Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (273)

Search Parameters:
Keywords = circulating free DNA (cfDNA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1939 KiB  
Review
Dual Nature of Neutrophil Extracellular Traps (NETs)—From Cancer’s Ally to Therapeutic Target
by Karolina Buszka, Claudia Dompe, Kinga Derwich, Izabela Pieścikowska, Michał Nowicki and Joanna Budna-Tukan
Cells 2025, 14(15), 1200; https://doi.org/10.3390/cells14151200 - 5 Aug 2025
Abstract
Cancer remains a major global health challenge requiring the development of diagnostic and therapeutic strategies. Liquid biopsy is considered a promising minimally invasive tool for cancer screening, prognosis and treatment monitoring. Recent studies suggest that neutrophil extracellular traps (NETs) may also be potential [...] Read more.
Cancer remains a major global health challenge requiring the development of diagnostic and therapeutic strategies. Liquid biopsy is considered a promising minimally invasive tool for cancer screening, prognosis and treatment monitoring. Recent studies suggest that neutrophil extracellular traps (NETs) may also be potential liquid biopsy markers. NETs are web-like chromatin structures released by neutrophils in response to various stimuli to trap and neutralize pathogens. However, excessive or dysregulated NET formation has been implicated in tumor progression and metastasis. Elevated levels of NETs have been observed in patients with various types of cancer and correlate with disease stage and prognosis. The presence of NET markers such as citrullinated histone H3 (H3Cit), neutrophil elastase (NE) and myeloperoxidase (MPO) has been associated with higher tumor burden and poorer clinical outcomes. Several studies have shown a positive correlation between NET markers and circulating free DNA (cfDNA) levels, suggesting that NETs may increase the sensitivity of liquid biopsy in detecting and monitoring cancer progression. This review examines the role of NETs in the tumor microenvironment, their contribution to cancer progression and metastasis, and their potential use in liquid biopsy and cancer therapy. Full article
(This article belongs to the Special Issue Targeting Tumor Microenvironments for Enhanced Cancer Immunotherapy)
Show Figures

Figure 1

22 pages, 513 KiB  
Review
Unraveling NETs in Sepsis: From Cellular Mechanisms to Clinical Relevance
by Giulia Pignataro, Stefania Gemma, Martina Petrucci, Fabiana Barone, Andrea Piccioni, Francesco Franceschi and Marcello Candelli
Int. J. Mol. Sci. 2025, 26(15), 7464; https://doi.org/10.3390/ijms26157464 - 1 Aug 2025
Viewed by 172
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, frequently resulting in septic shock and multi-organ failure. Emerging evidence highlights the critical role of neutrophil extracellular traps (NETs) in the pathophysiology of sepsis. NETs are extracellular structures composed of [...] Read more.
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, frequently resulting in septic shock and multi-organ failure. Emerging evidence highlights the critical role of neutrophil extracellular traps (NETs) in the pathophysiology of sepsis. NETs are extracellular structures composed of chromatin DNA, histones, and granular proteins released by neutrophils through a specialized form of cell death known as NETosis. While NETs contribute to the containment of pathogens, their excessive or dysregulated production in sepsis is associated with endothelial damage, immunothrombosis, and organ dysfunction. Several NET-associated biomarkers have been identified, including circulating cell-free DNA (cfDNA), histones, MPO-DNA complexes, and neutrophil elastase–DNA complexes, which correlate with the disease severity and prognosis. Therapeutic strategies targeting NETs are currently under investigation. Inhibition of NET formation using PAD4 inhibitors or ROS scavengers has shown protective effects in preclinical models. Conversely, DNase I therapy facilitates the degradation of extracellular DNA, reducing the NET-related cytotoxicity and thrombotic potential. Additionally, heparin and its derivatives have demonstrated the ability to neutralize NET-associated histones and mitigate coagulopathy. Novel approaches include targeting upstream signaling pathways, such as TLR9 and IL-8/CXCR2, offering further therapeutic promise. Full article
(This article belongs to the Collection Advances in Cell and Molecular Biology)
Show Figures

