Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (528)

Search Parameters:
Keywords = chemicals of emerging concern

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4268 KiB  
Review
Targeting Bacterial Biofilms on Medical Implants: Current and Emerging Approaches
by Alessandro Calogero Scalia and Ziba Najmi
Antibiotics 2025, 14(8), 802; https://doi.org/10.3390/antibiotics14080802 - 6 Aug 2025
Abstract
Biofilms are structured communities of microorganisms encased in a self-produced extracellular matrix, and they represent one of the most widespread forms of microbial life on Earth. Their presence poses serious challenges in both environmental and clinical settings. In natural and industrial systems, biofilms [...] Read more.
Biofilms are structured communities of microorganisms encased in a self-produced extracellular matrix, and they represent one of the most widespread forms of microbial life on Earth. Their presence poses serious challenges in both environmental and clinical settings. In natural and industrial systems, biofilms contribute to water contamination, pipeline corrosion, and biofouling. Clinically, biofilm-associated infections are responsible for approximately 80% of all microbial infections, including endocarditis, osteomyelitis, cystic fibrosis, and chronic sinusitis. A particularly critical concern is their colonization of medical devices, where biofilms can lead to chronic infections, implant failure, and increased mortality. Implantable devices, such as orthopedic implants, cardiac pacemakers, cochlear implants, urinary catheters, and hernia meshes, are highly susceptible to microbial attachment and biofilm development. These infections are often recalcitrant to conventional antibiotics and frequently necessitate surgical revision. In the United States, over 500,000 biofilm-related implant infections occur annually, with prosthetic joint infections alone projected to incur revision surgery costs exceeding USD 500 million per year—a figure expected to rise to USD 1.62 billion by 2030. To address these challenges, surface modification of medical devices has emerged as a promising strategy to prevent bacterial adhesion and biofilm formation. This review focuses on recent advances in chemical surface functionalization using non-antibiotic agents, such as enzymes, chelating agents, quorum sensing quenching factors, biosurfactants, oxidizing compounds and nanoparticles, designed to enhance antifouling and mature biofilm eradication properties. These approaches aim not only to prevent device-associated infections but also to reduce dependence on antibiotics and mitigate the development of antimicrobial resistance. Full article
(This article belongs to the Special Issue Antibacterial and Antibiofilm Properties of Biomaterial)
Show Figures

Graphical abstract

31 pages, 5440 KiB  
Article
Canals, Contaminants, and Connections: Exploring the Urban Exposome in a Tropical River System
by Alan D. Ziegler, Theodora H. Y. Lee, Khajornkiat Srinuansom, Teppitag Boonta, Jongkon Promya and Richard D. Webster
Urban Sci. 2025, 9(8), 302; https://doi.org/10.3390/urbansci9080302 - 4 Aug 2025
Abstract
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 [...] Read more.
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 ng/L), sucralose (38,000 ng/L), and acesulfame (23,000 ng/L) point to inadequately treated wastewater as a plausible contributor. Downstream enrichment patterns relative to upstream sites highlight the cumulative impact of urban runoff. Five compounds—acesulfame, gemfibrozil, fexofenadine, TBEP, and caffeine—consistently emerged as reliable tracers of urban wastewater, forming a distinct chemical fingerprint of the riverine exposome. Median EPC concentrations were highest in Mae Kha, lower in other urban canals, and declined with distance from the city, reflecting spatial gradients in urban density and pollution intensity. Although most detected concentrations fell below predicted no-effect thresholds, ibuprofen frequently approached or exceeded ecotoxicological benchmarks and may represent a compound of ecological concern. Non-targeted analysis revealed a broader “chemical cocktail” of unregulated substances—illustrating a witches’ brew of pollution that likely escapes standard monitoring efforts. These findings demonstrate the utility of wide-scope surveillance for identifying key compounds, contamination hotspots, and spatial gradients in mixed-use watersheds. They also highlight the need for integrated, long-term monitoring strategies that address diffuse, compound mixtures to safeguard freshwater ecosystems in rapidly urbanizing regions. Full article
Show Figures

