Characterizing Foam Generated by CO2-Switchable Surfactants for Underground CO2 Storage Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Brine
2.2. Surfactants
2.3. Experimental Setup
2.3.1. Interfacial Tension (IFT) by Pendant Drop
2.3.2. Foam Analyzer
2.4. Experimental Design
3. Results and Discussions
3.1. CO2 Responsiveness
3.2. Interfacial Tension (IFT)
3.3. Foam Generation and Interfacial Tension
3.4. Number of Bubbles and Mean Bubble Radius
3.5. Effects of Temperature and Salinity
4. Conclusions
- Foam stability and CO2 responsiveness: All CO2-switchable surfactants tested in this study showed lower stability compared to regular surfactants (Tween 80). This instability is attributed to their responsiveness to CO2; when CO2 injection ceases, the CO2 saturation in the foam medium decreases, leading to foam collapse due to the open-column system in the foam analyzer.
- Promising foamability: Despite stability challenges, CO2-switchable surfactants demonstrated promising foamability, indicating their potential for foam-based CO2 storage applications.
- Interfacial tension (IFT) influence: We established a strong correlation between IFT, foam generation flow rate, and foam mean bubble size. A decrease in IFT leads to an increase in foam generation flow rate and a reduction in mean bubble size, thereby improving foam efficiency.
- Effect of alkyl-group length: The alkyl (tail) group in amine-based surfactants plays a crucial role in their performance. Surfactants with longer alkyl chains exhibited better foamability, highlighting the importance of surfactants’ molecular structure in foam optimization.
- Stability against salinity but sensitivity to temperature: The surfactants tested in this study demonstrated stability under high salinity and in the presence of divalent ions. However, elevated temperatures negatively affected their performance, necessitating further research to enhance their thermal stability.
- Future research directions: While this study primarily focused on the effect of the tail group, future work should investigate the role of different head groups in surfactant performance. Understanding these interactions will aid in designing optimal surfactant structures for use in harsh reservoir conditions and improving underground CO2 storage efficiency.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CO2 | Carbon dioxide |
CCS | Carbon capture and storage |
IFT | Interfacial tension |
CTAB | Cetyltrimethylammonium bromide |
BZK | Benzalkonium chloride |
D14 | N,N-Dimethyltetradecylamine |
D10 | N,N-Dimethyldecylamine |
D6 | N,N-Dimethylhexylamine |
EOR | Enhanced oil recovery |
N2 | Nitrogen |
TDS | Total Dissolved Solid |
IS | Ionic strength |
CMC | Critical missile concentration |
CSA | Cell Size Analyzer |
Appendix A
Appendix A.1. Sorbitan Monooleate Ethoxylated (Tween 80)
Appendix A.2. Cetyltrimethylammonium Bromide (CTAB)
Appendix A.3. Benzalkonium Chloride
Appendix A.4. N,N-Dimethyltetradecylamine
Appendix A.5. N,N-Dimethyldecylamine
Appendix A.6. N,N-Dimethylhexylamine
Appendix B
IFT Measurement (mN/m) | ||||
---|---|---|---|---|
Surfactant | Run 1 | Run 2 | Run 3 | Error |
BZK | 2.5 | 2.9 | 3.0 | ±0.3 |
CTAB | 6.6 | 7.0 | 6.8 | ±0.2 |
References
- Thambimuthu, K.; Soltanieh, M.; Abanades, J.C.; Allam, R.; Bolland, O.; Davison, J.; Feron, P.; Goede, F.; Herrera, A.; Iijima, M. IPCC Special Report on Carbon Dioxide Capture and Storage. Intergov. Panel Clim. Chang. 2005. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_wholereport-1.pdf (accessed on 13 February 2025).