Figure 1

17 pages, 4942 KiB  
Article
Detection of XPO1E571K Gene Mutation from Cell-Free DNA in Blood Circulation of Lymphoma Patients by FAST-COLD PCR
by Suwit Duangmano, Natsima Viriyaadhammaa, Pinyaphat Khamphikham, Nutjeera Intasai, Adisak Tantiworawit, Teerada Daroontum, Sawitree Chiampanichayakul and Songyot Anuchapreeda
Int. J. Mol. Sci. 2025, 26(15), 7324; https://doi.org/10.3390/ijms26157324 - 29 Jul 2025
Viewed by 257
Abstract
The XPO1 (exportin 1) gene encodes exportin 1 protein responsible for transporting proteins and RNA from the nucleus to the cytoplasm. It has been used as a biomarker for lymphoma detection. XPO1E571K mutation has been frequently observed and identified as [...] Read more.
The XPO1 (exportin 1) gene encodes exportin 1 protein responsible for transporting proteins and RNA from the nucleus to the cytoplasm. It has been used as a biomarker for lymphoma detection. XPO1E571K mutation has been frequently observed and identified as a good prognostic indicator for lymphoma patients. The detection of a target molecule released by lymphoma cells into blood circulation (cell-free circulating tumor DNA, cfDNA) is a better method than tissue biopsy. However, cfDNA concentration in blood circulation is very low in cancer patients. Therefore, a precise and sensitive method is needed. In this study, cfDNA was extracted, and then the XPO1 gene was detected and amplified using conventional PCR. Sanger sequencing was employed to verify the DNA sequences. FAST-COLD-PCR was developed to detect XPO1E571K gene mutation using a CFX96 Touch Real-Time PCR System. The optimal critical temperature (Tc) was 73.3 °C, allowing selective amplification of XPO1E571K mutant DNA while wild-type XPO1 could not be amplified. XPO1E571K gene mutation can be detected by this method with high specificity and sensitivity in lymphoma patients. This approach facilitates rapid and straightforward detection in a timely manner after the diagnosis. Accordingly, the optimized FAST-COLD-PCR conditions can be used as a prototype for XPO1E571K mutant detection in lymphoma patients. Full article
(This article belongs to the Special Issue Molecular Research in Hematologic Malignancies)
Show Figures

Figure 1

21 pages, 2238 KiB  
Review
Cell-Free DNA as a Prognostic Biomarker in Oral Carcinogenesis and Oral Squamous Cell Carcinoma: A Translational Perspective
by Pietro Rigotti, Alessandro Polizzi, Vincenzo Quinzi, Andrea Blasi, Teresa Lombardi, Eleonora Lo Muzio and Gaetano Isola
Cancers 2025, 17(14), 2366; https://doi.org/10.3390/cancers17142366 - 16 Jul 2025
Viewed by 432
Abstract
Oral squamous cell carcinoma (OSCC) remains one of the most common malignancies in the head and neck region, often preceded by a spectrum of oral potentially malignant disorders (OPMDs). Despite advances in diagnostic methods, reliable and non-invasive biomarkers for early detection and prognostic [...] Read more.
Oral squamous cell carcinoma (OSCC) remains one of the most common malignancies in the head and neck region, often preceded by a spectrum of oral potentially malignant disorders (OPMDs). Despite advances in diagnostic methods, reliable and non-invasive biomarkers for early detection and prognostic stratification are still lacking. In recent years, circulating cell-free DNA (cfDNA) has emerged as a promising liquid biopsy tool in several solid tumors, offering insights into tumor burden, heterogeneity, and molecular dynamics. However, its application in oral oncology remains underexplored. This study aims to review and discuss the current evidence on cfDNA quantification and mutation analysis (including TP53, NOTCH1, and EGFR) in patients with OPMDs and OSCC. Particular attention is given to cfDNA fragmentation patterns, methylation signatures, and tumor-specific mutations as prognostic and predictive biomarkers. Moreover, we highlight the challenges in standardizing pre-analytical and analytical workflows in oral cancer patients and explore the potential role of cfDNA in monitoring oral carcinogenesis. Understanding cfDNA dynamics in the oral cavity might offer a novel, minimally invasive strategy to improve early diagnosis, risk assessment, and treatment decision-making in oral oncology. Full article
Show Figures