Figure 1

15 pages, 1071 KiB  
Article
A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels
by Yumin Li, Jun Wang, Yuntong Fan, Chuchu Chen, Jaime Campos Gutiérrez, Ling Huang, Zhenxing Lin, Siyuan Li and Yu Lei
Sustainability 2025, 17(15), 6997; https://doi.org/10.3390/su17156997 - 1 Aug 2025
Viewed by 212
Abstract
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O [...] Read more.
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O3) are closely tied to both public health and long-term sustainability goals. However, traditional chemical transport models often face challenges in accurately estimating emission changes and providing timely assessments. In contrast, statistical approaches such as the difference-in-differences (DID) model utilize observational data to improve evaluation accuracy and efficiency. This study leverages the synthetic difference-in-differences (SDID) approach, which integrates the strengths of both DID and the synthetic control method (SCM), to provide a more reliable and accurate analysis of the impacts of interventions on city-level air quality. Using Shanghai’s 2022 lockdown as a case study, we compare the deweathered ozone (O3) concentration in Shanghai to a counterfactual constructed from a weighted average of cities in the Yangtze River Delta (YRD) that did not undergo lockdown. The quasi-natural experiment reveals an average increase of 4.4 μg/m3 (95% CI: 0.24–8.56) in Shanghai’s maximum daily 8 h O3 concentration attributable to the lockdown. The SDID method reduces reliance on the parallel trends assumption and improves the estimate stability through unit- and time-specific weights. Multiple robustness checks confirm the reliability of these findings, underscoring the efficacy of the SDID approach in quantitatively evaluating the causal impact of emission perturbations on air quality. This study provides credible causal evidence of the environmental impact of short-term policy interventions, highlighting the utility of SDID in informing adaptive air quality management. The findings support the development of timely, evidence-based strategies for sustainable urban governance and environmental policy design. Full article
Show Figures

Figure 1

18 pages, 3967 KiB  
Article
A Thorough Investigation of the Mechanism of theAntagonistic Effect Between Phosphorus and Basic Oxide-Forming Minerals as Flame Retardants of PolymericComposite Coatings
by Evangelia Mitropoulou, Georgios N. Mathioudakis, Amaia Soto Beobide, Athanasios Porfyris, Vassilios Dracopoulos, Kerim Kılınç, Theodosios Chatzinikolaou, Deniz Savci, Cem Gunesoglu, Joannis Kallitsis and George A. Voyiatzis
Coatings 2025, 15(8), 886; https://doi.org/10.3390/coatings15080886 - 30 Jul 2025
Viewed by 252
Abstract
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising [...] Read more.
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising alternatives. Despite this, their combined use is neither straightforward nor guaranteed to be effective. This study scrutinizes the interactions between these two classes of flame retardants (FR) through a systematic analysis aimed at elucidating the antagonistic pathways that arise from their coexistence. Specifically, this study focuses on two inorganic fillers, mineral huntite and chemically precipitated magnesium hydroxide, both of which produce basic oxides upon thermal decomposition. These fillers were incorporated into a poly(butylene terephthalate) (PBT) matrix to be utilized as advanced-mattress FR coating fabric and were subjected to a series of flammability tests. The pyrolysis products of the prepared polymeric composite compounds were isolated and thoroughly characterized using a combination of analytical techniques. Thermogravimetric analysis (TGA) and differential thermogravimetric analysis (dTGA) were employed to monitor decomposition behavior, while the char residues collected at different pyrolysis stages were examined spectroscopically, using FTIR-ATR and Raman spectroscopy, to identify their structure and the chemical reactions that led to their formation. X-ray diffraction (XRD) experiments were also conducted to complement the spectroscopic findings in the chemical composition of the resulting char residues and to pinpoint the different species that constitute them. The morphological changes of the char’s structure were monitored by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). Finally, the Limited Oxygen Index (LOI) and UL94 (vertical sample mode) methods were used to assess the relative flammability of the samples, revealing a significant drop in flame retardancy when both types of flame retardants are present. This reduction is attributed to the neutralization of acidic phosphorus species by the basic oxides generated during the decomposition of the basic inorganic fillers, as confirmed by the characterization techniques employed. These findings underscore the challenge of combining organophosphorus with popular flame-retardant classes such as mineral or basic metal flame retardants, offering insight into a key difficulty in formulating next-generation halogen-free flame-retardant composite coatings. Full article
(This article belongs to the Special Issue Innovative Flame-Retardant Coatings for High-Performance Materials)
Show Figures