- Rahman, F.A.; Aziz, M.M.A.; Saidur, R.; Bakar, W.A.W.A.; Hainin, M.; Putrajaya, R.; Hassan, N.A. Pollution to Solution: Capture and Sequestration of Carbon Dioxide (CO2) and Its Utilization as a Renewable Energy Source for a Sustainable Future. Renew. Sustain. Energy Rev. 2017, 71, 112–126. [Google Scholar] [CrossRef]
- Massarweh, O.; Abushaikha, A.S. CO2 Sequestration in Subsurface Geological Formations: A Review of Trapping Mechanisms and Monitoring Techniques. Earth-Sci. Rev. 2024, 253, 104793. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, P.; Li, S.; Cheng, H.; Zhang, K. CO2 Foam to Enhance Geological Storage Capacity in Hydrocarbon Reservoirs. Renew. Sustain. Energy Rev. 2024, 199, 114504. [Google Scholar] [CrossRef]
- Bachu, S.; Celia, M.A. Assessing the Potential for CO2 Leakage, Particularly through Wells, from Geological Storage Sites. Geophys. Monogr. Ser. 2009, 183, 203–216. [Google Scholar] [CrossRef]
- Bonto, M.; Welch, M.J.J.; Lüthje, M.; Andersen, S.I.I.; Veshareh, M.J.J.; Amour, F.; Afrough, A.; Mokhtari, R.; Hajiabadi, M.R.R.; Alizadeh, M.R.R.; et al. Challenges and Enablers for Large-Scale CO2 Storage in Chalk Formations. Earth-Sci. Rev. 2021, 222, 103826. [Google Scholar] [CrossRef]
- Singh, P.; Mondal, S. Role of the Process Conditions on Three-Dimensional Viscous Fingering: Impact on Enhanced Oil Recovery and Geological Storage. Int. J. Multiph. Flow 2025, 184, 105110. [Google Scholar] [CrossRef]
- Han, J.; Lee, M.; Lee, W.; Lee, Y.; Sung, W. Effect of Gravity Segregation on CO2 Sequestration and Oil Production during CO2 Flooding. Appl. Energy 2016, 161, 85–91. [Google Scholar] [CrossRef]
- Stalkup, F.I. Miscible Displacement; Monograph (Society of Petroleum Engineers of AIME); Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers of AIME, 1983; ISBN 9780895203199. Available online: https://books.google.dk/books?id=vDhQAQAAIAAJ&redir_esc=y (accessed on 2 April 2025).
- Eftekhari, A.A.; Farajzadeh, R. Effect of Foam on Liquid Phase Mobility in Porous Media. Sci. Rep. 2017, 7, 43870. [Google Scholar] [CrossRef]
- Mai, A.; Kantzas, A. Heavy Oil Waterflooding: Effects of Flow Rate and Oil Viscosity. J. Can. Pet. Technol. 2009, 48, 42–51. [Google Scholar] [CrossRef]
- Zhang, Z.F.; White, S.K.; White, M.D. Delineating the Horizontal Plume Extent and CO2 Distribution at Geologic Sequestration Sites. Int. J. Greenh. Gas Control. 2015, 43, 141–148. [Google Scholar] [CrossRef]
- Sheng, J.J. Status of Surfactant EOR Technology. Petlm 2015, 1, 97–105. [Google Scholar] [CrossRef]
- Langevin, D. Aqueous Foams: A Field of Investigation at the Frontier Between Chemistry and Physics. ChemPhysChem 2008, 9, 510–522. [Google Scholar] [CrossRef]
- Sagir, M.; Bilal Tahir, M.; Pervaiz, M.; Hassan Qasim, M.; Ullah, S.; Ansar, R. CO2-Philic Surfactants Structural Morphology Prerequests for CO2 Philicity for Foam Durability for EOR Applications. In Analytical Chemistry—Advancement, Perspectives and Applications; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- Li, S.; Li, Z.; Wang, P. Experimental Study of the Stabilization of CO2 Foam by Sodium Dodecyl Sulfate and Hydrophobic Nanoparticles. Ind. Eng. Chem. Res. 2016, 55, 1243–1253. [Google Scholar] [CrossRef]
- Ahmed, S.; Elraies, K.A.; Tan, I.M.; Mumtaz, M. A Review on CO2 Foam for Mobility Control: Enhanced Oil Recovery. In ICIPEG 2016; Springer: Singapore, 2017; pp. 205–215. [Google Scholar]
