A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels
Abstract
1. Introduction
2. Materials and Methods
2.1. Meteorological Normalization Based on Random Forest
2.2. Synthetic Difference-in-Differences (SDID) Approach
2.3. Estimating the Health Impact and Economic Costs
3. Results
3.1. Overview of Air Quality Changes During the 2022 LCD
3.2. Causal Impact of Lockdown on Ozone
3.3. Health Impact and Economic Costs Due to Short-Term Ozone Exposure
3.4. Limitation of Synthetic Difference-in-Differences
4. Conclusions and Future Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, Y.; Sengupta, D.; Campmier, M.J.; Lunderberg, D.M.; Apte, J.S.; Goldstein, A.H. Wildfire smoke impacts on indoor air quality assessed using crowdsourced data in California. Proc. Natl. Acad. Sci. USA 2021, 118, e2106478118. [Google Scholar] [CrossRef]
- Schneider, S.R.; Lee, K.; Santos, G.; Abbatt, J.P.D. Air Quality Data Approach for Defining Wildfire Influence: Impacts on PM2.5, NO2, CO, and O3 in Western Canadian Cities. Environ. Sci. Technol. 2021, 55, 13709–13717. [Google Scholar] [CrossRef] [PubMed]
- Ghetu, C.C.; Rohlman, D.; Smith, B.W.; Scott, R.P.; Adams, K.A.; Hoffman, P.D.; Anderson, K.A. Wildfire Impact on Indoor and Outdoor PAH Air Quality. Environ. Sci. Technol. 2022, 56, 10042–10052. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, Y.; Yang, L.; Fu, L.; He, K.; Wang, S.; Hao, J.; Chen, J.; Li, C. The impact of transportation control measures on emission reductions during the 2008 Olympic Games in Beijing, China. Atmos. Environ. 2010, 44, 285–293. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, H.; Wang, H.; Xue, L.; He, J.; Xu, W.; Qi, B.; Du, R.; Liu, C.; Li, Z.; et al. Exploring the inconsistent variations in atmospheric primary and secondary pollutants during the 2016 G20 summit in Hangzhou, China: Implications from observations and models. Atmos. Chem. Phys. 2020, 20, 5391–5403. [Google Scholar] [CrossRef]
- Zhu, W.; Hu, B.; Liu, Z.; Pan, Y.; Han, J.; Li, C.; Xu, M.; Yang, S.; Yin, Y.; Zhou, J.; et al. Reduction of anthropogenic emissions enhanced atmospheric new particle formation: Observational evidence during the Beijing 2022 Winter Olympics. Atmos. Environ. 2023, 314, 120094. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, M.; Xing, J.; Wu, Y.; Zhou, Y.; Lei, Y.; He, K.; Fu, L.; Hao, J. Quantifying the Air Pollutants Emission Reduction during the 2008 Olympic Games in Beijing. Environ. Sci. Technol. 2010, 44, 2490–2496. [Google Scholar] [CrossRef]
- Xu, W.; Liu, X.; Liu, L.; Xin, J.; Wang, L.; Münkel, C.; Mao, G.; Wang, Y. Impact of emission controls on air quality in Beijing during APEC 2014: Implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors. Atmos. Environ. 2019, 210, 241–252. [Google Scholar] [CrossRef]
- Ma, Y.; Fu, T.M.; Tian, H.; Gao, J.; Hu, M.; Guo, J.; Zhang, Y.; Sun, Y.; Zhang, L.; Yang, X.; et al. Emergency Response Measures to Alleviate a Severe Haze Pollution Event in Northern China During December 2015: Assessment of Effectiveness. Aerosol Air Qual. Res. 2020, 20, 2098–2116. [Google Scholar] [CrossRef]
- Li, X.; Yao, Y.; Zhang, Z.; Zeng, Z.; Chen, Z.; Du, H. The health and economic impacts of emergency measures to combat heavy air pollution. J. Clean. Prod. 2023, 423, 138655. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Dantas, G.; Siciliano, B.; França, B.B.; Da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef] [PubMed]