Figure 1

36 pages, 7620 KiB  
Review
Hydrogen Energy Storage via Carbon-Based Materials: From Traditional Sorbents to Emerging Architecture Engineering and AI-Driven Optimization
by Han Fu, Amin Mojiri, Junli Wang and Zhe Zhao
Energies 2025, 18(15), 3958; https://doi.org/10.3390/en18153958 - 24 Jul 2025
Viewed by 491
Abstract
Hydrogen is widely recognized as a key enabler of the clean energy transition, but the lack of safe, efficient, and scalable storage technologies continues to hinder its broad deployment. Conventional hydrogen storage approaches, such as compressed hydrogen storage, cryo-compressed hydrogen storage, and liquid [...] Read more.
Hydrogen is widely recognized as a key enabler of the clean energy transition, but the lack of safe, efficient, and scalable storage technologies continues to hinder its broad deployment. Conventional hydrogen storage approaches, such as compressed hydrogen storage, cryo-compressed hydrogen storage, and liquid hydrogen storage, face limitations, including high energy consumption, elevated cost, weight, and safety concerns. In contrast, solid-state hydrogen storage using carbon-based adsorbents has gained growing attention due to their chemical tunability, low cost, and potential for modular integration into energy systems. This review provides a comprehensive evaluation of hydrogen storage using carbon-based materials, covering fundamental adsorption mechanisms, classical materials, emerging architectures, and recent advances in computationally AI-guided material design. We first discuss the physicochemical principles driving hydrogen physisorption, chemisorption, Kubas interaction, and spillover effects on carbon surfaces. Classical adsorbents, such as activated carbon, carbon nanotubes, graphene, carbon dots, and biochar, are evaluated in terms of pore structure, dopant effects, and uptake capacity. The review then highlights recent progress in advanced carbon architectures, such as MXenes, three-dimensional architectures, and 3D-printed carbon platforms, with emphasis on their gravimetric and volumetric performance under practical conditions. Importantly, this review introduces a forward-looking perspective on the application of artificial intelligence and machine learning tools for data-driven sorbent design. These methods enable high-throughput screening of materials, prediction of performance metrics, and identification of structure–property relationships. By combining experimental insights with computational advances, carbon-based hydrogen storage platforms are expected to play a pivotal role in the next generation of energy storage systems. The paper concludes with a discussion on remaining challenges, utilization scenarios, and the need for interdisciplinary efforts to realize practical applications. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

29 pages, 2729 KiB  
Article
Computational Evaluation and Multi-Criteria Optimization of Natural Compound Analogs Targeting SARS-CoV-2 Proteases
by Paul Andrei Negru, Andrei-Flavius Radu, Ada Radu, Delia Mirela Tit and Gabriela Bungau
Curr. Issues Mol. Biol. 2025, 47(7), 577; https://doi.org/10.3390/cimb47070577 - 21 Jul 2025
Viewed by 378
Abstract
The global impact of the COVID-19 crisis has underscored the need for novel therapeutic candidates capable of efficiently targeting essential viral proteins. Existing therapeutic strategies continue to encounter limitations such as reduced efficacy against emerging variants, safety concerns, and suboptimal pharmacodynamics, which emphasize [...] Read more.
The global impact of the COVID-19 crisis has underscored the need for novel therapeutic candidates capable of efficiently targeting essential viral proteins. Existing therapeutic strategies continue to encounter limitations such as reduced efficacy against emerging variants, safety concerns, and suboptimal pharmacodynamics, which emphasize the potential of natural-origin compounds as supportive agents with immunomodulatory, anti-inflammatory, and antioxidant benefits. The present study significantly advances prior molecular docking research through comprehensive virtual screening of structurally related analogs derived from antiviral phytochemicals. These compounds were evaluated specifically against the SARS-CoV-2 main protease (3CLpro) and papain-like protease (PLpro). Utilizing chemical similarity algorithms via the ChEMBL database, over 600 candidate molecules were retrieved and subjected to automated docking, interaction pattern analysis, and comprehensive ADMET profiling. Several analogs showed enhanced binding scores relative to their parent scaffolds, with CHEMBL1720210 (a shogaol-derived analog) demonstrating strong interaction with PLpro (−9.34 kcal/mol), and CHEMBL1495225 (a 6-gingerol derivative) showing high affinity for 3CLpro (−8.04 kcal/mol). Molecular interaction analysis revealed that CHEMBL1720210 forms hydrogen bonds with key PLpro residues including GLY163, LEU162, GLN269, TYR265, and TYR273, complemented by hydrophobic interactions with TYR268 and PRO248. CHEMBL1495225 establishes multiple hydrogen bonds with the 3CLpro residues ASP197, ARG131, TYR239, LEU272, and GLY195, along with hydrophobic contacts with LEU287. Gene expression predictions via DIGEP-Pred indicated that the top-ranked compounds could influence biological pathways linked to inflammation and oxidative stress, processes implicated in COVID-19’s pathology. Notably, CHEMBL4069090 emerged as a lead compound with favorable drug-likeness and predicted binding to PLpro. Overall, the applied in silico framework facilitated the rational prioritization of bioactive analogs with promising pharmacological profiles, supporting their advancement toward experimental validation and therapeutic exploration against SARS-CoV-2. Full article
(This article belongs to the Special Issue Novel Drugs and Natural Products Discovery)
Show Figures