- Lu, Y.; Sun, D.; Ralston, J.; Liu, Q.; Xu, Z. CO2-Responsive Surfactants with Tunable Switching PH. J. Colloid Interface Sci. 2019, 557, 185–195. [Google Scholar] [CrossRef]
- Lu, H.; Guan, X.; Dai, S.; Huang, Z. Application of CO2-Triggered Switchable Surfactants to Form Emulsion with Xinjiang Heavy Oil. J. Dispers. Sci. Technol. 2014, 35, 655–662. [Google Scholar] [CrossRef]
- Liang, C.; Harjani, J.R.; Robert, T.; Rogel, E.; Kuehne, D.; Ovalles, C.; Sampath, V.; Jessop, P.G. Use of CO2-Triggered Switchable Surfactants for the Stabilization of Oil-in-Water Emulsions. Energy Fuels 2012, 26, 488–494. [Google Scholar] [CrossRef]
- Chen, Y.; Elhag, A.S.; Poon, B.M.; Cui, L.; Ma, K.; Liao, S.Y.; Reddy, P.P.; Worthen, A.J.; Hirasaki, G.J.; Nguyen, Q.P.; et al. Switchable Nonionic to Cationic Ethoxylated Amine Surfactants for CO2 Enhanced Oil Recovery in High-Temperature, High-Salinity Carbonate Reservoirs. SPE J. 2014, 19, 249–259. [Google Scholar] [CrossRef]
- Li, D.; Ren, S.; Zhang, P.; Zhang, L.; Feng, Y.; Jing, Y. CO2-Sensitive and Self-Enhanced Foams for Mobility Control during CO2 Injection for Improved Oil Recovery and Geo-Storage. Chem. Eng. Res. Des. 2017, 120, 113–120. [Google Scholar] [CrossRef]
- Baul, U.; Dzubiella, J. Structure and Dynamics of Responsive Colloids with Dynamical Polydispersity. J. Phys. Condens. Matter 2021, 33, 174002. [Google Scholar] [CrossRef]
- Jessop, P.G.; Cunningham, M.F. CO2-Switchable Materials; Royal Society of Chemistry: Cambridge, UK, 2020; ISBN 1782628762. [Google Scholar]
- Liu, Y.; Jessop, P.G.; Cunningham, M.; Eckert, C.A.; Liotta, C.L. Switchable Surfactants. Science 2006, 313, 958–960. [Google Scholar] [CrossRef] [PubMed]
- Jessop, P.G.; Mercer, S.M.; Heldebrant, D.J. CO2-Triggered Switchable Solvents, Surfactants, and Other Materials. Energy Environ. Sci. 2012, 5, 7240. [Google Scholar] [CrossRef]
- Mohammadian, E.; Hadavimoghaddam, F.; Kheirollahi, M.; Jafari, M.; Chenlu, X.; Liu, B. Probing Solubility and PH of CO2 in Aqueous Solutions: Implications for CO2 Injection into Oceans. J. CO2 Util. 2023, 71, 102463. [Google Scholar] [CrossRef]
- Dowlati, S.; Mokhtari, R.; Hohl, L.; Miller, R.; Kraume, M. Advances in CO2-Switchable Surfactants towards the Fabrication and Application of Responsive Colloids. Adv. Colloid Interface Sci. 2023, 315, 102907. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Ding, L.; Zhao, L.; Zhao, W.; AlYousef, Z.; Alsaud, M.A.; Fan, Z. Dynamic Adsorption of Switchable Amine Surfactants on Carbonate under Reservoir Conditions: Implications for Foam Assisted CO2 Storage. Chem. Eng. J. 2024, 496, 154003. [Google Scholar] [CrossRef]
- Li, D.; Ren, B.; Zhang, L.; Ezekiel, J.; Ren, S.; Feng, Y. CO2-Sensitive Foams for Mobility Control and Channeling Blocking in Enhanced WAG Process. Chem. Eng. Res. Des. 2015, 102, 234–243. [Google Scholar] [CrossRef]
- Wang, J.; Liang, M.; Tian, Q.; Feng, Y.; Yin, H.; Lu, G. CO2-Switchable Foams Stabilized by a Long-Chain Viscoelastic Surfactant. J. Colloid Interface Sci. 2018, 523, 65–74. [Google Scholar] [CrossRef]
- Zhang, P.; Diao, Y.; Shan, Y.; Pei, S.; Ren, S.; Zhang, L.; Yang, H. Experimental Investigation of Amine-Surfactant CO2 Foam for Smart Mobility Control during CO2 Flooding. J. Pet. Sci. Eng. 2020, 184, 106511. [Google Scholar] [CrossRef]
