Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (265)

Search Parameters:
Keywords = chloride and bromide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9556 KB  
Article
L-Borneolum Attenuates Ischemic Stroke Through Remodeling BBB Transporter Function via Regulating MFSD2A/Cav-1 Signaling Pathway
by Peiru Wang, Yilun Ma, Dazhong Lu, Li Wen, Fengyu Huang, Jianing Lian, Mengmeng Zhang and Taiwei Dong
Brain Sci. 2026, 16(1), 111; https://doi.org/10.3390/brainsci16010111 - 20 Jan 2026
Viewed by 232
Abstract
Objective: This study compares the brain protective effects of L-borneolum and its main components (a combined application of L-borneol and L-camphor) on the rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). It also makes clear the intrinsic regulatory mechanisms that link the neuroprotective [...] Read more.
Objective: This study compares the brain protective effects of L-borneolum and its main components (a combined application of L-borneol and L-camphor) on the rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). It also makes clear the intrinsic regulatory mechanisms that link the neuroprotective effects of these compounds on IS to the blood-brain barrier (BBB), based on network pharmacology predictions. Furthermore, the study investigates the relationship between these compounds and the Major Facilitator Superfamily Domain-containing Protein 2A (MFSD2A)/Caveolin-1 (Cav-1) signaling axis. Methods: The MCAO/R model in rats was established to evaluate the therapeutic effect of L-borneolum (200 mg/kg) and its main components combination of L-borneol and L-camphor (6:4 ratio, 200 mg/kg). Neurological scores, 2,3,5-triphenyl tetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining, and Nissl staining were performed to evaluate the neurological damage in the rats. Cerebral blood flow Doppler was applied to monitor the cerebral blood flow changes. Immunofluorescence analysis of albumin leakage and transmission electron microscopy (TEM) were conducted to evaluate blood-brain barrier (BBB) integrity. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the optimal drug concentration. Trans-epithelial electrical resistance (TEER) and horseradish peroxidase (HRP) assays were employed to confirm the successful establishment of an in vitro BBB co-culture model. Network pharmacology was utilized to predict the biological processes, molecular functions, and cellular components involved in the treatment of ischemic stroke (IS) by the main components of L-borneolum (L-borneol and L-camphor). Finally, immunofluorescence, real-time fluorescent quantitative PCR (RT-qPCR) and western blot analyses were performed to detect the expression of Major Facilitator Superfamily Domain Containing 2A (MFSD2A), caveolin-1 (CAV-1), sterol regulatory element-binding protein 1 (SREBP1) in brain tissue and hCMEC/D3 cells. Results: Network pharmacology prediction indicated that L-borneolum and its main components (L-borneol and L-camphor) in the treatment of IS are likely associated with vesicle transport and neuroprotection. Treatment of IS with L-borneolum and its main components significantly decreased neurological function scores and cerebral infarction area, while alleviating pathological morphological changes and increasing the number of Nissl bodies in the hippocampus. Additionally, it improved cerebral blood flow, reduced albumin leakage, and decreased vesicle counts in the brain. The trans-epithelial electrical resistance (TEER) of the co-culture model stabilized on the fifth day after co-culture, and the permeability to horseradish peroxidase (HRP) in the co-culture model was significantly lower than that of the blank chamber at this time. RT-qPCR and Western blot results demonstrated that, compared to the model group, the expression of SREBP1 and MFSD2A significantly increased, while the expression of Cav-1 decreased. Conclusions: L-borneolum and its main components combination (L-borneol/L-camphor, 6:4 ratio) may exert a protective effect in rats with IS by improving BBB transport function through modulation of the MFSD2A/Cav-1 signaling pathway. Full article
(This article belongs to the Special Issue Drug Development for Schizophrenia)
Show Figures