- Grange, S.K.; Lee, J.D.; Drysdale, W.S.; Lewis, A.C.; Hueglin, C.; Emmenegger, L.; Carslaw, D.C. COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas. Atmos. Chem. Phys. 2021, 21, 4169–4185. [Google Scholar] [CrossRef]
- Hashim, B.M.; Al-Naseri, S.K.; Al-Maliki, A.; Al-Ansari, N. Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci. Total Environ. 2021, 754, 141978. [Google Scholar] [CrossRef]
- Jephcote, C.; Hansell, A.L.; Adams, K.; Gulliver, J. Changes in air quality during COVID-19 ‘lockdown’ in the United Kingdom. Environ. Pollut. 2021, 272, 116011. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Huang, L.; Liu, Z.; Zhu, Y.; Li, L.; Wang, Y.; Lv, K. The casual effects of COVID-19 lockdown on air quality and short-term health impacts in China. Environ. Pollut. 2021, 290, 117988. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Zhang, M.; Wang, S. Evaluating the effects of air pollution control policies in China using a difference-in-differences approach. Sci. Total Environ. 2022, 845, 157333. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Geng, G.; Hong, C.; Liu, F.; Song, Y.; Tong, D.; Zheng, B.; Cui, H.; Man, H. Anthropogenic emission inventories in China: A review. Natl. Sci. Rev. 2017, 4, 834–866. [Google Scholar] [CrossRef]
- Gao, M.; Han, Z.; Liu, Z.; Li, M.; Xin, J.; Tao, Z.; Li, J.; Kang, J.-E.; Huang, K.; Dong, X.; et al. Air quality and climate change, Topic 3 of the Model Inter-Comparison Study for Asia Phase III (MICS-Asia III)—Part 1: Overview and model evaluation. Atmos. Chem. Phys. 2018, 18, 4859–4884. [Google Scholar] [CrossRef]
- Skipper, T.N.; Hu, Y.; Odman, M.T.; Henderson, B.H.; Hogrefe, C.; Mathur, R.; Russell, A.G. Estimating US Background Ozone Using Data Fusion. Environ. Sci. Technol. 2021, 55, 4504–4512. [Google Scholar] [CrossRef]
- Wang, N.; Xu, J.; Pei, C.; Tang, R.; Zhou, D.; Chen, Y.; Li, M.; Deng, X.; Deng, T.; Huang, X.; et al. Air Quality During COVID-19 Lockdown in the Yangtze River Delta and the Pearl River Delta: Two Different Responsive Mechanisms to Emission Reductions in China. Environ. Sci. Technol. 2021, 55, 5721–5730. [Google Scholar] [CrossRef] [PubMed]
- Callaway, B.; Sant’Anna, P.H.C. Difference-in-Differences with Multiple Time Periods. J. Econom. 2021, 225, 200–230. Available online: http://arxiv.org/abs/1803.09015 (accessed on 11 July 2023). [CrossRef]
- Roth, J. Pretest with Caution: Event-Study Estimates After Testing for Parallel Trends. Am. Econ. Rev. Insights 2022, 4, 305–322. [Google Scholar] [CrossRef]
- Abadie, A.; Gardeazabal, J. The Economic Costs of Conflict: A Case Study of the Basque Country. Am. Econ. Rev. 2003, 93, 113–132. [Google Scholar] [CrossRef]
- Abadie, A.; Diamond, A.; Hainmueller, J. Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program. J. Am. Stat. Assoc. 2010, 105, 493–505. [Google Scholar] [CrossRef]
- Abadie, A.; Diamond, A.; Hainmueller, J. Comparative Politics and the Synthetic Control Method. Am. J. Political Sci. 2015, 59, 495–510. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J.R.; Liu, B. The Impact of the Wuhan COVID-19 Lockdown on Air Pollution and Health: A Machine Learning and Augmented Synthetic Control Approach. Environ. Resour. Econ. 2020, 76, 553–580. [Google Scholar] [CrossRef]
- Arkhangelsky, D.; Athey, S.; Hirshberg, D.A.; Imbens, G.W.; Wager, S. Synthetic Difference-in-Differences. Am. Econ. Rev. 2021, 111, 4088–4118. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; Watson, J.E.; Sun, S.; Qi, W.; Wang, Z.; Liu, J. Mixed effectiveness of global protected areas in resisting habitat loss. Nat. Commun. 2024, 15, 8389. [Google Scholar] [CrossRef]