Figure 1

35 pages, 13218 KiB  
Review
Research Advances in Nanosensor for Pesticide Detection in Agricultural Products
by Li Feng, Xiaofei Yue, Junhao Li, Fangyao Zhao, Xiaoping Yu and Ke Yang
Nanomaterials 2025, 15(14), 1132; https://doi.org/10.3390/nano15141132 - 21 Jul 2025
Viewed by 448
Abstract
Over the past few decades, pesticide application has increased significantly, driven by population growth and associated urbanization. To date, pesticide use remains crucial for sustaining global food security by enhancing crop yields and preserving quality. However, extensive pesticide application raises serious environmental and [...] Read more.
Over the past few decades, pesticide application has increased significantly, driven by population growth and associated urbanization. To date, pesticide use remains crucial for sustaining global food security by enhancing crop yields and preserving quality. However, extensive pesticide application raises serious environmental and health concerns worldwide due to its chemical persistence and high toxicity to organisms, including humans. Therefore, there is an urgent need to develop rapid and reliable analytical procedures for the quantification of trace pesticide residues to support public health management. Traditional methods, such as chromatography-based detection techniques, cannot simultaneously achieve high sensitivity, selectivity, cost-effectiveness, and portability, which limits their practical application. Nanomaterial-based sensing techniques are increasingly being adopted due to their rapid, efficient, user-friendly, and on-site detection capabilities. In this review, we summarize recent advances and emerging trends in commonly used nanosensing technologies, such as optical and electrochemical sensing, with a focus on recognition elements including enzymes, antibodies, aptamers, and molecularly imprinted polymers (MIPs). We discuss the types of nanomaterials used, preparation methods, performance, characteristics, advantages and limitations, and applications of these nanosensors in detecting pesticide residues in agricultural products. Furthermore, we highlight current challenges, ongoing efforts, and future directions in the development of pesticide detection nanosensors. Full article
(This article belongs to the Special Issue Nanosensors for the Rapid Detection of Agricultural Products)
Show Figures

Figure 1

44 pages, 3979 KiB  
Review
Sesame Diseases and Pests: Assessment of Threats to the Establishment of an Australian Industry
by Dante L. Adorada, Lachlan C. Jones, Jian Liu and Geoff M. Gurr
Crops 2025, 5(4), 44; https://doi.org/10.3390/crops5040044 - 14 Jul 2025
Viewed by 571
Abstract
The emerging sesame (Sesamum indicum L.) industry in Australia faces potential threats from multiple pre-harvest diseases and pests, which will necessitate an initiative-taking approach for pest management. Here we assess the diseases and pests most likely to impede the development of a [...] Read more.
The emerging sesame (Sesamum indicum L.) industry in Australia faces potential threats from multiple pre-harvest diseases and pests, which will necessitate an initiative-taking approach for pest management. Here we assess the diseases and pests most likely to impede the development of a viable Australian sesame industry. Drawing on the international literature, we also consider the management approaches most likely to be viable and identify key research gaps necessary for effective and sustainable crop protection. More than sixty-seven plant pathogens have been identified worldwide that cause diseases in sesame, with some being observed to be major in Australia. Part of this review aims to provide an extensive overview of previous research on sesame and its diseases, shedding light on the evolving knowledge within sesame research, emerging trends, and the current state of understanding on the topic as it applies to Australia. Among the hundreds of pests reported to attack sesame internationally, this review identifies fifty-six pest taxa that are established in, or native to, Australia. We rank those most likely to be serious based on overseas damage levels and observations from recent trial plantings in Northern Australia. Chemical control methods have demonstrated efficacy overseas but are associated with concerns over resistance and environmental impact. Extremely limited numbers of pesticides are currently registered for pest or disease control in sesame by the Australian Pesticides and Veterinary Medicines Authority so non-chemical methods will be important. These include botanical, biological, cultural, and physical control approaches. This review underscores the need for continued research and tailored plant protection strategies to optimize sesame. Full article
Show Figures