Figure 1

19 pages, 2017 KiB  
Article
Repeatome Analysis of Plasma Circulating DNA in Patients with Cardiovascular Disease: Variation with Cell-Free DNA Integrity/Length and Clinical Parameters
by Stefania Fumarola, Monia Cecati, Francesca Marchegiani, Emanuele Francini, Rosanna Maniscalco, Jacopo Sabbatinelli, Massimiliano Gasparrini, Fabrizia Lattanzio, Fabiola Olivieri and Maurizio Cardelli
Int. J. Mol. Sci. 2025, 26(14), 6657; https://doi.org/10.3390/ijms26146657 - 11 Jul 2025
Viewed by 260
Abstract
Repetitive DNA represents over 50% of the human genome and is an abundant component of circulating cell-free DNA (cfDNA). We previously showed that cfDNA levels and integrity can predict survival in elderly patients with cardiovascular disease. Here, we aimed to clarify whether a [...] Read more.
Repetitive DNA represents over 50% of the human genome and is an abundant component of circulating cell-free DNA (cfDNA). We previously showed that cfDNA levels and integrity can predict survival in elderly patients with cardiovascular disease. Here, we aimed to clarify whether a low-pass next-generation sequencing (NGS) approach can characterize the repeat content of cfDNA. Considering the bimodal distribution of cfDNA fragment lengths, we examined the occurrence of repetitive DNA subfamilies separately in dinucleosomal (>250 bp) and mononucleosomal (≤250 bp) cfDNA sequences from 24 patients admitted for heart failure. An increase in the relative abundance of Alu repetitive elements was observed in the longer fraction, while alpha satellites were enriched in the mononucleosomal fraction. The relative abundance of Alu, ALR, and L1HS DNA in the dinucleosomal fraction correlated with different prognostic biomarkers, and Alu DNA was negatively associated with the presence of chronic kidney disease comorbidity. These results, together with the observed inverse correlation between Alu DNA abundance and cfDNA integrity, suggest that the composition of plasma cfDNA could be determined by multiple mechanisms in different physio-pathological conditions. In conclusion, low-pass NGS is an inexpensive method to analyze the cfDNA repeat landscape and identify new cardiovascular disease biomarkers. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 2995 KiB  
Article
Standardized Workflow and Analytical Validation of Cell-Free DNA Extraction for Liquid Biopsy Using a Magnetic Bead-Based Cartridge System
by Shivaprasad H. Sathyanarayana, Sarah B. Spracklin, Sophie J. Deharvengt, Donald C. Green, Margery D. Instasi, Torrey L. Gallagher, Parth S. Shah and Gregory J. Tsongalis
Cells 2025, 14(14), 1062; https://doi.org/10.3390/cells14141062 - 11 Jul 2025
Viewed by 775
Abstract
Circulating cell-free DNA (cfDNA) is an important biomarker for various cancer types, enabling a non-invasive testing approach. However, pre-analytical variables, including sample collection, tube type, processing conditions, and extraction methods, can significantly impact the yield, integrity, and overall quality of cfDNA. This study [...] Read more.
Circulating cell-free DNA (cfDNA) is an important biomarker for various cancer types, enabling a non-invasive testing approach. However, pre-analytical variables, including sample collection, tube type, processing conditions, and extraction methods, can significantly impact the yield, integrity, and overall quality of cfDNA. This study presents a comprehensive analytical validation of a magnetic bead-based, high-throughput cfDNA extraction system, with a focus on assessing its efficiency, reproducibility, and compatibility with downstream molecular applications. The validation was performed using a range of sample types: synthetic cfDNA spiked into DNA-free plasma, multi-analyte ctDNA plasma controls, Seraseq ctDNA reference material in a plasma-like matrix, extraction specificity controls, residual clinical specimen from patients, and samples from healthy individuals stored at room temperature or 4 °C for up to 48 h to assess stability. Extracted cfDNA was analyzed for concentration, percentage, and fragment size, using the Agilent TapeStation. Variant detection was evaluated using a next-generation sequencing (NGS) assay on the Seraseq ctDNA reference material. The results demonstrated high cfDNA recovery rates, consistent fragment size distribution (predominantly mononucleosomal and dinucleosomal), minimal genomic DNA (gDNA) contamination, and strong concordance between detected and expected variants in reference materials. The workflow also showed robust performance under different study parameters, variable sample conditions, including sample stability and integrity. Together, these findings confirm the efficiency and reliability of the evaluated cfDNA extraction system and underscore the importance of standardized pre-analytical workflows for the successful implementation of liquid biopsy for early cancer detection, therapeutic monitoring, and improved patient outcomes. Full article
(This article belongs to the Special Issue Current Status and Future Challenges of Liquid Biopsy)
Show Figures

