Lacmellea oblongata and Other Undervalued Amazonian Fruits as Functional, Antioxidant, and Antimicrobial Matrices
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Physicochemical Analyses
Mineral Profile
2.3. Analysis of Bioactive Compounds
2.3.1. Ascorbic Acid
2.3.2. Organic Acid Profile
2.3.3. Carotenoid Profile
2.3.4. Phenol Profile
2.4. Antioxidant Activity Analyses
2.5. Antimicrobial Activity Analyses
2.5.1. Antibacterial Activity
2.5.2. Antifungal Activity
2.6. Statistical Analysis
3. Results
3.1. Physicochemical Characteristics
3.2. Analysis of Bioactive Compounds
3.3. Antioxidant Activity Analyses
3.4. Antimicrobial Activity Analyses
3.5. Statistical Analysis
4. Discussion
4.1. Physicochemical Analyses
4.2. Analysis of Bioactive Compounds
4.3. Antioxidant Activity Analyses
4.4. Antimicrobial Activity Analyses
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duarte-Casar, R.; González-Jaramillo, N.; Bailon-Moscoso, N.; Rojas-Le-Fort, M.; Romero-Benavides, J. Five Underutilized Ecuadorian Fruits and Their Bioactive Potential as Functional Foods and in Metabolic Syndrome: A Review. Molecules 2024, 29, 2904. [Google Scholar] [CrossRef]
- Vasconcelos, O.; Carvalhoo, R.; Teixeira-Costa, B. Sources of Carotenoids in Amazonian Fruits. Molecules 2024, 29, 2190. [Google Scholar] [CrossRef]
- Belmonte-Herrera, B.; Domínguez-Avila, J.; Wall-Medrano, A.; Ayala-Zavala, J.; Preciado-Saldaña, A.; Salazar-López, N.; López-Martínez, L.; Yahia, E.; Robles-Sánchez, R.; Gonzáles-Aguilar, G. Lesser-Cosumed Tropical Fruits and Their by-Products: Phytochemical Content and Their Antioxidant and Anti-Inflammatory Potential. Nutrients 2022, 14, 3663. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Salazar, I.; Guachamin, A.; Alomoto, M.; Cerna, M.; Mendez, G.; Heredia-Moya, J.; Vera, E. Bioactive Compounds, Antioxidant, and Antimicrobial Activity of Seeds and Mucilage of Non-Traditional Cocoas. Antioxidants 2025, 14, 299. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Capa, M.; Corell González, M.; Mestanza-Ramón, C. Edible Fruits from the Ecuadorian Amazon: Ethnobotany, Physicochemical Characteristics, and Bioactive Components. Plants 2023, 12, 3635. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Guachamin, A.; Villacís, M.; Rivera, J.; Neto, M.; Méndez, G.; Heredia-Moya, J.; Vera, E. Evaluation of Bioactive Compounds and Antioxidant Activity in 51 Minor Tropical Fruits of Ecuador. Foods 2023, 12, 4439. [Google Scholar] [CrossRef]
- Gómez-Maqueo, A.; Escobedo-Avellaneda, Z.; Welti-Chanes, J. Phenolic Compounds in Mesoamerican Fruits—Characterization, Health Potential and Processing with Innovative Technologies. Int. J. Mol. Sci. 2020, 21, 8357. [Google Scholar] [CrossRef]
- Alves, R.; Lopes, G.; Salvador, S.; Cifuentes, A.; Block, J. Nutritional Composition and Bioactive Compounds of Native Brazilian Fruits of the Arecaceae Family and Its Potential Applications for Health Promotion. Nutrients 2022, 14, 4009. [Google Scholar] [CrossRef]
- Munekata, P.; Pateiro, M.; Domínguez, R.; Nieto, G.; Kumar, M.; Dhama, K.; Lorenzo, J. Bioactive Compounds from Fruits as Preservatives. Foods 2023, 12, 343. [Google Scholar] [CrossRef] [PubMed]
- Sayago-Ayerdi, S.; García-Martínez, D.; Ramírez-Castillo, A.; Ramírez-Concepción, H.; Viuda-Martos, M. Tropical Fruits and Their Co-Products as Bioactive Compounds and Their Health Effects: A Review. Foods 2021, 10, 1952. [Google Scholar] [CrossRef] [PubMed]
- Suriyaprom, S.; Mosoni, P.; Leroy, S.; Kaewkod, T.; Desvaux, M.; Tragoolpua, Y. Antioxidants of Fruit Extracts as Antimicrobial Agents against Pathogenic Bacteria. Antioxidants 2022, 11, 602. [Google Scholar] [CrossRef]