Figure 1

24 pages, 336 KiB  
Review
Molecular Shadows of Per- and Polyfluoroalkyl Substances (PFASs): Unveiling the Impact of Perfluoroalkyl Substances on Ovarian Function, Polycystic Ovarian Syndrome (PCOS), and In Vitro Fertilization (IVF) Outcomes
by Charalampos Voros, Diamantis Athanasiou, Ioannis Papapanagiotou, Despoina Mavrogianni, Antonia Varthaliti, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Athanasios Gkirgkinoudis, Kyriaki Migklis, Dimitrios Vaitsis, Aristotelis-Marios Koulakmanidis, Charalampos Tsimpoukelis, Sofia Ivanidou, Anahit J. Stepanyan, Maria Anastasia Daskalaki, Marianna Theodora, Panagiotis Antsaklis, Dimitrios Loutradi and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(14), 6604; https://doi.org/10.3390/ijms26146604 - 10 Jul 2025
Viewed by 576
Abstract
Per- and polyfluoroalkyl substances (PFASs) comprise a diverse array of synthetic chemicals that resist environmental degradation. They are increasingly recognised as endocrine-disrupting compounds (EDCs). These chemicals, found in non-stick cookware, food packaging, and industrial waste, accumulate in human tissues and fluids, raising substantial [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) comprise a diverse array of synthetic chemicals that resist environmental degradation. They are increasingly recognised as endocrine-disrupting compounds (EDCs). These chemicals, found in non-stick cookware, food packaging, and industrial waste, accumulate in human tissues and fluids, raising substantial concerns regarding their impact on female reproductive health. Epidemiological studies have demonstrated associations between PFAS exposure and reduced fertility; nevertheless, the underlying molecular pathways remain inadequately understood. This narrative review investigates the multifaceted effects of PFASs on ovarian physiology, including its disruption of the hypothalamic–pituitary–ovarian (HPO) axis, alteration of anti-Müllerian hormone (AMH) levels, folliculogenesis, and gonadotropin receptor signalling. Significant attention is directed towards the emerging association between PFASs and polycystic ovarian syndrome (PCOS), wherein PFAS-induced hormonal disruption may exacerbate metabolic issues and elevated androgen levels. Furthermore, we analyse the current data regarding PFAS exposure in women undergoing treatment based on assisted reproductive technologies (ARTs), specifically in vitro fertilisation (IVF), highlighting possible associations with diminished oocyte quality, suboptimal embryo development, and implantation failure. We examine potential epigenetic and transgenerational alterations that may influence women’s reproductive capabilities over time. This study underscores the urgent need for further research and regulatory actions to tackle PFAS-related reproductive toxicity, particularly in vulnerable populations, such as women of reproductive age and those receiving fertility treatments. Full article
(This article belongs to the Special Issue Molecular Advances in Obstetrical and Gynaecological Disorders)
38 pages, 1314 KiB  
Review
Current Approaches to Aflatoxin B1 Control in Food and Feed Safety: Detection, Inhibition, and Mitigation
by Katarzyna Kępka-Borkowska, Katarzyna Chałaśkiewicz, Magdalena Ogłuszka, Mateusz Borkowski, Adam Lepczyński, Chandra Shekhar Pareek, Rafał Radosław Starzyński, Elżbieta Lichwiarska, Sharmin Sultana, Garima Kalra, Nihal Purohit, Barbara Gralak, Ewa Poławska and Mariusz Pierzchała
Int. J. Mol. Sci. 2025, 26(13), 6534; https://doi.org/10.3390/ijms26136534 - 7 Jul 2025
Viewed by 774
Abstract
Aflatoxins, toxic secondary metabolites produced primarily by Aspergillus flavus and Aspergillus parasiticus, pose a significant global health concern due to their frequent presence in crops, food, and feed—especially under climate change conditions. This review addresses the growing threat of aflatoxins by analyzing [...] Read more.
Aflatoxins, toxic secondary metabolites produced primarily by Aspergillus flavus and Aspergillus parasiticus, pose a significant global health concern due to their frequent presence in crops, food, and feed—especially under climate change conditions. This review addresses the growing threat of aflatoxins by analyzing recent advances in detection and mitigation. A comprehensive literature review was conducted, focusing on bioremediation, physical and chemical detoxification, and fungal growth inhibition strategies. The occurrence of aflatoxins in water systems was also examined, along with current detection techniques, removal processes, and regulatory frameworks. Emerging technologies such as molecular diagnostics, immunoassays, biosensors, and chromatographic methods are discussed for their potential to improve monitoring and control. Key findings highlight the increasing efficacy of integrative approaches combining biological and technological solutions and the potential of AI-based tools and portable devices for on-site detection. Intelligent packaging and transgenic crops are also explored for their role in minimizing contamination at the source. Overall, this review emphasizes the importance of continued interdisciplinary research and the development of sustainable, adaptive strategies to mitigate aflatoxin risks, thereby supporting food safety and public health in the face of environmental challenges. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

