRef]
- Dybas, R.A. Abamectin use in crop protection. In Ivermectin and Abamectin; Campbell, W.C., Ed.; Springer: New York, NY, USA, 1989; pp. 287–310. [Google Scholar]
- Childers, C.C. Practical use of horticultural mineral oils in integrated pest and disease management programs and their impact on natural enemies. In Spray Oils Beyond 2000—Sustainable Pest and Disease Management; University of Western Sydney: Sydney, Australia, 2002; pp. 332–348. [Google Scholar]
- Greene, A.D.; Yang, X.; Velazquez-Hernandez, Y.; Vargas, G.; Kendra, P.E.; Mannion, C.; Revynthi, A.M. Lethal and sublethal effects of contact insecticides and horticultural oils on the hibiscus bud weevil, Anthonomus testaceosquamosus Linell (Coleoptera: Curculionidae). Insects 2023, 14, 544. [Google Scholar] [CrossRef] [PubMed]
- Ataide, L.M.; Vargas, G.; Velazquez-Hernandez, Y.; Reyes-Arauz, I.; Villamarin, P.; Canon, M.A.; Yang, X.; Riley, S.S.; Revynthi, A.M. Efficacy of conventional and biorational insecticides against the invasive pest Thrips parvispinus (Thysanoptera: Thripidae) under containment conditions. Insects 2024, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.B.; Mesa, N.C.; Feres, R.J.F.; Moraes, G.J.de.; Ochoa, R.; Beard, J.J.; Demite, P.R. Tenuipalpidae Database. 2025. Available online: http://www.tenuipalpidae.ibilce.unesp.br (accessed on 30 March 2025).
- Malumphy, C. An annotated checklist of scale insects (Hemiptera: Coccoidea) of Saint Lucia, Lesser Antilles. Zootaxa 2014, 3846, 69–86. [Google Scholar] [CrossRef]
- Lesley, A.R. Handbook of Integrated Pest Management for Turf and Ornamentals; CRC Press: Boca Raton, FL, USA, 2020; p. 627. [Google Scholar]
- Kalkan, Ç.; Satar, S. Resistance of Phyllocoptruta oleivora (Acari: Eriophyidae) to acaricides in Turkey. Crop Prot. 2024, 182, 106742. [Google Scholar] [CrossRef]
- Van Leeuwen, T.; Vontas, J.; Tsagkarakou, A.; Dermauw, W.; Tirry, L. Acaricide resistance mechanisms in the two–spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem. Mol. Biol. 2010, 40, 563–572. [Google Scholar] [CrossRef]
- Döker, İ.; Revynthi, A.M.; Mannion, C.; Carrillo, D. First report of acaricide resistance in Tetranychus urticae (Acari: Tetranychidae) from south Florida1. Syst. Appl. Acarol. 2020, 25, 1209–1214. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chang, Y.W.; Gong, W.R.; Hu, J.; Du, Y.Z. The development of abamectin resistance in Liriomyza trifolii and its contribution to thermotolerance. Pest Manag. Sci. 2024, 80, 2053–2060. [Google Scholar] [CrossRef] [PubMed]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef] [PubMed]
- Döker, İ.; Kazak, C. Non–target effects of five acaricides on a native population of Amblyseius swirskii (Acari: Phytoseiidae). Int. J. Acarol. 2019, 45, 69–74. [Google Scholar] [CrossRef]
- Lash, H.E.; Warnock, D.F.; Cloyd, R.A. Effect of pesticide mixtures on the survival of the predatory mite Neoseiulus cucumeris (Acarina: Phytoseiidae). J. Entomol. Sci. 2007, 42, 311–319. [Google Scholar] [CrossRef]
- Kaplan, P.; Yorulmaz, S.; Ay, R. Toxicity of insecticides and acaricides to the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). Int. J. Acarol. 2012, 38, 699–705. [Google Scholar] [CrossRef]