Figure 1

22 pages, 3508 KB  
Article
Surfactant-Modified Acidic Magadiites as Adsorbents for Enhanced Removal of Eosin Y Dyes: Influence of Operational Parameters
by Rawan Al-Faze, Thamer S. Alraddadi, Mohd Gulfam Alam, Saheed A. Popoola, Souad Rakass, Hicham Oudghiri Hassani and Fethi Kooli
Surfaces 2026, 9(1), 9; https://doi.org/10.3390/surfaces9010009 - 9 Jan 2026
Viewed by 228
Abstract
Organophilic acidic magadiites were prepared after an acidic magadiite (A-Mgd) reaction with cetyltrimethylammonium solutions containing different anions, such as cetyltrimethylammonium bromide (C16TMABr), cetyltrimethylammonium chloride (C16TMACl), and cetyltrimethylammonium hydroxide (C16TMAOH). The resulting materials were studied as adsorbents for Eosin Y removal from artificially contaminated [...] Read more.
Organophilic acidic magadiites were prepared after an acidic magadiite (A-Mgd) reaction with cetyltrimethylammonium solutions containing different anions, such as cetyltrimethylammonium bromide (C16TMABr), cetyltrimethylammonium chloride (C16TMACl), and cetyltrimethylammonium hydroxide (C16TMAOH). The resulting materials were studied as adsorbents for Eosin Y removal from artificially contaminated solution. Successful preparation of oganophilic A-Mgd was achieved using C16TMAOH solution with an increased basal spacing from 1.21 nm to 3.15 nm and uptake C16TMA amount of 1.16 mmol/g. Meanwhile, no variation in the basal spacing of 1.20 nm occurred using C16TMACl and C16TMA Br solutions with an uptake mount of 0.07 to 0.09 mmol/g, respectively. Other techniques supported the behavior of the counteranion of surfactant solution on the synthesis of organophilic A-Mgd samples. 13C CP/MAS NMR data revealed that C16TMA cations displayed all-trans conformation comparable to C16TMABr solid, and 29Si MAS NMR confirmed the stability of the host silicate layers during the reaction. The specific surface area of A-Mgd was reduced after the intercalation of C16TMA cations from 38 m2/g to 11 m2/g. The removal properties of organophilic samples were investigated under different conditions, including the Eosin Y pH solution, initial concentration, dosage mass, and content of C16TMA cations. The maximum removal amount was 70 mg/g at acidic pH and using A-Mgd prepared from C16TMAOH solution, while the other organophilic A-Mgds exhibited low removal amounts of 3 to 5 mg/g. The regeneration tests indicated that the efficiency was maintained after four reuse tests with a drop of 30 to 50% from the initial value after seven cycles. The adsorber batch design was employed to estimate theoretically the required masses of used samples to treat an effluent volume of 10 L at a removal percentage of 95% at a fixed initial concentration of 200 mg/L. In total, 20 g of organophilic prepared from A-Mgd and C16TMAOH solution was needed, while 243 g of sample prepared from C16TMABr solution was required. This study proposes the development of a cost-effective, sustainable solution for dye-contaminated wastewater treatment. Full article
Show Figures

Figure 1

24 pages, 874 KB  
Review
Application of Photo-Fenton Process to Highly Saline Water Matrices: Effect of Inorganic Ions on Iron Speciation
by Ivan Vallés, Javier Moreno-Andrés, Iván Sciscenko, Lucas Santos-Juanes and Antonio Arques
Molecules 2026, 31(1), 56; https://doi.org/10.3390/molecules31010056 - 23 Dec 2025
Viewed by 426
Abstract
The photo-Fenton process has been widely studied for the treatment of organic pollutants and disinfection in a wide range of scenarios. Nevertheless, its efficiency decreased when applied to complex matrices, as in the case of most advanced oxidation processes. Despite the interferences caused [...] Read more.
The photo-Fenton process has been widely studied for the treatment of organic pollutants and disinfection in a wide range of scenarios. Nevertheless, its efficiency decreased when applied to complex matrices, as in the case of most advanced oxidation processes. Despite the interferences caused by different anions, the photo-Fenton is able to obtain good degradation values for pollutants and microorganisms, especially in combination with other methods; however, it depends on the matrix to be treated. Due to the lack of studies and reviews in this field, this paper reviewed the outcome of the inorganic ions present on highly saline water matrices (more than 1 g L−1 of chlorides, fluorides, bromides, sulphates, carbonates or bicarbonates, borates, phosphates and nitrates/nitrites) on the Fenton-based processes, focusing on their outcome on iron speciation and their scavenger effect. Also, the most relevant works so far for the abatement of microcontaminants and disinfection by this process on highly saline matrices have been revised. Special emphasis is on the efficiency of the process, considering the relevant industries referred to. Full article
(This article belongs to the Topic Wastewater Treatment Based on AOPs, ARPs, and AORPs)
Show Figures