- Takó, M.; Kerekes, E.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant Phenolics and Phenolic-Enriched Extracts as Antimicrobial Agents against Food-Contaminating Microorganisms. Antioxidants 2020, 9, 165. [Google Scholar] [CrossRef]
- Manso, T.; Lores, M.; De-Miguel, T. Antimicrobial Activity of Polyphenols and Natural Olyphenolic Extracts on Clinical Isolates. Antibiotics 2022, 11, 46. [Google Scholar] [CrossRef]
- Zambrano, C.; Kerekes, E.; Kotogán, A.; Papp, T.; Vágvölgyi, C.; Krisch, J.; Takó, M. Antimicrobial Activity of Grape, Apple and Pitahaya Residue Extracts after Carbohydrase Treatment against Food-Related Bacteria. LWT 2019, 100, 416–425. [Google Scholar] [CrossRef]
- Bezerra, V.; Almeida-Bezerra, J.; Rodrigues, A.; Bezerra, M.; Gregorio, M.; Vieira, A.; Leite, R.; Goncalves, J.; Figueiredo, M.; De-Alencar, V.; et al. The Genus Miconia Ruiz & Pav. (Melastomataceae): Ethnomedicinal Uses, Pharmacology, and Phytochemistry. Molecules 2022, 27, 4132. [Google Scholar] [CrossRef]
- De-la-Torre, L.; Navarrete, H.; Muriel, P.; Macá, M.; Balslev, H. Enciclopedia de las Plantas Útiles del Ecuador; Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador: Quito, Ecuador; Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus: Aarhus, Denmark, 2008; ISBN 9789978771358. Available online: https://bibdigital.rjb.csic.es/records/item/16016-enciclopedia-de-las-plantas-utiles-del-ecuador (accessed on 2 July 2025).
- Viafara-Banguera, D.; Reyes-Mera, J.; Abreu-Naranjo, R. Caracterización Nutricional de La Pulpa de La Fruta Pitón (Grias Neuberthii) de La Amazonía Ecuatoriana. Rev. Multidiscip. Investig. Contemp. 2024, 2, 96–115. [Google Scholar] [CrossRef]
- Gallegos, M.; Díaz, B.; López, J. Componentes Bioactivos y Usos Potenciales de La Uva Silvestre (Pourouma Cecropiifolia) En La Agroindustria, Una Revisión. Reciena 2022, 1, 36–44. [Google Scholar] [CrossRef]
- Shetty, M.; Vasudeva, K.; Sakthivel, T.; Suresh, G.; Krishna, H.; Vishnuvardhana, K.; Kumar, A. Polyphenolic Profiles in Edible Annona Spp. Using High-Performance Liquid Chromatography (HPLC-MS/MS). Environ. Conserv. J. 2020, 21, 201–208. [Google Scholar] [CrossRef]
- NTE-INEN-1750:1994; Hortalizas y Frutas Frescas. Muestreo. INEN: Quito, Ecuador, 2012.
- Coyago-Cruz, E.; Valenzuela, D.; Guachamin, A.; Méndez, G.; Heredia-Moya, J.; Vera, E. Bioactive Compound Profiling and Antioxidant Activity of Phytelephas Tenuicaulis and Other Amazonian Fruits. Foods 2024, 13, 2151. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Alarcón, A.; Guachamin, A.; Méndez, G.; Osorio, E.; Heredia-Moya, J.; Zuñiga-Miranda, J.; Beltrán-Sinchiguano, E.; Vera, E. Functional, Antioxidant, Antibacterial, and Antifungal Activity of Edible Flowers. Antioxidants 2024, 13, 1297. [Google Scholar] [CrossRef]
- Mayorga-Ramos, A.; Zúñiga-Miranda, J.; Coyago-Cruz, E.; Heredia-Moya, J.; Guamán-Bautista, J.; Guamán, L. Phytochemical Composition and Biological Properties of Macleania Rupestris Fruit Extract: Insights into Its Antimicrobial and Antioxidant Activity. Antioxidants 2025, 14, 394. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Di-Luca, A.; Desantis, S.; Martemucci, G. Antioxidant Synergy in a Mixture of Powder Plant Leaves and Effects on Metabolic Profile, Oxidative Status and Intestinal Morpho-Histochemical Features of Laying Hens. Animals 2025, 15, 308. [Google Scholar] [CrossRef] [PubMed]
- Felföldi, Z.; Ranga, F.; Roman, I.; Sestras, A.; Vodnar, D.; Prohens, J.; Sestras, R. Analysis of Physico-Chemical and Organoleptic Fruit Parameters Relevant for Tomato Quality. Agronomy 2022, 12, 1232. [Google Scholar] [CrossRef]
- WFO The World Flora Online. Available online: https://wfoplantlist.org/plant-list (accessed on 14 June 2024).