- Lima, D.B.; Melo, J.W.S.; Gondim, M.G.C.; Guedes, R.N.C.; Oliveira, J.D.M.; Pallini, A. Acaricide–impaired functional predation response of the phytoseiid mite Neoseiulus baraki to the coconut mite Aceria guerreronis. Ecotoxicology 2015, 24, 1124–1130. [Google Scholar] [CrossRef]
- Barros, M.E.N.; da Silva, F.W.B.; de Lima, D.B.; da Silva Melo, J.W. Biopesticide and acaricides impair survival, predation, oviposition, and conversion of food into eggs of a phytoseid mite, Amblyseius largoensis (Acari: Phytoseiidae). Syst. Appl. Acarol. 2022, 27, 1867–1877. [Google Scholar] [CrossRef]
- Cordeiro, E.M.G.; De Moura, I.L.T.; Fadini, M.A.M.; Guedes, R.N.C. Beyond selectivity: Are behavioral avoidance and hormesis likely causes of pyrethroid–induced outbreaks of the southern red mite Oligonychus ilicis? Chemosphere 2013, 93, 1111–1116. [Google Scholar] [CrossRef]
- Seni, A. Potential of the various oils for insect pests’ management and their effect on beneficial insects. Int. J. Trop. Insect Sci. 2023, 43, 321–337. [Google Scholar] [CrossRef]
- Marčić, D.; Döker, I.; Tsolakis, H. Bioacaricides in Crop Protection—What Is the State of Play? Insects 2025, 16, 95. [Google Scholar] [CrossRef]
- Raupp, M.J.; Davidson, J.A.; Koehler, C.S.; Sadof, C.S.; Reichelderfer, K. Economic and aesthetic injury levels and thresholds for insect pests of ornamental plants. Fla. Entomol. 1989, 403–407. [Google Scholar] [CrossRef]
- Wang, D.; Deng, H.; Zhang, T.; Tian, F.; Wei, D. Open access databases available for the pesticide lead discovery. Pestic. Biochem. Physiol. 2022, 188, 105267. [Google Scholar] [CrossRef]
- Leach, A.W.; Mumford, J.D. Pesticide environmental accounting: A decision–making tool estimating external costs of pesticides. J. Für Verbraucherschutz Leb. 2011, 6, 21–26. [Google Scholar] [CrossRef]
- Szczepaniec, A.; Lathrop-Melting, A.; Janecek, T.; Nachappa, P.; Cranshaw, W.; Alnajjar, G.; Axtell, A. Suppression of hemp russet mite, Aculops cannabicola (Acari: Eriophyidae), in industrial hemp in greenhouse and field. Environ. Entomol. 2024, 53, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Duso, C.; Castagnoli, M.; Simoni, S.; Angeli, G. The impact of eriophyoids on crops: Recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Exp. Appl. Acarol. 2010, 51, 151–168. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Moya, C.A.; De Giosa, M.; de Moraes, G.J.; Soto, J.A.A.; Morel, M.; Revynthi, A.M.; Carrillo, D. First report of Acalitus simplex (Acari: Eriophyidae) in the Dominican Republic. Novit. Caribaea 2025, 26, 77–83. [Google Scholar] [CrossRef]
- Hoy, M.A. Agricultural Acarology: Introduction to Integrated Mite Management; CRC Press: Boca Raton, FL, USA, 2011; Volume 7, p. 410. [Google Scholar]
- Raga, A.; Mineiro, J.L.D.C.; Siloto, R.C. Ácaro Aceria litchii (Keifer) (Prostigmata: Eriophyidae) nova praga da lichieira no Brasil. Instituto Biológico, Documento Técnico 2011, 12, 1–9. [Google Scholar]
- Monteiro de Castro e Castro, B.; Plata-Rueda, A.; Meloni Silva, W.; Guimarães de Menezes, C.W.; Wilcken, C.F.; Cola Zanuncio, J. Management of Aceria litchii (Acari: Eriophyidae) on Litchi chinensis. Rev. Colomb. Entomol. 2018, 44, 2–7. [Google Scholar] [CrossRef]