26 pages, 808 KiB  
Review
A Review of Formulation Strategies for Cyclodextrin-Enhanced Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs)
by Tarek Alloush and Burcu Demiralp
Int. J. Mol. Sci. 2025, 26(13), 6509; https://doi.org/10.3390/ijms26136509 - 6 Jul 2025
Viewed by 950
Abstract
The advancement of efficient drug delivery systems continues to pose a significant problem in pharmaceutical sciences, especially for compounds with limited water solubility. Lipid-based systems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have emerged as viable options owing to their [...] Read more.
The advancement of efficient drug delivery systems continues to pose a significant problem in pharmaceutical sciences, especially for compounds with limited water solubility. Lipid-based systems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have emerged as viable options owing to their biocompatibility, capability to safeguard labile chemicals, and potential for prolonged release. Nonetheless, the encapsulation efficiency (EE) and release dynamics of these carriers can be enhanced by including cyclodextrins (CDs)—cyclic oligosaccharides recognized for their ability to form inclusion complexes with hydrophobic compounds. This article offers an extensive analysis of CD-modified SLNs and NLCs as multifunctional drug delivery systems. The article analyses the fundamental principles of these systems, highlighting the pre-complexation of the drug with cyclodextrins before lipid incorporation, co-encapsulation techniques, and surface adsorption after formulation. Attention is concentrated on the physicochemical interactions between cyclodextrins and lipid matrices, which influence essential factors such as particle size, encapsulation efficiency, and colloidal stability. The review includes characterization techniques, such as particle size analysis, zeta potential measurement, drug release studies, and Fourier-transform infrared spectroscopy (FT-IR)/Nuclear Magnetic Resonance (NMR) analyses. The study highlights the application of these systems across many routes of administration, including oral, topical, and mucosal, illustrating their adaptability and potential for targeted delivery. The review outlines current formulation challenges, including stability issues, drug leakage, and scalability concerns, and proposes solutions through advanced approaches, such as stimuli-responsive release mechanisms and computer modeling for system optimization. The study emphasizes the importance of regulatory aspects and outlines future directions in the development of CD-lipid hybrid nanocarriers, showcasing its potential to revolutionize the delivery of poorly soluble drugs. Full article
(This article belongs to the Special Issue Research on Cyclodextrin)
Show Figures