- Subedi, T. Determination of Chemical Parameters of Fruits Available in the Markets of Pokhara, Nepal. Prithvi J. Res. Innov. 2022, 4, 11–23. [Google Scholar] [CrossRef]
- Arias, G. Estudio Químico Bromatológico y Screening Fitoquímico Del Fruto de Pourouma Cecropiifolia C. Martius “Uvilla”. Cienc. Investig. 2011, 14, 9–11. [Google Scholar] [CrossRef]
- Reyes-Mera, J.; Viafara-Banguera, D.; Abreu-Naranjo, R. Caracterización Química y Antioxidante Del Mucílago y La Cáscara de Uva de Monte (Pourouma Cecropiifolia) de La Amazonía Ecuatoriana. Rev. Multidiscip. Investig. Contemp. 2024, 2, 74–95. [Google Scholar] [CrossRef]
- Rolić, T.; Yazdani, M.; Mandić, S.; Distante, S. Iron Metabolism, Calcium, Magnesium and Trace Elements: A Review. Biol. Trace Elem. Res. 2024, 203, 2216–2225. [Google Scholar] [CrossRef]
- Guamán-Ortiz, L.; Romero-Benavides, J.; Suarez, A.; Torres-Aguilar, S.; Castillo-Veintimilla, P.; Samaniego-Romero, J.; Ortiz-Diaz, K.; Bailon-Moscoso, N. Cytotoxic Property of Grias Neuberthii Extract on Human Colon Cancer Cells: A Crucial Role of Autophagy. Evid.-Based Complement. Altern. Med. 2020, 2020, 1565306. [Google Scholar] [CrossRef] [PubMed]
- Kusmardiyani, S.; Suharli, Y.; Insanu, M.; Fidrianny, I. Phytochemistry and Pharmacological Activities of Annona Genus: A Review. Curr. Res. Biosci. Biotechnol. 2020, 2, 77–88. [Google Scholar] [CrossRef]
- Gandhi, S.; Gandhi, G.; Antony, P.; Hillary, V.; Ceasar, S.; Hariharan, G.; Liu, Y.; Gurgel, R.; Quintans, J.; Quintans-Júnior, L. Health Functions and Related Molecular Mechanisms of Miconia Genus: A Systematic Review. Heliyon 2023, 9, e14609. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Guachamin, A.; Méndez, G.; Moya, M.; Viera, W.; Heredia-Moya, J.; Beltrán, E.; Vera, E.; Villacís, M. Functional and Antioxidant Evaluation of Two Ecotypes of Control and Grafted Tree Tomato (Solanum Betaceum) at Different Altitudes. Foods 2023, 12, 3494. [Google Scholar] [CrossRef]
- Salim, A.; Deiana, P.; Fancello, F.; Molinu, M.; Santona, M.; Zara, S. Antimicrobial and Antibiofilm Activities of Pomegranate Peel Phenolic Compounds: Varietal Screening through a Multivariate Approach. J. Bioresour. Bioprod. 2023, 8, 146–161. [Google Scholar] [CrossRef]
- Ramírez, N.; Briceño, H. Allometry and the Distribution of Fruit and Seed Traits across Tropical Plant Species. Austral Ecol. 2024, 49, e13589. [Google Scholar] [CrossRef]
- Bibwe, B.; Mahawar, M.; Jalgaonkar, K.; Meena, V.; Kadam, D. Mass Modeling of Guava (Cv. Allahabad Safeda) Fruit with Selected Dimensional Attributes: Regression Analysis Approach. J. Food Process Eng. 2022, 45, e13978. [Google Scholar] [CrossRef]