Figure 1

36 pages, 1115 KiB  
Review
Role of Liquid Biopsy for Early Detection, Prognosis, and Therapeutic Monitoring of Hepatocellular Carcinoma
by Faris Alrumaihi
Diagnostics 2025, 15(13), 1655; https://doi.org/10.3390/diagnostics15131655 - 28 Jun 2025
Viewed by 642
Abstract
The global prevalence of hepatocellular carcinoma (HCC) is getting worse, leading to an urgent need for improved diagnostic and prognostic strategies. Liquid biopsy, which analyzes circulating tumor cells (CTCs), cell-free DNA (cfDNA), cell-free RNA (cfRNA), and extracellular vesicles (EVs), has emerged as a [...] Read more.
The global prevalence of hepatocellular carcinoma (HCC) is getting worse, leading to an urgent need for improved diagnostic and prognostic strategies. Liquid biopsy, which analyzes circulating tumor cells (CTCs), cell-free DNA (cfDNA), cell-free RNA (cfRNA), and extracellular vesicles (EVs), has emerged as a minimally invasive and promising alternative to traditional tissue biopsy. These biomarkers can be detected using sensitive molecular techniques such as digital PCR, quantitative PCR, methylation-specific assays, immunoaffinity-based CTC isolation, nanoparticle tracking analysis, ELISA, next-generation sequencing, whole-genome sequencing, and whole-exome sequencing. Despite several advantages, liquid biopsy still has challenges like sensitivity, cost-effectiveness, and clinical accessibility. Reports highlight the significance of multi-analyte liquid biopsy panels in enhancing diagnostic sensitivity and specificity. This approach offers a more comprehensive molecular profile of HCC, early detection, and tracking therapeutic treatment, particularly in those cases where single-analyte assays and imaging fail. The technological advancement in the isolation and analysis of CTC, cell-free nucleic acids, and EVs is increasing our understanding of extracting genetic information from HCC tumors and discovering mechanisms of therapeutic resistance. Furthermore, crucial information on tumor-specific transcriptomic and genomic changes can be obtained using cfRNA and cfDNA released into the peripheral blood by tumor cells. This review provides an overview of current liquid biopsy strategies in HCC and their use for early detection, prognosis, and monitoring the effectiveness of HCC therapy. Full article
(This article belongs to the Special Issue Diagnosis and Management of Liver Diseases—2nd Edition)
Show Figures