Figure 1

6 pages, 390 KB  
Communication
Linear Synthesis of 10-Hydroxy-N,N-dimethyl-N-((3-(tosyloxy)pyridin-2-yl)methyl)decan-1-aminium Bromide
by Václav Hron, Martin Urban and Tomáš Tobrman
Molbank 2025, 2025(4), M2112; https://doi.org/10.3390/M2112 - 16 Dec 2025
Viewed by 334
Abstract
In 2019, carbamates derived from 3-hydroxypyridine were classified as nerve agents and subsequently included in the Annex on Chemicals by the Conference of the States Parties. Herein, we describe the preparation of a structural simulant of this class of compounds, 10-hydroxy-N, [...] Read more.
In 2019, carbamates derived from 3-hydroxypyridine were classified as nerve agents and subsequently included in the Annex on Chemicals by the Conference of the States Parties. Herein, we describe the preparation of a structural simulant of this class of compounds, 10-hydroxy-N,N-dimethyl-N-((3-(tosyloxy)pyridin-2-yl)methyl)decan-1-aminium bromide. The compound was synthesized via tosylation of 2-((N,N-dimethylamino)methyl)pyridin-3-ol with tosyl chloride in the presence of sodium hydride, followed by alkylation of the resulting ((N,N-dimethylamino)methyl)pyridin-3-yl 4-methylbenzenesulfonate with 10-bromodecan-1-ol. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

11 pages, 2591 KB  
Article
Synthesis of Novel Anion Recognition Molecules as Quinazoline Precursors
by Gábor Krajsovszky, László Piros, Dóra Bogdán, Eszter Kalydi, Tamás Gáti, Pál Szabó, Péter Horváth and István M. Mándity
Int. J. Mol. Sci. 2025, 26(24), 11975; https://doi.org/10.3390/ijms262411975 - 12 Dec 2025
Viewed by 446
Abstract
Thiourea and structurally related urea derivatives are widely recognised for their ability to transport anions through hydrogen bonding interactions. The strength of these interactions correlates with the electronegativity of the ligand and the acidity of the NH hydrogens involved. Thiourea, being more acidic [...] Read more.
Thiourea and structurally related urea derivatives are widely recognised for their ability to transport anions through hydrogen bonding interactions. The strength of these interactions correlates with the electronegativity of the ligand and the acidity of the NH hydrogens involved. Thiourea, being more acidic than urea, exhibits partial deprotonation in the presence of certain anions such as organic carboxylates, fluoride, and bromide, while remaining resistant to deprotonation by chloride. This behaviour suggests a degree of selectivity toward chloride ions. Additionally, while carbamide-containing molecules tend to aggregate—potentially reducing their ion-binding efficiency—thiourea derivatives show reduced aggregation, preserving their binding capabilities. In this study, we report the synthesis and characterisation of 21 novel thiourea derivatives obtained by reacting 2-aminobenzoylamino acid esters with various substituted phenyl isothiocyanates. Seven similar thiourea-containing molecules were made as a comparison—without the amino acids—by reacting aniline with the different phenyl isothiocyanates. The reaction kinetics were found to be influenced primarily by the electronic nature of the substituents on the phenyl ring. Electron-withdrawing groups (EWGs), such as para-nitro, 3,5-bis(trifluoromethyl), and fluorine, accelerated the reaction, while electron-donating groups (EDGs), such as para-methoxy, slowed it down. Interestingly, the nature of the amino acid precursors had no significant impact on reaction time; however, reactions with aniline proceeded the fastest. Solvent choice also played a role: reactions in N,N-dimethylformamide (DMF) proceeded faster than in acetone, although with reduced yields. Consequently, reaction conditions were optimised to balance time efficiency and product yield. To evaluate the chloride ion-binding properties of the synthesised compounds, 1H NMR titration experiments were conducted in deuterated dimethyl sulfoxide (DMSO-d6). The association constants (Ka) derived from these studies revealed a clear correlation with the electronic nature of the substituents. Compounds bearing EWGs exhibited enhanced chloride binding, while those with EDGs showed diminished binding affinity. Surprisingly, the presence of amino acid moieties led to a decrease in Ka values, despite the electron-withdrawing nature of the amide groups. This suggests that steric or conformational factors may play a role in modulating binding strength. Overall, the synthesised thiourea derivatives demonstrate mild, reversible chloride ion-binding behaviour, making them promising candidates for further development as selective anion receptors. The insights gained from this study contribute to a deeper understanding of structure–activity relationships in anion-binding systems and may inform the design of future supramolecular architectures with tailored ion recognition properties. Full article
(This article belongs to the Special Issue Techniques and Strategies in Drug Design and Discovery, 3rd Edition)
Show Figures