- Zhang, P.; Ren, S.; Shan, Y.; Zhang, L.; Liu, Y.; Huang, L.; Pei, S. Enhanced Stability and High Temperature-Tolerance of CO2 Foam Based on a Long-Chain Viscoelastic Surfactant for CO2 Foam Flooding. RSC Adv. 2019, 9, 8672–8683. [Google Scholar] [CrossRef]
- Hou, Q.; Wang, Y.; Wang, Z.; Wu, Q.; Wang, F.; Ni, C.; Zheng, X.; Xu, Y.; Zhao, Y. Temperature Sensitivity of CO2-Triggered Switchable Surfactants with Acetamidine Group. J. Pet. Sci. Eng. 2020, 186, 106677. [Google Scholar] [CrossRef]
- Ren, G.; Nguyen, Q.P.; Lau, H.C. Laboratory Investigation of Oil Recovery by CO2 Foam in a Fractured Carbonate Reservoir Using CO2-Soluble Surfactants. J. Pet. Sci. Eng. 2018, 169, 277–296. [Google Scholar] [CrossRef]
- Dai, S.; Suo, Y.; Liu, D.; Zhu, P.; Zhao, J.; Tan, J.; Lu, H. Controllable CO2-Responsiveness of O/W Emulsions by Varying the Alkane Carbon Number of a Tertiary Amine. Phys. Chem. Chem. Phys. 2018, 20, 11285–11295. [Google Scholar] [CrossRef] [PubMed]
- Douglas, C. Interfacial Tension. In Design and Analysis of Experiments; John Wiley & Sons, Inc.: New York, NY, USA, 2012. [Google Scholar]
- Hebach, A.; Oberhof, A.; Dahmen, N.; Kögel, A.; Ederer, H.; Dinjus, E. Interfacial Tension at Elevated PressuresMeasurements and Correlations in the Water + Carbon Dioxide System. J. Chem. Eng. Data 2002, 47, 1540–1546. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons, Inc.: New York, NY, USA, 2012; ISBN 978-1118-14692-7. [Google Scholar]
- Ambagaspitiya, T.D.; Garza, D.J.C.; Skelton, E.; Kubacki, E.; Knight, A.; Bergmeier, S.C.; Cimatu, K.L.A. Using the PH Sensitivity of Switchable Surfactants to Understand the Role of the Alkyl Tail Conformation and Hydrogen Bonding at a Molecular Level in Elucidating Emulsion Stability. J. Colloid Interface Sci. 2025, 678, 164–175. [Google Scholar] [CrossRef]
- Ren, G.; Wang, L.; Chen, Q.; Xu, Z.; Xu, J.; Sun, D. PH Switchable Emulsions Based on Dynamic Covalent Surfactants. Langmuir 2017, 33, 3040–3046. [Google Scholar] [CrossRef]
- Hashemi, H.; Alturkey, K.; Azongo, S.A.; Argyrelis, T.; Mokhtari, R. CO2-Switchable Surfactants for Foam Behavior Optimization: Experimental Insights for CO2 Storage Applications. In Proceedings of the SPE-225576-MS, SPE Europe Energy Conference and Exhibition, Vienna, Austria, 10–12 June 2025. [Google Scholar]
- Samanta, S.; Ghosh, P. Coalescence of Bubbles and Stability of Foams in Aqueous Solutions of Tween Surfactants. Chem. Eng. Res. Des. 2011, 89, 2344–2355. [Google Scholar] [CrossRef]
- Aggelopoulos, C.A.; Robin, M.; Perfetti, E.; Vizika, O. CO2/CaCl2 Solution Interfacial Tensions under CO2 Geological Storage Conditions: Influence of Cation Valence on Interfacial Tension. Adv. Water Resour. 2010, 33, 691–697. [Google Scholar] [CrossRef]
- Elhag, A.S.; Da, C.; Chen, Y.; Mukherjee, N.; Noguera, J.A.; Alzobaidi, S.; Reddy, P.P.; AlSumaiti, A.M.; Hirasaki, G.J.; Biswal, S.L.; et al. Viscoelastic Diamine Surfactant for Stable Carbon Dioxide/Water Foams over a Wide Range in Salinity and, Temperature. J. Colloid Interface Sci. 2018, 522, 151–162. [Google Scholar] [CrossRef]
- Lashkarbolooki, M.; Riazi, M.; Ayatollahi, S.; Zeinolabedini Hezave, A. Synergy Effects of Ions, Resin, and Asphaltene on Interfacial Tension of Acidic Crude Oil and Low–High Salinity Brines. Fuel 2016, 165, 75–85. [Google Scholar] [CrossRef]
- Available online: https://Kemibrug.Dk/ (accessed on 9 January 2024).