Figure 1

21 pages, 4456 KiB  
Article
Refined Procedure to Purify and Sequence Circulating Cell-Free DNA in Prostate Cancer
by Samira Rahimirad, Seta Derderian, Lucie Hamel, Eleonora Scarlata, Ginette McKercher, Fadi Brimo, Raghu Rajan, Alexis Rompre-Brodeur, Wassim Kassouf, Rafael Sanchez-Salas, Armen Aprikian and Simone Chevalier
Int. J. Mol. Sci. 2025, 26(12), 5839; https://doi.org/10.3390/ijms26125839 - 18 Jun 2025
Viewed by 593
Abstract
Cell-free DNA (cfDNA), a fragmented DNA circulating in blood, is a promising biomarker for cancer diagnosis and monitoring. Standardization of cfDNA isolation to enhance the sensitivity of molecular analyses in prostate cancer (PCa) is required. Towards this goal, we optimized existing methods to [...] Read more.
Cell-free DNA (cfDNA), a fragmented DNA circulating in blood, is a promising biomarker for cancer diagnosis and monitoring. Standardization of cfDNA isolation to enhance the sensitivity of molecular analyses in prostate cancer (PCa) is required. Towards this goal, we optimized existing methods to obtain a high quantity and quality of cfDNA from low volumes of plasma. The protocol was applied to samples from healthy males and three patient categories: radical prostatectomy (RP), disease-free (>6 years post-RP), and metastatic castration-resistant PCa (mCRPC). The yield was significantly higher in mCRPC cases, and the size of fragments was shorter. We compared for the first time library preparation using two cfDNA inputs and low vs. high sequencing depth. Clonal events were observed irrespective of input and depth, but lower input showed more subclonal events. The clinical application of the refined protocols to cfDNA samples from an mCRPC patient showed no tumor fraction before RP, while it increased to 25% at the advanced stage. Among chromosomal changes and mutations, the androgen receptor gene amplification was detected. Altogether, this comprehensive study on improved cfDNA procedures is highly promising to enhance the quality of liquid biopsy-based research for discoveries and much-needed clinical applications. Full article
Show Figures

Figure 1

12 pages, 925 KiB  
Article
Pre-Amplification of Cell-Free DNA: Balancing Amplification Errors with Enhanced Sensitivity
by Wei Yen Chan, Ashleigh Stewart, Russell J. Diefenbach, Elin S. Gray, Jenny H. Lee, Richard A. Scolyer, Georgina V. Long and Helen Rizos
Biomolecules 2025, 15(6), 883; https://doi.org/10.3390/biom15060883 - 17 Jun 2025
Viewed by 614
Abstract
Circulating tumour DNA (ctDNA) is a promising biomarker for personalised oncology. However, its clinical utility is limited by detection sensitivity, particularly in early-stage disease. T-Oligo Primed Polymerase Chain Reaction (TOP-PCR) is a commercial amplification approach utilising an efficient “half-adapter” ligation design and a [...] Read more.
Circulating tumour DNA (ctDNA) is a promising biomarker for personalised oncology. However, its clinical utility is limited by detection sensitivity, particularly in early-stage disease. T-Oligo Primed Polymerase Chain Reaction (TOP-PCR) is a commercial amplification approach utilising an efficient “half-adapter” ligation design and a single-primer-based PCR strategy. This study evaluated the clinical value and application of cell-free DNA (cfDNA) pre-amplification. cfDNA amplification with TOP-PCR preserved DNA size profiles and resulted in a 22 bp size increase due to the half-adaptor ligation. Gene target amplification rates varied, showing lower efficiency for the GC-rich TERT promoter amplicon and higher efficiency for the BRAF and TP53 amplicons. Optimised pre-amplification (20 ng cfDNA input and 5–7 cycles of PCR) enhanced ctDNA detection sensitivity and expanded sample availability for the detection of multiple tumour-informed mutations. Importantly, PCR errors emerged in pre-amplified cfDNA samples, underscoring the necessity for negative controls and the establishment of stringent mutation positivity thresholds. Full article
(This article belongs to the Special Issue Tumor Genomics and Liquid Biopsy in Cancer Biology)
Show Figures