Figure 1

23 pages, 4789 KB  
Article
Impact of Activated Carbon Modification on the Ion Removal Efficiency in Flow Capacitive Deionization
by Wen-Huan Qiao, Ya-Ni Liu, Ya Li, Yu Xie, Hai-Yi Yang and Jun-Wei Hou
C 2025, 11(4), 90; https://doi.org/10.3390/c11040090 - 2 Dec 2025
Viewed by 1101
Abstract
Flow capacitive deionization (FCDI) technology holds significant promise for cost-effective and energy-efficient desalination; however, its practical application is hindered by limited electrode stability and desalination performance. In this study, we propose a novel composite strategy that combines chemical surface modification with surfactant-assisted dispersion [...] Read more.
Flow capacitive deionization (FCDI) technology holds significant promise for cost-effective and energy-efficient desalination; however, its practical application is hindered by limited electrode stability and desalination performance. In this study, we propose a novel composite strategy that combines chemical surface modification with surfactant-assisted dispersion to enhance electrode performance in FCDI systems. We observed that the dispersion stability and capacitance of the flow electrodes were significantly improved after oxidation (AC-O) or amination (AC-N) of activated carbon (AC). To further investigate the underlying ion adsorption mechanisms, we performed Density Functional Theory (DFT) simulations. The simulations revealed that oxidative modification (AC-O) enhances chloride ion adsorption through stronger electrostatic and van der Waals interactions, while amination (AC-N) is more effective for sodium ion adsorption. Subsequently, surfactants (sodium dodecyl sulfate, SDS; cetyltrimethylammonium bromide, CTAB) were used to prepare stable and high-performance flow electrodes. Electrochemical characterization and desalination tests in a 1000 mg·L−1 saline solution demonstrated that the AC-O/SDS composite exhibited excellent dispersion stability (>7 d) and significantly enhanced conductivity and specific capacitance, increasing by factors of 2.48 and 2.50, respectively, compared to unmodified AC. This optimized electrode achieved a desalination efficiency of 74.37% and a desalination rate of 6.2542 mg·L−1·min−1, outperforming the unmodified electrode by a factor of 5.72. Our findings provide a robust, sustainable approach for fabricating advanced flow electrodes and offer valuable insights into electrode structure optimization, opening new possibilities for the application of FCDI technology in water treatment and material sciences. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

34 pages, 1946 KB  
Review
Innovative Recovery Methods for Metals and Salts from Rejected Brine and Advanced Extraction Processes—A Pathway to Commercial Viability and Sustainability in Seawater Reverse Osmosis Desalination
by Olufisayo E. Ojo and Olanrewaju A. Oludolapo
Water 2025, 17(21), 3141; https://doi.org/10.3390/w17213141 - 1 Nov 2025
Cited by 2 | Viewed by 4509
Abstract
Seawater desalination has emerged as a crucial solution for addressing global freshwater scarcity. However, it generates significant volumes of concentrated brine waste. This brine is rich in dissolved salts and minerals, primarily, chloride (55%), sodium (30%), sulfate (8%), magnesium (4%), calcium (1%), potassium [...] Read more.
Seawater desalination has emerged as a crucial solution for addressing global freshwater scarcity. However, it generates significant volumes of concentrated brine waste. This brine is rich in dissolved salts and minerals, primarily, chloride (55%), sodium (30%), sulfate (8%), magnesium (4%), calcium (1%), potassium (1%), bicarbonate (0.4%), and bromide (0.2%), which are often discharged into marine environments, posing ecological challenges. This study presents a comprehensive global review of innovative technologies for recovering these constituents as valuable products, thereby enhancing the sustainability and economic viability of desalination. The paper evaluates a range of proven and emerging recovery methods, including membrane separation, nanofiltration, electrodialysis, thermal crystallization, solar evaporation, chemical precipitation, and electrochemical extraction. Each technique is analyzed for its effectiveness in isolating salts (NaCl, KCl, and CaSO4) and minerals (Mg(OH)2 and Br2), with a discussion of process-specific constraints, recovery efficiencies, and product purities. Furthermore, the study incorporates a detailed techno-economic assessment, highlighting revenue potential, capital and operational expenditures, and breakeven timelines. Simulated case studies of a 100,000 m3/day seawater reverse osmosis (SWRO) facility demonstrates that a sequential brine recovery process and associated energy balances, supported by pilot-scale data from ongoing global initiatives, can achieve over 90% total salt recovery while producing marketable products such as NaCl, Mg(OH)2, and Br2. The estimated revenue from recovered materials ranges between USD 4.5 and 6.8 million per year, offsetting 65–90% of annual desalination operating costs. The analysis indicates a payback period of 3–5 years, depending on recovery efficiency and product pricing, underscoring the economic viability of large-scale brine valorization alongside its environmental benefits. By transforming waste brine into a source of commercial commodities, desalination facilities can move toward circular economy models and achieve greater sustainability. A practical integration framework is proposed for both new and existing SWRO plants, with a focus on aligning with the principles of a circular economy. By transforming waste brine into a resource stream for commercial products, desalination facilities can reduce environmental discharge and generate additional revenue. The study concludes with actionable recommendations and insights to guide policymakers, engineers, and investors in advancing brine mining toward full-scale implementation. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