- Martínez, J.; Calderón, J. La Función y Transporte del Ácido L-Málico en Plantas: Un Dicarboxílico Estrella. Rev. Educ. Bioquím. 2005, 24, 39–46. [Google Scholar]
- Villa, P.; Scienza, A.; Romano, F.; Stefini, S. Variability of Must Acidity in Self Pollinated Chardonnay Progeny. Vitis 1990, 29, 93–96. [Google Scholar]
- Zhang, L.; Zhang, J.; Guo, J. Relationships between Organic Acid Metabolism and the Accumulation of Sugars and Calcium in Fruits of Cerasus Humilis during Different Development Stages. Plants 2024, 13, 3053. [Google Scholar] [CrossRef] [PubMed]
- Coyago-Cruz, E. Estudio Sobre el Contenido en Carotenoides y Compuestos Fenólicos de Tomates y Flores en el Contexto de la Alimentación Funcional. Ph.D. Thesis, Universidad de Sevilla, Departamento de Ciencias Agroforestales, Sevilla, Spain, 2017. [Google Scholar]
- Choi, S.-T.; Ahn, G.-H.; Kim, E.-G.; Son, J.-Y.; Park, Y.-O.; Joung, W.-K. Fruit Characteristics and Mineral Nutrient Concentrations Depending on Different Sizes of “Fuyu” Persimmon Fruits. Agric. Sci. 2019, 10, 1015–1022. [Google Scholar] [CrossRef]
- Dias, C.; Ribeiro, T.; Rodrigues, A.; Vasconcelos, M.; Ferrante, A.; Pintado, M. Relationship between Minerals and Physicochemical Parameters with Fruit Quality in ‘Rocha’ Pear Orchards. Plant Soil 2024, 496, 243–255. [Google Scholar] [CrossRef]
- Martín, D.A. Los Compuestos Fenólicos, Un Acercamiento a Su Biosíntesis, Síntesis y Actividad Biológica. Rev. Investig. Agrar. Ambient. 2018, 9, 81–104. [Google Scholar] [CrossRef]
- Simonetti, G.; Brasili, E.; Pasqua, G. Antifungal Activity of Phenolic and Polyphenolic Compounds from Different Matrices of Vitis Vinifera L. against Human Pathogens. Molecules 2020, 25, 3748. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.; Gómez, H.; Seabra, S.; Maraschin, M.; Tecchio, M.; Vanz, C. Functional and Nutraceutical Compounds of Tomatoes as Affected by Agronomic Practices, Postharvest Management, and Processing Methods: A Mini Review. Front. Nutr. 2022, 9, 868492. [Google Scholar] [CrossRef]
- Ma, W.; Li, Y.; Nai, G.; Liang, G.; Ma, Z.; Chen, B.; Mao, J. Changes and Response Mechanism of Sugar and Organic Acids in Fruits under Water Deficit Stress. PeerJ 2022, 10, e13691. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.; Kim, H. The Role of Vitamin C, Vitamin D, and Selenium in Immune System against COVID-19. Molecules 2020, 25, 5346. [Google Scholar] [CrossRef] [PubMed]
Miconia crenata | Grias neuberthii | Lacmellea oblongata | Pourouma cecropiifolia | Annona edulis | |
---|---|---|---|---|---|
Weight (g) | 0.2 ± 0.0 | 229.9 ± 7.8 | 5.9 ± 1.5 | 4.4 ± 0.6 | 242.6 ± 0.1 |
Longitudinal diameter (mm) | 9.2 ± 0.4 | 112.7 ± 11.4 | 21.1 ± 8.2 | 22.4 ± 1.2 | 83.6 ± 0.3 |