Graphical abstract

32 pages, 1739 KiB  
Review
Effects of Pharmaceuticals and Endocrine-Disrupting Chemicals on Reproductive Biology of Aquatic Fauna: Penguins as Sentinel Species
by Grace Emily Okuthe, Edith Dube and Patrick Siyambulela Mafunda
J. Xenobiot. 2025, 15(4), 110; https://doi.org/10.3390/jox15040110 - 4 Jul 2025
Viewed by 930
Abstract
The escalating global contamination of aquatic ecosystems by pharmaceuticals and endocrine-disrupting chemicals (EDCs) stemming from diverse anthropogenic sources represents a critical and pervasive threat to planetary Earth. These contaminants exhibit bioaccumulative properties in long-lived organisms and undergo trophic biomagnification, leading to elevated concentrations [...] Read more.
The escalating global contamination of aquatic ecosystems by pharmaceuticals and endocrine-disrupting chemicals (EDCs) stemming from diverse anthropogenic sources represents a critical and pervasive threat to planetary Earth. These contaminants exhibit bioaccumulative properties in long-lived organisms and undergo trophic biomagnification, leading to elevated concentrations in apex predators. This review synthesizes current knowledge regarding the far-reaching impacts of pharmaceutical and EDC pollution on the reproductive biology of aquatic fauna, focusing on the heightened vulnerability of the endangered African penguin. A rigorous literature review across key scientific databases—PubMed, Scopus, Web of Science, and Google Scholar—using targeted search terms (e.g., penguins, contaminants of emerging concern, penguin species, seabird species, Antarctica, pharmaceuticals, personal care products, EDCs) underpins this analysis. This review explores the anthropogenic sources of pharmaceuticals and EDCs in aquatic ecosystems. It discusses the mechanisms by which these chemicals disrupt the reproductive physiology of aquatic fauna. Recent studies on the ecological and population-level consequences of these contaminants are also reviewed. Furthermore, the review elaborates on the urgent need for comprehensive mitigating strategies to address their effects on vulnerable penguin populations. These approaches hold the potential to unlock innovative pathways for conservation initiatives and the formulation of robust environmental management policies aimed at safeguarding aquatic ecosystems and the diverse life they support. Full article
Show Figures

Figure 1

36 pages, 1129 KiB  
Review
The Effect of Non-Thermal Processing on the Fate of Pathogenic Bacteria and Hidden Hazardous Risks
by Yanan Wu, Xinxin Li, Xinyu Ma, Qing Ren, Zhanbin Sun and Hanxu Pan
Foods 2025, 14(13), 2374; https://doi.org/10.3390/foods14132374 - 4 Jul 2025
Viewed by 552
Abstract
Non-thermal processing encompasses a range of emerging food technologies, including high-pressure processing (HPP), pulsed electric field (PEF), cold atmospheric plasma (CAP), high-pressure carbon dioxide (HPCD), and ultrasound (US). Unlike traditional thermal processing or chemical preservatives, these methods offer advantages such as lower energy [...] Read more.
Non-thermal processing encompasses a range of emerging food technologies, including high-pressure processing (HPP), pulsed electric field (PEF), cold atmospheric plasma (CAP), high-pressure carbon dioxide (HPCD), and ultrasound (US). Unlike traditional thermal processing or chemical preservatives, these methods offer advantages such as lower energy consumption, enhanced environmental sustainability, and effective microbial inactivation, thereby extending food shelf life. Moreover, they can better preserve the nutritional integrity, color, flavor, and texture of food products. However, a critical concern associated with non-thermal processing is its potential to induce microorganisms into a viable but nonculturable (VBNC) state. These VBNC cells evade detection via conventional culturing techniques and may remain metabolically active and retain virulence, posing hidden food safety risks. Despite these implications, comprehensive reviews addressing the induction of a VBNC state by non-thermal treatments remain limited. This review systematically summarizes the microbial inactivation effects and mechanisms of non-thermal processing techniques, the VBNC state, and their associated hazards. This review aims to support technological innovation and sustainable advancement in non-thermal food processing. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