15 pages, 5525 KB  
Article
Post Wire-Bonding Corrosion Prevention Strategies to Mitigate Chloride- and Bromide-Induced Corrosion Failures in Cu- and PCC-Based Wire-Bonded Packages
by Dinesh Kumar Kumaravel, Shinoj Sridharan Nair, Khanh Tuyet Anh Tran, Pavan Ahluwalia, Kevin Antony Jesu Durai and Oliver Chyan
Micromachines 2025, 16(10), 1155; https://doi.org/10.3390/mi16101155 - 12 Oct 2025
Viewed by 944
Abstract
To ensure the highest safety standards in modern automobiles, the industry is constantly adopting zero-defect frameworks, such as AEC-Q100, which aims for defective-parts-per-billion (DPPB) or grade-0 level reliability standards in automotive integrated-circuit (IC) packages. Most contemporary wire-bonded packages use either pure copper (Cu) [...] Read more.
To ensure the highest safety standards in modern automobiles, the industry is constantly adopting zero-defect frameworks, such as AEC-Q100, which aims for defective-parts-per-billion (DPPB) or grade-0 level reliability standards in automotive integrated-circuit (IC) packages. Most contemporary wire-bonded packages use either pure copper (Cu) or palladium (Pd)-coated copper (PCC) wires bonded to aluminum (Al) bond pads as interconnections. This choice is made due to their lower cost and superior electrical and mechanical performance, compared to traditional gold wire-based devices. However, these Cu–Al wire-bonded interconnections are prone to ion-induced lift-off/open-circuit corrosion failures when exposed to even trace amounts (<20 ppm) of extrinsic and/or intrinsic halide (Cl and Br) contaminants, decreasing device longevity. This study investigates corrosion failure mechanisms in Cu and PCC wire-based devices by subjecting non-encapsulated devices to a highly accelerated aqueous-immersion screening test containing 100 ppm chloride (Cl), 100 ppm bromide (Br), and a mixed-ion solution (MX: Cl + Br). The screening results indicate that even control PCC-Al devices with a Pd overlayer can be susceptible to Cl and Br induced corrosion, with 21 ± 1.6% lift-off failures in MX-solution. In contrast, applying a novel Cu-selective passivation reduced lift-off to 3.3 ± 0.6% and introducing phosphonic-acid-based inhibitor into the MX solution eliminated lift-off failures, demonstrating markedly improved reliability. Full article
Show Figures

Figure 1

26 pages, 2480 KB  
Review
Promising Norlabdane-Heterocyclic Hybrids: Synthesis, Structural Characterization and Antimicrobial Activity Evaluation
by Lidia Lungu, Alexandru Ciocarlan, Ionel I. Mangalagiu and Aculina Aricu
Pharmaceuticals 2025, 18(9), 1411; https://doi.org/10.3390/ph18091411 - 19 Sep 2025
Viewed by 919
Abstract
The terpeno-heterocyclic molecular hybrids are a new and promising class of modern organic and medicinal chemistry, because their molecules exhibit high and selective biological activity, natural origins, and good biocompatibility, and, usually, they are less toxic. The reported norlabdane-heterocyclic hybrids were synthesized by [...] Read more.
The terpeno-heterocyclic molecular hybrids are a new and promising class of modern organic and medicinal chemistry, because their molecules exhibit high and selective biological activity, natural origins, and good biocompatibility, and, usually, they are less toxic. The reported norlabdane-heterocyclic hybrids were synthesized by classical and new, original, and environmentally friendly methods, which include coupling reactions of norlabdane derivatives (such as carboxylic acids, acyl chlorides, or bromides) with individual heterocyclic compounds, as well as heterocyclization reactions of certain norlabdane intermediates like hydrazides, thiosemicarbazones, or hydrazinecarbothioamides. The aforementioned norlabdanes were derived from (+)-sclareolide 2, which is readily obtained from (−)-sclareol 1, a labdane-type diterpenoid extracted from the waste biomass of Clary sage (Salvia sclarea L.) that remains after essential oil extraction. All synthesized compounds were tested against various fungal strains and bacterial species, with many exhibiting significant antifungal and antibacterial activity. These findings support the potential application of the synthesized compounds in the treatment of diseases caused by fungi and bacteria. Additionally, the use of plant-based waste materials as starting resources highlights the economic and ecological value of this approach. This review summarizes experimental data on the synthesis and biological activity of norlabdane: diazine, 1,2,4-triazole and carbazole, 1,3,4-oxadiazole, 1,3,4-thiadiazole, 1,3-thiazole, 1,3-benzothiazole and 1,3-benzimidazole hybrids performed by our research group covering the period from 2013 to the present. Full article
Show Figures