Species | Concentration (mol/kgw) |
---|---|
Na+ | 6.15 × 10−1 |
K+ | 5.50 × 10−3 |
Mg2+ | 1.20 × 10−2 |
Ca2+ | 9.06 × 10−3 |
Sr2+ | 5.81 × 10−4 |
SO42− | 3.47 × 10−3 |
Cl− | 6.57 × 10−1 |
Ba2+ | 2.19 × 10−5 |
Total dissolved solid (TDS)—ppm | 38,575 |
Ionic strength (IS)—mol/kgw | 6.89 × 10−1 |
CAS No. | Molecular Formula | Molecular Weight (g/mol) | Appearance | Density (g/cc) | Boiling Point (C) | Solubility in Water | |
---|---|---|---|---|---|---|---|
Tween 80 | 9005-65-6 | C64H124O26 | 1309.67 | Amber viscous liquid | 1.07 | - | Very soluble |
CTAB | 57-09-0 | C19H42N.Br | 364.53 | Hygroscopic white powder | 0.5 | - | 55 g/L |
BZK | 63449-41-2 | Variable | ~340–400 | Pale yellow/white powder | - | 197 | Very soluble |
D14 | 112-75-4 | C16H35N | 241.46 | Light yellow liquid | 0.795 | 302 | Slightly soluble |
D10 | 1120-24-7 | C12H27N | 185.35 | Transparent yellow liquid | 0.778 | 234 | Slightly soluble |
D6 | 4385-04-0 | C8H19N | 129.24 | Colorless liquid | 0.744 | 146–150 | Slightly soluble |
Run | Temp. (°C) | Salinity (ppm) | CaCl2 | MgCl2 | NaSO4 |
---|---|---|---|---|---|
9 | 45 | 40,340 | Mid—3.28% | Mid—6.03% | Mid—1.23% |
1 | 22 | 36,460 | High—6.57% | High—12.06% | Low—0.62% |
2 | 70 | 36,480 | High—6.57% | High—12.06% | High—2.46% |
3 | 22 | 36,410 | Low—1.64% | High—12.06% | High—2.46% |
4 | 70 | 36,190 | Low—1.64% | Low—3.02% | High—2.46% |
5 | 22 | 36,250 | High—6.57% | Low—3.02% | Low—0.62% |
6 | 70 | 36,250 | High—6.57% | Low—3.02% | High—2.46% |
12 | 45 | 40,330 | Mid—3.28% | Mid—6.03% | Mid—1.23% |
7 | 70 | 36,240 | High—6.57% | Low—3.02% | Low—0.62% |
8 | 70 | 36,400 | Low—1.64% | High—12.06% | Low 0.62% |
10 | 22 | 36,180 | Low—1.64% | Low—3.02% | Low—0.62% |
11 | 22 | 36,470 | High—6.57% | High—12.06% | High—2.46% |
14 | 22 | 36,180 | Low—1.64% | Low—3.02% | High—2.46% |
13 | 45 | 40,340 | Mid—3.28% | Mid—6.03% | Mid—1.23% |
Factor | p-Value | |||
---|---|---|---|---|
BZK | CTAB | D14 | Tween 80 | |
Temperature | 0.0012 | <0.0001 | 0.0176 | 0.6498 |
CaCl2 | 0.4053 | 0.1547 | 0.8617 | 0.8138 |
MgCl2 | 0.8897 | 0.324 | 0.4351 | 0.1581 |
Na2SO4 | 0.4162 | 0.0895 | 0.5305 | 0.6568 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alturkey, K.; Azongo, S.A.; Argyrelis, T.; Mokhtari, R. Characterizing Foam Generated by CO2-Switchable Surfactants for Underground CO2 Storage Application. Processes 2025, 13, 1668. https://doi.org/10.3390/pr13061668
Alturkey K, Azongo SA, Argyrelis T, Mokhtari R. Characterizing Foam Generated by CO2-Switchable Surfactants for Underground CO2 Storage Application. Processes. 2025; 13(6):1668. https://doi.org/10.3390/pr13061668
Chicago/Turabian StyleAlturkey, Khaled, Stephen A. Azongo, Theodoros Argyrelis, and Rasoul Mokhtari. 2025. "Characterizing Foam Generated by CO2-Switchable Surfactants for Underground CO2 Storage Application" Processes 13, no. 6: 1668. https://doi.org/10.3390/pr13061668
APA StyleAlturkey, K., Azongo, S. A., Argyrelis, T., & Mokhtari, R. (2025). Characterizing Foam Generated by CO2-Switchable Surfactants for Underground CO2 Storage Application. Processes, 13(6), 1668. https://doi.org/10.3390/pr13061668