10 pages, 1659 KiB  
Brief Report
Pathogen Enzyme-Mediated Alkoxyamine Homolysis as a Killing Mechanism of Aspergillus fumigatus
by Marion Filliâtre, Pierre Voisin, Seda Seren, Ines Kelkoul, Olivier Glehen, Philippe Mellet, Sophie Thétiot-Laurent, Jean Menotti, Sylvain R. A. Marque, Gérard Audran and Abderrazzak Bentaher
J. Fungi 2025, 11(7), 503; https://doi.org/10.3390/jof11070503 - 4 Jul 2025
Viewed by 480
Abstract
The emergence of antifungal-resistant Aspergillus fumigatus (A. fumigatus) became a serious public health concern, underscoring the need for new effective antifungal agents. Here, we present a strategy based on the in situ generation of radical species that are toxic to the pathogen. The [...] Read more.
The emergence of antifungal-resistant Aspergillus fumigatus (A. fumigatus) became a serious public health concern, underscoring the need for new effective antifungal agents. Here, we present a strategy based on the in situ generation of radical species that are toxic to the pathogen. The synthesis of an alkoxyamine linked to a peptide substrate recognized by A. fumigatus-secreted dipeptidyl peptidase is described. Kinetic experiments show a stable prodrug prior to enzymatic activation. Ensuing peptide cleavage and spontaneous homolysis resulted in the generation of a stable nitroxide and a reactive alkyl radical moiety. Next, the exposure of A. fumigatus spores to the prodrug lead to pathogen growth inhibition in a compound concentration-dependent fashion (e.g., 42% inhibition at 10 µg/L). Importantly, the designed alkoxyamine inhibited not only the growth of a clinical voriconazole-susceptible A. fumigatus strain, but also the growth of a strain resistant to this azole. To determine the antifungal importance of the reactive alkyl radical, its substitution with a non-radical structure did not prevent A. fumigatus growth. Furthermore, the introduction of succinic group in the peptide substrate resulted in the loss of alkoxyamine antifungal properties. Our work reports a novel chemical strategy for antifungal therapy against A. fumigatus based on the pathogen enzyme-mediated generation of toxic radicals. Significantly, these findings are timely since they could overcome the emerged resistance to conventional drugs that are known to target defined pathogen biologic mechanisms such as ergosterol synthesis. Full article
(This article belongs to the Special Issue Fungal Infections and Antifungals)
Show Figures

Graphical abstract

14 pages, 982 KiB  
Article
Botanical Authenticity of Miraruira Sold in the Amazonas State, Brazil, Based on Chemical Profiling Using DI-MS and Chemometric Analyses
by Shelson M. da R. Braga, Felipe M. A. da Silva, Giovana A. Bataglion, Marcia G. A. de Almeida, Larissa O. de Souza, Rebeca dos S. França, Cesar A. S. de Souza, Francinaldo A. da Silva-Filho, Afonso D. L. de Souza, Hector H. F. Koolen and Maria L. B. Pinheiro
Plants 2025, 14(13), 2012; https://doi.org/10.3390/plants14132012 - 1 Jul 2025
Viewed by 307
Abstract
Miraruira is a medicinal plant-based product (MPBP) that is widely used in the state of Amazonas for the treatment of diabetes, though its botanical identity remains unclear, which raises concerns about authenticity and therapeutic consistency. One solution to this problem is the use [...] Read more.
Miraruira is a medicinal plant-based product (MPBP) that is widely used in the state of Amazonas for the treatment of diabetes, though its botanical identity remains unclear, which raises concerns about authenticity and therapeutic consistency. One solution to this problem is the use of mass spectrometry-based approaches, which have emerged as powerful tools for verifying botanical origin based on chemical composition. Thus, to confirm the botanical authenticity of miraruira, direct-injection mass spectrometry (DI-MS) and chemometric analyses (PCA and HCA) were conducted on methanol fractions of Salacia impressifolia and Connarus ruber, both suspected sources of miraruira, as well as commercial samples obtained in street markets in Manaus, Brazil. Additionally, the hexane extracts of C. ruber and the commercial samples were screened for benzoquinones using DI-MS, as these compounds are recurrent in the genus Connarus. The DI-MS and PCA analyses revealed distinct chemical profiles for each species, and identified mangiferin and epicatechin as chemical markers for S. impressifolia and C. ruber, respectively. Furthermore, PCA demonstrated that all the commercial samples exhibited chemical profiles closely aligned with C. ruber. However, the HCA indicated variability among these samples, suggesting C. ruber or related Connarus species are the primary sources of miraruira. Moreover, embelin, rapanone, and suberonone were identified as the main compounds in the hexane extracts of C. ruber and the commercial products. This study successfully confirmed the botanical authenticity of miraruira, identified key bioactive compounds related to its traditional use in the treatment of diabetes symptoms, and demonstrated the effectiveness of DI-MS as a valuable tool for addressing authenticity issues in MPBPs. Full article
(This article belongs to the Special Issue Mass Spectrometry-Based Approaches in Natural Products Research)
Show Figures

Figure 1

Back to TopTop