Graphical abstract

18 pages, 3014 KB  
Article
Biocide Tolerance, Biofilm Formation, and Efflux Pump Activity in Clinical Isolates of Trichosporon asahii
by Yasmim Passos Lima, Jamile de Paiva Macedo, Alessandra Barbosa Ferreira Machado, Cláudio Galuppo Diniz, Vania Lucia da Silva and Vanessa Cordeiro Dias
Infect. Dis. Rep. 2025, 17(4), 97; https://doi.org/10.3390/idr17040097 - 6 Aug 2025
Viewed by 847
Abstract
Background: Trichosporon spp. are opportunistic fungi, capable of causing infection, especially in critically ill individuals who often use broad-spectrum antibiotics, invasive devices, and have comorbidities. Objectives The aim of this study was to analyze individuals’ clinical characteristics, evaluate tolerance to biocides, as well [...] Read more.
Background: Trichosporon spp. are opportunistic fungi, capable of causing infection, especially in critically ill individuals who often use broad-spectrum antibiotics, invasive devices, and have comorbidities. Objectives The aim of this study was to analyze individuals’ clinical characteristics, evaluate tolerance to biocides, as well as biofilm formation and efflux pump activity in isolates of Trichosporon asahii. Methods: Clinical isolates of T. asahii collected between 2020 and 2023 from both hospitalized and non-hospitalized individuals, of both sexes, regardless of age, were tested for tolerance to sodium hypochlorite, hydrogen peroxide, benzalkonium chloride, and ethyl alcohol. Efflux pump activity was also assessed using ethidium bromide, and biofilm formation was measured with the Safranin test. Clinical parameters such as outcomes, source, and length of hospitalization were analyzed through electronic medical records. Results: A total of 37 clinical isolates of T. asahii were identified. Thirty-three (83.8%) isolates were from hospitalized individuals, with 81.82% collected in ICUs, an average hospital stay of 35 days, and a mortality rate of 51.6%. The tested strains displayed the largest mean inhibition zone for 2% sodium hypochlorite, indicating lower tolerance. A high level of efflux pump expression was detected among clinical isolates. Biofilm formation was detected in 25/67.5% of the isolates. Conclusions: These findings highlight the clinical relevance of T. asahii, particularly in critically ill individuals, and underscore the pathogen’s ability to tolerate biocides, express efflux pumps, and form biofilms, all of which may contribute to its persistence and pathogenicity in hospital environments. Enhanced surveillance and effective microbial control measures are essential to mitigate the risks associated with T. asahii infections. Full article
(This article belongs to the Section Fungal Infections)
Show Figures

Figure 1

13 pages, 1761 KB  
Article
Copper(I) Complexes with Terphenyl-Substituted NPN Ligands Bearing Pyridyl Groups: Synthesis, Characterization, and Catalytic Studies in the S-Arylation of Thiols
by M. Trinidad Martín, Ana Gálvez del Postigo, Práxedes Sánchez, Eleuterio Álvarez, Celia Maya, M. Carmen Nicasio and Riccardo Peloso
Molecules 2025, 30(15), 3167; https://doi.org/10.3390/molecules30153167 - 29 Jul 2025
Viewed by 2578
Abstract
In this study, three new terphenyl-substituted NPN ligands bearing pyridyl groups, two phosphonites and one diaminophosphine, were synthesized and fully characterized. Their coordination chemistry with copper(I) was investigated using CuBr and [Cu(NCMe)4]PF6 as metal precursors, affording six mononuclear Cu(I) complexes, [...] Read more.
In this study, three new terphenyl-substituted NPN ligands bearing pyridyl groups, two phosphonites and one diaminophosphine, were synthesized and fully characterized. Their coordination chemistry with copper(I) was investigated using CuBr and [Cu(NCMe)4]PF6 as metal precursors, affording six mononuclear Cu(I) complexes, which were characterized using NMR spectroscopy and, in selected cases, single-crystal X-ray diffraction (SCXRD) analysis. The NPN ligands adopt a κ3-coordination mode, stabilizing the copper centers in distorted tetrahedral geometries. The catalytic performance of these complexes in the S-arylation of thiols with aryl iodides was evaluated. Under optimized conditions, complexes 2a and 2b exhibited excellent activity and broad substrate scope, tolerating both electron-donating and electron-withdrawing groups, as well as sterically hindered and heteroaryl substrates. The methodology also proved effective for aliphatic thiols and demonstrated high chemoselectivity in the presence of potentially reactive functional groups. In contrast, aryl bromides and chlorides were poorly reactive under the same conditions. These findings highlight the potential of well-defined Cu(I)–NPN complexes as efficient and versatile precatalysts for C–S bond formation. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Europe 2025)
Show Figures