Figure 1

16 pages, 734 KiB  
Review
Clinical Utility of ctDNA Analysis in Lung Cancer—A Review
by Kamil Makar, Agata Wróbel, Adam Antczak and Damian Tworek
Adv. Respir. Med. 2025, 93(3), 17; https://doi.org/10.3390/arm93030017 - 12 Jun 2025
Viewed by 1952
Abstract
Circulating free DNA (cfDNA) is genetic material released from various cells into bodily fluids. Among its fractions, circulating tumor DNA (ctDNA) originates from tumor cells and reflects their genetic material, including mutations and epigenetic changes. Methods commonly employed for detecting ctDNA in blood [...] Read more.
Circulating free DNA (cfDNA) is genetic material released from various cells into bodily fluids. Among its fractions, circulating tumor DNA (ctDNA) originates from tumor cells and reflects their genetic material, including mutations and epigenetic changes. Methods commonly employed for detecting ctDNA in blood include next-generation sequencing (NGS) and various types of PCR. The presence of ctDNA can be utilized in liquid biopsies for many diagnostic purposes related to various cancers. It is a minimally invasive method of sampling molecular compounds from tumor cells. In this paper, we focus on current knowledge regarding the liquid biopsy of blood ctDNA in the context of lung cancer, one of the leading causes of cancer-related mortality. Currently, as a clinically approved method, liquid biopsy serves as a complementary technique in NSCLC diagnostic and genetic profiling. Other applications of liquid biopsy that are still being investigated include the detection of minimal residual disease (MRD) after curative treatment and response monitoring to systemic treatment. This review discusses current and future potential directions for the development and implementation of ctDNA for patients with NSCLC. Full article
Show Figures

Figure 1

18 pages, 1937 KiB  
Article
Applications for Circulating Cell-Free DNA in Oral Squamous Cell Carcinoma: A Non-Invasive Approach for Detecting Structural Variants, Fusions, and Oncoviruses
by Mahua Bhattacharya, Dan Yaniv, Dylan P. D’Souza, Eyal Yosefof, Sharon Tzelnick, Rajesh Detroja, Tal Wax, Adva Levy-Barda, Gideon Baum, Aviram Mizrachi, Gideon Bachar and Milana Frenkel Morgenstern
Cancers 2025, 17(12), 1901; https://doi.org/10.3390/cancers17121901 - 6 Jun 2025
Viewed by 738
Abstract
Background: Circulating cell-free DNA (cfDNA) has been widely used as a prognostic marker for different cancers. Objective: In this study, we used 30 cfDNA samples from oral squamous cell carcinoma (OSCC), 199 public OSCC samples, and 192 normal samples to study various [...] Read more.
Background: Circulating cell-free DNA (cfDNA) has been widely used as a prognostic marker for different cancers. Objective: In this study, we used 30 cfDNA samples from oral squamous cell carcinoma (OSCC), 199 public OSCC samples, and 192 normal samples to study various correlation factors that could improve the early-stage diagnostics and/or prognosis of OSCC. Methods: The statistical correlation between healthy and OSCC patients was done and deep sequencing analyses was performed to study various genomic alterations likes copy number variation (CNV), and single nucleotide variants (SNVs), gene fusion and genomic integration of viruses. Results: We found that the OSCC patient cfDNA concentration can serve as an indicator of tumor stage, malignancy, and survival prognosis. Deep genome sequencing of cfDNA revealed genomic alterations, such as CNVs, fusion genes, and viral integrations. The CNV analysis suggested a correlation with amplification and deletion in chromosomes at loci 1q, 2q, 3p, 3q, and chromosome 8 at loci q22. Moreover, at these loci, amplification of TP53, PIK3CA, and other genes related to keratinization in OSCC patients was observed. In addition, we identified a novel abundant fusion gene, TRMO-TRNT1 ‘chimera’, in seven high-grade tumor samples. The parental genes of this chimera, TRMO and TRNT1, are known to play roles in tRNA modification and DNA repair, respectively. We have identified SNVs in our OSCC cohort. Some of these SNVs, like KMT2C, MUC3A, and MUC6, have been identified as common cases in different cancer populations. Finally, we detected contigs integrations of human papillomavirus, simian virus, and enterovirus in the OSCC samples, which may point to the potential causes of OSCC. Conclusions: Our results indicate that the liquid biopsy technique may thus serve as a sensitive tool to study OSCC patient genomic alterations by exploring cfDNA circulating in the plasma, providing an easy-to-use blood test in the future. Full article
(This article belongs to the Special Issue Circulating Tumour DNA and Liquid Biopsy in Oncology)
Show Figures