Equatorial diameter (mm) | 7.3 ± 0.1 | 47.1 ± 2.7 | 23.3 ± 1.8 | 20.9 ± 1.5 | 80.8 ± 0.1 |
pH | 5.1 ± 0.0 | 5.0 ± 0.0 | 5.1 ± 0.0 | 4.3 ± 0.0 | 6.1 ± 0.0 |
Total soluble solids (°Brix) | 8.0 ± 0.0 | 3.0 ± 0.0 | 5.7 ± 0.6 | 12.0 ± 1.0 | 1.0 ± 0.0 |
Total titratable acidity (%) | 4.4 ± 0.5 | 0.2 ± 0.0 | 0.1 ± 0.0 | 2.0 ± 0.2 | 0.2 ± 0.0 |
Humidity (%) | 76.8 ± 3.2 | 80.0 ± 0.9 | 86.2 ± 0.9 | 84.2 ± 0.7 | 83.2 ± 0.8 |
Ash (%) | 0.9 ± 0.3 | 1.1 ± 0.0 | 0.7 ± 0.1 | 0.9 ± 0.1 | 1.5 ± 0.5 |
Mineral profile (mg/100 g DW) | |||||
Ca | 1046.1 ± 34.6 | 258.2 ± 13.8 | 164.5 ± 9.5 | 998.1 ± 57.6 | 430.1 ± 4.6 |
Fe | 12.6 ± 1.2 | nd | 49.6 ± 0.0 | nd | nd |
K | 1373.3 ± 74.4 | 1643.9 ± 38.7 | 1111.1 ± 0.1 | 2422.7 ± 11.2 | 2389.1 ± 11.5 |
Mg | 131.1 ± 21.4 | 87.3 ± 0.5 | 75.8 ± 0.5 | 72.8 ± 9.6 | 91.4 ± 4.6 |
Na | 13.8 ± 1.9 | 55.7 ± 0.0 | 67.4 ± 2.4 | 27.5 ± 3.3 | 17.6 ± 1.4 |
Miconia crenata | Grias neuberthii | Lacmellea oblongata | Pourouma cecropiifolia | Annona edulis | ||
---|---|---|---|---|---|---|
Ascorbic acid (mg/100 g DW) | 12.5 ± 0.3 | 25.4 ± 0.7 | nd | 6.6 ± 0.2 | 0.2 ± 0.0 | |
Organic acid profile (mg/100 g DW) | ||||||
Citric acid | 379.8 ± 47.6 | 178.2 ± 19.8 | 3589.7 ± 11.4 | 1013.6 ± 1.9 | 583.8 ± 4.9 | |
Malic acid | 1845.5 ± 29.8 | 2703.4 ± 63.5 | 255.2 ± 18.1 | 26.6 ± 4.6 | 350.0 ± 4.3 | |
Tartaric acid | 40.6 ± 2.2 | 37.6 ± 2.9 | 42.9 ± 3.1 | 23.4 ± 0.7 | 901.3 ± 20.8 | |
Total organic acid | 2265.9 ± 34.4 | 2919.2 ± 86.2 | 3887.7 ± 13.6 | 1063.6 ± 7.2 | 1835.2 ± 21.4 | |
Carotenoid profile (mg/100 g DW) | ||||||
Violaxanthin | 0.1 ± 0.0 | |||||
Lutein | 4.1 ± 0.6 | 0.6 ± 0.0 | 1.0 ± 0.0 | 0.1 ± 0.0 | ||
Zeaxanthin | 0.1 ± 0.0 | 0.1 ± 0.0 | ||||
Zeionaxanthin | 0.2 ± 0.0 | |||||
α-carotene | 1.1 ± 0.0 | 0.1 ± 0.0 | ||||
β-carotene | 44.8 ± 0.8 | 1.3 ± 0.0 | ||||
Total carotenoid | 4.4 ± 0.7 | 46.1 ± 0.8 | 4.8 ± 0.0 | 10.5 ± 1.1 | 0.1 ± 0.0 | |
Chlorophylls and their derivatives (mg/100 g DW) | ||||||
Chlorophyll b | 27.2 ± 2.9 | 2.8 ± 0.0 | 0.2 ± 0.0 | |||
Pheophytin b | 17.8 ± 4.3 | 9.5 ± 0.9 | ||||
Total chlorophylls | 45.0 ± 2.7 | 2.8 ± 0.0 | 9.5 ± 0.9 | 0.2 ± 0.0 | ||
Total phenols (mg/100 g DW) | ||||||
Galic acid | 4.7 ± 0.1 | 124.2 ± 3.6 | 11.4 ± 0.5 | 28.8 ± 1.8 | 403.2 ± 3.2 | |
Cathechin | 0.1 ± 0.0 | |||||
Syringic acid | 955.3 ± 29.2 | 124.3 ± 6.5 | 111.7 ± 0.5 | |||
Chlorogenic acid | 734.2 ± 35.7 | 213.8 ± 16.9 | 1976.7 ± 19.2 | |||
Caffeic acid | 3287.9 ± 24.4 | 1613.2 ± 0.2 | ||||
Naringenin | 2086.1 ± 32.6 | |||||
Ferulic acid | 311.9 ± 12.6 | 1445.5 ±53.5 | ||||
Kamferol | 15.6 ± 0.4 | |||||
Quercetin glycoside | 24.3 ± 0.8 | |||||
Quercetin | 27.4 ± 0.9 | |||||
Total phenols | 960.0 ± 29.4 | 4650.0 ± 29.7 | 2423.0 ± 48.5 | 5064.3 ± 13.6 | 403.2 ± 3.2 |