Figure 1

15 pages, 2439 KB  
Article
Environmental Microbiome Characteristics and Disinfection Strategy Optimization in Intensive Dairy Farms: Bactericidal Efficacy of Glutaraldehyde-Based Combination Disinfectants and Regulation of Gut Microbiota
by Tianchen Wang, Tao He, Mengqi Chai, Liyan Zhang, Xiangshu Han and Song Jiang
Vet. Sci. 2025, 12(8), 707; https://doi.org/10.3390/vetsci12080707 - 28 Jul 2025
Cited by 1 | Viewed by 1379
Abstract
As the primary biological risk threatening safe dairy production, bovine mastitis control highly relies on environmental disinfection measures. However, the mechanisms by which chemical disinfectants influence host–environment microbial interactions remain unclear. This study systematically investigated the disinfection efficacy and regulatory effects on microbial [...] Read more.
As the primary biological risk threatening safe dairy production, bovine mastitis control highly relies on environmental disinfection measures. However, the mechanisms by which chemical disinfectants influence host–environment microbial interactions remain unclear. This study systematically investigated the disinfection efficacy and regulatory effects on microbial community composition and diversity of glutaraldehyde-benzalkonium chloride (BAC) and glutaraldehyde-didecyl dimethyl ammonium bromide (DAB) at recommended concentrations (2–5%), using 80 environmental samples from intensive dairy farms in Xinjiang, China. Combining 16S rDNA sequencing with culturomics, the results showed that BAC achieved a disinfection rate of 99.33%, higher than DAB’s 97.87%, and reduced the environment–gut microbiota similarity index by 23.7% via a cationic bacteriostatic film effect. Microbiome analysis revealed that BAC selectively suppressed Fusobacteriota abundance (15.67% reduction) and promoted Bifidobacterium proliferation (7.42% increase), enhancing intestinal mucosal barrier function through butyrate metabolism. In contrast, DAB induced Actinobacteria enrichment in the environment (44.71%), inhibiting pathogen colonization via bioantagonism. BAC’s long-acting bacteriostatic properties significantly reduced disinfection costs and mastitis incidence. This study first elucidated the mechanism by which quaternary ammonium compound (QAC) disinfectants regulate host health through “environment-gut” microbial interactions, providing a critical theoretical basis for developing precision disinfection protocols integrating “cost reduction-efficiency enhancement-risk mitigation.” Full article
Show Figures

Figure 1

6 pages, 461 KB  
Proceeding Paper
Antioxidant and Antitumor Activity Against Colorectal Cancer Cells of Lycium chinense Mill. Cultivated in Ukraine
by Svetlana Lyashenko, Natalia Boiko, Victoriia Soloshenko and José Luis Guil-Guerrero
Proceedings 2025, 119(1), 8; https://doi.org/10.3390/proceedings2025119008 - 7 Jul 2025
Viewed by 976
Abstract
The polyphenolic extract from Lycium chinense fruits cultivated in Ukraine was surveyed for antioxidant and anticancer activity against HT-29 colorectal cancer cells. The total phenolic compounds and total flavonoid content were analyzed through the Folin–Ciocalteu and aluminum chloride procedure, respectively, while the antioxidant [...] Read more.
The polyphenolic extract from Lycium chinense fruits cultivated in Ukraine was surveyed for antioxidant and anticancer activity against HT-29 colorectal cancer cells. The total phenolic compounds and total flavonoid content were analyzed through the Folin–Ciocalteu and aluminum chloride procedure, respectively, while the antioxidant activity in vitro was assessed using DPPH radical scavenging and β-carotene bleaching assays. Anticancer effects were established using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The TPC was 11.3 mg GAE/g dry weight, while the TFC was 7.3 mg rutin/g dry weight. The extract demonstrated an antioxidant capacity (DPPH IC50 = 125.9 ± 12.6 µg/mL), lipid peroxidation inhibition (23.5 ± 2.1% in the β-carotene assay) and the inhibition of HT-29 colorectal cancer cells (GI50 at 72 h = 250 µg/mL). These findings provide the first evidence of the anticancer potential of Lycium chinense against human colorectal cancer cells, supporting its application as a source of bioactive compounds for the development of functional foods with antitumor properties. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Antioxidants)
Show Figures