Figure 1

17 pages, 559 KiB  
Review
The Application of Circulating Tumour DNA (ctDNA) in the Diagnosis, Prognosis, and Treatment Monitoring of Gynaecological and Breast Cancers (Review)
by Aleksandra Englisz, Marta Smycz-Kubańska, Patrycja Królewska-Daszczyńska, Magdalena Błaut, Agnieszka Duszyc and Aleksandra Mielczarek-Palacz
Diagnostics 2025, 15(10), 1289; https://doi.org/10.3390/diagnostics15101289 - 21 May 2025
Viewed by 968
Abstract
Gynaecological cancers, including endometrial, ovarian, and cervical cancers as well as breast cancer, despite numerous studies, still constitute a challenge for modern oncology. For this reason, research aimed at the application of modern diagnostic methods that are useful in early detection, prognosis, and [...] Read more.
Gynaecological cancers, including endometrial, ovarian, and cervical cancers as well as breast cancer, despite numerous studies, still constitute a challenge for modern oncology. For this reason, research aimed at the application of modern diagnostic methods that are useful in early detection, prognosis, and treatment monitoring deserves special attention, Great hopes are currently being placed on the use of liquid biopsy (LB), which examines various tumour components, including cell-free RNA (cfRNA), circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), exosomes, and tumour-educated platelets (TEPs). LB has shown promise as a minimally invasive means of early diagnosis of cancers, detection of recurrence, prediction of therapy response, treatment monitoring, and drug selection. The integration of this test into clinical practice in modern oncology is challenging, but offers many benefits, including reducing the risks associated with invasive procedures, improving diagnostic and therapeutic efficacy, and improving the quality of life of oncology patients. The aim of this review is to present recent reports on the use of ctDNA in diagnosing, predicting the outcome of, and monitoring the treatment of gynaecological and breast cancers. Full article
(This article belongs to the Special Issue Diagnosis and Management of Gynecological Cancers: Third Edition)
Show Figures

Figure 1

16 pages, 1198 KiB  
Review
Circulating Cell-Free DNA as an Epigenetic Biomarker for Early Diabetic Retinopathy: A Narrative Review
by Boaz Li, Megan M. Yim, Yu Xuan Jin, Brendan K. Tao, Jim S. Xie, Michael Balas, Haaris Khan, Wai-Ching Lam, Peng Yan and Eduardo V. Navajas
Diagnostics 2025, 15(9), 1161; https://doi.org/10.3390/diagnostics15091161 - 2 May 2025
Viewed by 1062
Abstract
Diabetic retinopathy (DR), a complication of type 2 diabetes mellitus (T2DM), is typically asymptomatic in its early stages. Diagnosis typically relies on routine fundoscopy for the clinical detection of microvascular abnormalities. However, permanent retinal damage may occur well before clinical signs are appreciable. [...] Read more.
Diabetic retinopathy (DR), a complication of type 2 diabetes mellitus (T2DM), is typically asymptomatic in its early stages. Diagnosis typically relies on routine fundoscopy for the clinical detection of microvascular abnormalities. However, permanent retinal damage may occur well before clinical signs are appreciable. In the early stages of DR, the retina undergoes distinct epigenetic changes, including DNA methylation and histone modifications. Recent evidence supports unique epigenetic ‘signatures’ in patients with DR compared to non-diabetic controls. These DNA ‘signature’ sequences may be specific to the retina and may circulate in peripheral blood in the form of cell-free DNA (cfDNA). In this review, we explore the literature and clinical application of cfDNA sampling as an early, non-invasive, accessible assessment tool for early DR detection. First, we summarize the known epigenetic signatures of DR. Next, we review current sequencing technologies used for cfDNA detection, such as magnetic bead-based enrichment, next-generation sequencing, and bisulfite sequencing. Finally, we outline the current research limitations and emerging areas of study which aim to improve the clinical utility of cfDNA for DR evaluation. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis and Prognosis of Eye Diseases)
Show Figures