Pesticide | Trade Name | Active Ingredient | Pesticide Group a | Rate b | Rate in 50 mL Solution | Site c | EPA Registration Number d |
---|---|---|---|---|---|---|---|
Biorational Pesticides | Bush Doctor Force of Nature | Garlic oil | Unclassified | 1.53 L/ha | 0.59 mL | G, L, N, S | FIFRA 25 (b) exempt |
NUKE EM® | Citric acid | Unclassified | 0.096 L/ha | 3.13 mL | G, L, N, S | FIFRA 25 (b) exempt | |
Thyme® Guard | Thyme oil | Unclassified | 0.5% | 0.25 mL | G, L, N, S | FIFRA 25 (b) exempt | |
Suffoil–X® | Mineral Oil | Unclassified | 2% | 1 mL | G, L, N | 48813–1–68539 | |
M–PEDE® | Potassium salts of fatty acids | Unclassified | 0.03 L/ha | 0.98 mL | G, I, L, N | 10163–324 | |
Conventional Acaricides/Insecticides | Avid 0.15EC | Abamectin | 6 | 0.05 L/ha | 0.016 mL | G, L, S | 100–896 |
Akari® 5SC | Fenpyroximate | 21A | 0.29 L/ha | 0.094 mL | N, I, L | 71711–4 | |
Talstar® P | Bifenthrin | 3A | 0.26 L/ha | 0.08 mL | G, L, I | 279–3206 | |
Forbid® 4F | Spiromesifen | 23 | 0.05 L/ha | 0.016 mL | L | 432–1279 |
Spray Application | Pesticide | Mean ± SE | 95% Cl Lower | 95% Cl Upper |
---|---|---|---|---|
Curative Application | Garlic oil | 8.33 ± 2.16 | 5.01 | 13.85 |
Citric acid | 19.33 ± 4.78 | 11.91 | 31.38 | |
Thyme oil | 17.26 ± 4.31 | 10.58 | 28.14 | |
Mineral Oil | 9.29 ± 2.39 | 5.61 | 15.40 | |
Potassium salts of fatty acids | 22.67 ± 5.57 | 14.00 | 36.69 | |
Abamectin | 1.10 ± 0.41 | 0.53 | 2.27 | |
Fenpyroximate | 22.43 ± 5.51 | 13.86 | 36.29 | |
Bifenthrin | 39.37 ± 9.43 | 24.62 | 62.94 | |
Spiromesifen | 31.92 ± 7.69 | 19.91 | 51.18 | |
Water | 33.75 ± 8.14 | 21.04 | 54.13 | |
Prophylactic Application | Garlic oil | 12.09 ± 0.92 | 10.41 | 14.04 |
Citric acid | 5.01 ± 0.46 | 4.18 | 5.99 | |
Thyme oil | 6.51 ± 0.56 | 5.50 | 7.71 | |
Mineral Oil | 20.96 ± 1.48 | 18.25 | 24.08 | |
Potassium salts of fatty acids | 5.57 ± 0.50 | 4.67 | 6.64 | |
Abamectin | 22.24 ± 1.56 | 19.39 | 25.52 | |
Fenpyroximate | 5.10 ± 0.47 | 4.26 | 6.11 | |
Bifenthrin | 5.14 ± 0.47 | 4.30 | 6.15 | |
Spiromesifen | 4.32 ± 0.41 | 3.58 | 5.22 | |
Water | 1.40 ± 0.22 | 1.04 | 1.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Giosa, M.; Dale, A.G.; Wu, X.; Revynthi, A.M. Potential of Commercial Biorational and Conventional Pesticides to Manage the Ruellia Erinose Mite in Ornamental Landscapes. Insects 2025, 16, 801. https://doi.org/10.3390/insects16080801
De Giosa M, Dale AG, Wu X, Revynthi AM. Potential of Commercial Biorational and Conventional Pesticides to Manage the Ruellia Erinose Mite in Ornamental Landscapes. Insects. 2025; 16(8):801. https://doi.org/10.3390/insects16080801
Chicago/Turabian StyleDe Giosa, Marcello, Adam G. Dale, Xingbo Wu, and Alexandra M. Revynthi. 2025. "Potential of Commercial Biorational and Conventional Pesticides to Manage the Ruellia Erinose Mite in Ornamental Landscapes" Insects 16, no. 8: 801. https://doi.org/10.3390/insects16080801
APA StyleDe Giosa, M., Dale, A. G., Wu, X., & Revynthi, A. M. (2025). Potential of Commercial Biorational and Conventional Pesticides to Manage the Ruellia Erinose Mite in Ornamental Landscapes. Insects, 16(8), 801. https://doi.org/10.3390/insects16080801