Miconia crenata | Grias neuberthii | Lacmellea oblongata | Pourouma cecropiifolia | Annona edulis | ||
---|---|---|---|---|---|---|
Antioxidant Activity (mmol TE/100 g DW) | ||||||
DPPH | 4.2 ± 0.3 | 2.9 ± 0.2 | 3.6 ± 0.1 | 3.7 ± 0.1 | 0.8 ± 0.1 | |
ABTS | 5.5 ± 0.9 | 6.4 ± 0.1 | 6.6 ± 0.1 | 5.9 ± 0.4 | 2.6 ± 0.1 |
Zone of Inhibition (mm) | ||||||
---|---|---|---|---|---|---|
Bacterial strain | Fungal strain | |||||
Fruit Extracts | E. coli ATCC 8739 | S. aureus ATCC 6538P | P. aeruginosa ATCC 9027 | S. mutans ATCC 25175 | C. albicans ATCC 1031 | C. tropicalis ATCC 13803 |
Miconia crenata | 21.0 ± 1.0 | 11.0 ± 0.5 | 14.2 ± 1.0 | 10.0 ± 0.5 | ||
Grias neuberthii | 8.0 ± 0.5 | 14.0 ± 1.2 | - | 10.0 ± 1.2 | - | - |
Lacmellea oblongata | 16.0 ± 1.0 | 11.0 ± 0.0 | - | 12.0 ± 1.2 | 17.5 ± 0.6 | 14.0 ± 1.2 |
Pourouma cecropiifolia | 14.0 ± 1.0 | 11.0 ± 0.5 | 8.5 ± 0.6 | 12.0 ± 2.3 | - | - |
Annona edulis | - | - | - | - | ||
Control | 24.5 ± 0.5 | 28.0 ± 1.0 | 25.0 ± 1.2 | 28.0 ± 0.5 | 12.0 ± 0.5 | 17.0 ± 1.0 |
Microbial Strain | Minimal Inhibitory Concentration (mg/mL) | ||||
---|---|---|---|---|---|
Miconia crenata | Grias neuberthii | Lacmellea oblongata | Pourouma cecropiifolia | Annona edulis | |
E. coli ATCC 8739 | 2.7 | 84.6 | 31.3 | 10.7 | - |
P. aeruginosa ATCC 9027 | 43.1 | - | - | 85.9 | - |
S. aureus ATCC 6538P | 86.3 | 10.6 | 83.3 | 85.9 | - |
S. mutans ATCC 25175 | 21.6 | 21.1 | 10.4 | 21.5 | - |
C. albicans ATCC 1031 | - | - | 20.8 | - | |
C. tropicalis ATCC 13803 | - | - | 20.8 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coyago-Cruz, E.; Méndez, G.; Escobar-Quiñonez, R.; Cerna, M.; Heredia-Moya, J. Lacmellea oblongata and Other Undervalued Amazonian Fruits as Functional, Antioxidant, and Antimicrobial Matrices. Antioxidants 2025, 14, 924. https://doi.org/10.3390/antiox14080924
Coyago-Cruz E, Méndez G, Escobar-Quiñonez R, Cerna M, Heredia-Moya J. Lacmellea oblongata and Other Undervalued Amazonian Fruits as Functional, Antioxidant, and Antimicrobial Matrices. Antioxidants. 2025; 14(8):924. https://doi.org/10.3390/antiox14080924
Chicago/Turabian StyleCoyago-Cruz, Elena, Gabriela Méndez, Ruth Escobar-Quiñonez, Marco Cerna, and Jorge Heredia-Moya. 2025. "Lacmellea oblongata and Other Undervalued Amazonian Fruits as Functional, Antioxidant, and Antimicrobial Matrices" Antioxidants 14, no. 8: 924. https://doi.org/10.3390/antiox14080924
APA StyleCoyago-Cruz, E., Méndez, G., Escobar-Quiñonez, R., Cerna, M., & Heredia-Moya, J. (2025). Lacmellea oblongata and Other Undervalued Amazonian Fruits as Functional, Antioxidant, and Antimicrobial Matrices. Antioxidants, 14(8), 924. https://doi.org/10.3390/antiox14080924