Figure 1

23 pages, 651 KiB  
Review
Advancing Leukemia Management Through Liquid Biopsy: Insights into Biomarkers and Clinical Utility
by Cíntia Nogueira Hollanda, Ana Cristina Moura Gualberto, Andréa Barretto Motoyama and Fabio Pittella-Silva
Cancers 2025, 17(9), 1438; https://doi.org/10.3390/cancers17091438 - 25 Apr 2025
Cited by 1 | Viewed by 1060
Abstract
Liquid biopsy is classically defined as the detection of biomarkers in bodily fluids. One of these biomarkers can be circulating cell-free DNA (cfDNA) released by healthy or cancer cells during apoptosis. These fragments can be quantified and molecularly characterized by techniques like digital [...] Read more.
Liquid biopsy is classically defined as the detection of biomarkers in bodily fluids. One of these biomarkers can be circulating cell-free DNA (cfDNA) released by healthy or cancer cells during apoptosis. These fragments can be quantified and molecularly characterized by techniques like digital droplet PCR (ddPCR) or next-generation sequencing (NGS). By identifying common genetic and epigenetic alterations associated with specific cancer types, cfDNA or circulating tumor DNA (ctDNA) can serve as robust biomarkers for monitoring tumor initiation and progression. Other biomarkers, such as circulating microRNAs (miRNAs), extracellular vesicles, or circulating tumor cells (CTCs) are also applied in this context. Liquid biopsy has gained attention as a versatile tool for cancer diagnostics, prognosis, therapeutic monitoring, and minimal residual disease (MRD) detection across various malignancies, including hematological cancers like myeloid and lymphoid leukemias. Herein, we present a comprehensive review of liquid biopsy usage in leukemia, with a specific focus on the clinical utility of ctDNA, miRNAs, and exosomes in monitoring treatment response, tracking clonal evolution, and detecting minimal residual disease. Our review emphasizes the translational implications of these tools for improving patient outcomes and outlines current challenges in their integration into clinical practice. Full article
(This article belongs to the Special Issue Recent Advances in Genetic Studies on Leukemia)
Show Figures

Figure 1

31 pages, 3339 KiB  
Review
Liquid Biopsy in Pituitary Neuroendocrine Tumors—Potential Biomarkers for Diagnosis, Prognosis, and Therapy
by Ligia Gabriela Tataranu
Int. J. Mol. Sci. 2025, 26(9), 4058; https://doi.org/10.3390/ijms26094058 - 25 Apr 2025
Viewed by 1018
Abstract
Pituitary neuroendocrine tumors (PitNETs) are slow-growing neoplasms with various clinical presentations, often leading to diagnostic challenges. While neuroimaging assessment and histopathological evaluation remain the gold standard for diagnosis, emerging research highlights the potential of liquid biopsy, mainly through the analysis of circulating non-coding [...] Read more.
Pituitary neuroendocrine tumors (PitNETs) are slow-growing neoplasms with various clinical presentations, often leading to diagnostic challenges. While neuroimaging assessment and histopathological evaluation remain the gold standard for diagnosis, emerging research highlights the potential of liquid biopsy, mainly through the analysis of circulating non-coding RNAs (ncRNAs), as a promising diagnostic and prognostic tool. Recent studies have demonstrated distinct expression profiles in different types and subtypes of tumors, with implications in assessing tumor aggressiveness and predicting treatment response. The current article summarizes data about potential biofluid markers implicated in PitNET development, mainly circulating tumor DNA (ctDNA), cell-free RNAs (cfRNA), circulating tumor cells (CTCs), and exosomes. Many studies on genetic and molecular markers in PitNET tissue samples provide exciting information about tumor biology, but to date, specific studies on liquid biopsy biomarkers are still few. Over the past years, a certain understanding of the mechanisms involved in pituitary tumorigenesis has been gained, including the landscape of genomic alterations, changes in epigenetic profile, crucial molecules involved in specific signaling pathways, and non-coding RNA molecules with critical roles in malignant transformation. Genetic and molecular characterization of the PitNETs could help distinguish between functional and non-functional PitNETs, different types and subtypes of pituitary tumors, and invasive and non-invasive forms. Further studies are required to identify and validate innovative biomarkers or therapeutic targets for treating PitNET. Integrating liquid biopsy into clinical workflows could revolutionize the management of pituitary adenomas, enabling more personalized and less invasive diagnostic and therapeutic strategies. Full article
(This article belongs to the Topic Liquid Biopsy: A Modern Method Transforming Biomedicine)
Show Figures

Figure 1

Back to TopTop