Figure 1

28 pages, 8138 KB  
Article
Characterizing Foam Generated by CO2-Switchable Surfactants for Underground CO2 Storage Application
by Khaled Alturkey, Stephen A. Azongo, Theodoros Argyrelis and Rasoul Mokhtari
Processes 2025, 13(6), 1668; https://doi.org/10.3390/pr13061668 - 26 May 2025
Viewed by 1053
Abstract
CO2-switchable surfactants, applicable for mitigating CO2 geological storage efficiency challenges, offer promising control over foam stability under reservoir conditions, but their performance under extreme pressure, temperature, and salinity still needs thorough investigation. This study experimentally characterizes the performance of CO [...] Read more.
CO2-switchable surfactants, applicable for mitigating CO2 geological storage efficiency challenges, offer promising control over foam stability under reservoir conditions, but their performance under extreme pressure, temperature, and salinity still needs thorough investigation. This study experimentally characterizes the performance of CO2-switchable surfactants by evaluating their interfacial tension (IFT) reduction, foamability, and foam stability under reservoir-relevant conditions. Six surfactants, including cationic (cetyltrimethylammonium bromide (CTAB) and benzalkonium chloride (BZK)) and nonionic amine-based surfactants (N,N-Dimethyltetradecylamine, N,N-Dimethyldecylamine, and N,N-Dimethylhexylamine), were assessed using synthetic brine mimicking a depleted North Sea oil reservoir. A fractional factorial design was employed to minimize experimental runs while capturing key interactions between surfactant type, temperature, salinity, and divalent ion concentrations. Foam switchability was analyzed by alternating CO2 and N2 injections, and interfacial properties were measured to establish correlations between foam generation and IFT. Experimental findings demonstrate that cationic surfactants (BZK and CTAB) exhibit CO2-switchability and moderate foam stability. Nonionic surfactants show tail length-dependent responsiveness, where D14 demonstrated the highest foamability due to its optimal hydrophilic–hydrophobic balance. IFT measurements revealed that BZK consistently maintained lower IFT values, facilitating stronger foam generation, while CTAB exhibited higher variability. The inverse correlation between IFT and foamability was observed. These insights contribute to the development of tailored surfactants for subsurface CO2 storage applications, improving foam-based mobility control in CCS projects. Full article
Show Figures

Figure 1

29 pages, 16679 KB  
Article
Advancing Ion Constituent Simulations in California’s Sacramento–San Joaquin Delta Using Machine Learning Tools
by Peyman Namadi, Minxue He and Prabhjot Sandhu
Water 2025, 17(10), 1511; https://doi.org/10.3390/w17101511 - 16 May 2025
Viewed by 1092
Abstract
This study extends previous machine learning work on ion constituent simulation in California’s Sacramento–San Joaquin Delta (Delta) to include three critical water intake locations. The developed Artificial Neural Network models demonstrate exceptional accuracy (R2 > 0.96) in predicting chloride, bromide, and sulfate [...] Read more.
This study extends previous machine learning work on ion constituent simulation in California’s Sacramento–San Joaquin Delta (Delta) to include three critical water intake locations. The developed Artificial Neural Network models demonstrate exceptional accuracy (R2 > 0.96) in predicting chloride, bromide, and sulfate concentrations at these strategically important facilities. Water intake location models show substantial improvements in prediction accuracy, with MAE reductions of 60.7–74.0% for chloride, 63.3–72.5% for bromide, and 70.4–87.9% for sulfate, compared to existing methods for the Interior Delta. Performance evaluation through comprehensive cross-validation confirms robust model stability across varied conditions, with remarkably consistent metrics (standard deviation in R2 ≤ 0.006). Four complementary interactive dashboards were developed, enabling users, regardless of programming expertise, to simulate ion constituents throughout the Delta system. A Model Interpretability Dashboard specifically addresses the complexity of machine learning models by visualizing parameter sensitivity and prediction behavior, thereby enhancing transparency and building stakeholder trust in the modeling approach. For the first time, spatial coverage limitations are addressed through hybrid modeling that combines DSM2 hydrodynamic simulation with machine learning to enable continuous prediction of ion distributions across several points in the Interior Delta. These advancements provide water managers with accessible, accurate tools for informed decision-making regarding agricultural operations, drinking water treatment, and ecosystem management in this vital water resource. Full article
(This article belongs to the Special Issue Machine Learning Applications in the Water Domain)
Show Figures

Figure 1

Back to TopTop