- Wu, C.; Li, X.; Jiang, R.; Liu, Z.; Xie, F.; Wang, J.; Teng, Y.; Yang, Z. Understanding carbon resilience under public health emergencies: A synthetic difference-in-differences approach. Sci. Rep. 2024, 14, 20581. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, L.; Chen, X.; Bi, J.; Kinney, P.L. Acute effect of ozone exposure on daily mortality in seven cities of Jiangsu Province, China: No clear evidence for threshold. Environ. Res. 2017, 155, 235–241. [Google Scholar] [CrossRef]
- Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, T.; Gao, M.; Zhao, Y.; Zhang, Y. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Chen, K.; Wang, P.; Zhao, H.; Wang, P.; Gao, A.; Myllyvirta, L.; Zhang, H. Summertime O3 and related health risks in the north China plain: A modeling study using two anthropogenic emission inventories. Atmos. Environ. 2021, 246, 118087. [Google Scholar] [CrossRef]
- Wang, Y.; Wild, O.; Ashworth, K.; Chen, X.; Wu, Q.; Qi, Y.; Wang, Z. Reductions in crop yields across China from elevated ozone. Environ. Pollut. 2022, 292, 118218. [Google Scholar] [CrossRef] [PubMed]
- Grange, S.K.; Carslaw, D.C.; Lewis, A.C.; Boleti, E.; Hueglin, C. Random forest meteorological normalisation models for Swiss PM 10 trend analysis. Atmos. Chem. Phys. 2018, 18, 6223–6239. [Google Scholar] [CrossRef]
- Vu, T.V.; Shi, Z.; Cheng, J.; Zhang, Q.; He, K.; Wang, S.; Harrison, R.M. Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique. Atmos. Chem. Phys. 2019, 19, 11303–11314. [Google Scholar] [CrossRef]
- Balogun, A.L.; Tella, A. Modelling and investigating the impacts of climatic variables on ozone concentration in Malaysia using correlation analysis with random forest, decision tree regression, linear regression, and support vector regression. Chemosphere 2022, 299, 134250. [Google Scholar] [CrossRef]
- Huang, Q.; Li, T.; Zhang, T.; Fang, Y.; Gong, F.; Li, Y.; Xu, P.; Zhang, T.; Yang, L.; Wang, W. Quantifying SOA and O3 formation drivers in North China: Comprehensive method combining random forest, positive matrix factorization, and observation-based model. J. Environ. Sci. 2025, in press. [Google Scholar] [CrossRef]
- Abadie, A. Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects. J. Econ. Lit. 2021, 59, 391–425. [Google Scholar] [CrossRef]
- Turner, M.C.; Jerrett, M.; Pope, C.A.; Krewski, D.; Gapstur, S.M.; Diver, W.R.; Beckerman, B.S.; Marshall, J.D.; Su, J.; Crouse, D.L.; et al. Long-Term Ozone Exposure and Mortality in a Large Prospective Study. Am. J. Respir. Crit. Care Med. 2016, 193, 1134–1142. [Google Scholar] [CrossRef]
- Lim, C.C.; Hayes, R.B.; Ahn, J.; Shao, Y.; Silverman, D.T.; Jones, R.R.; Garcia, C.; Bell, M.L.; Thurston, G.D. Long-Term Exposure to Ozone and Cause-Specific Mortality Risk in the United States. Am. J. Respir. Crit. Care Med. 2019, 200, 1022–1031. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Z.; Li, H.; Wang, Y.; Li, Y.; Zhu, Y.; Ooi, M.C.G.; An, J.; Shang, Y.; Zhang, D.; et al. The Silver Lining of COVID-19: Estimation of Short-Term Health Impacts Due to Lockdown in the Yangtze River Delta Region, China. GeoHealth 2020, 4, e2020GH000272. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, C.; Zhao, H. A Health Impact and Economic Loss Assessment of O3 and PM2.5 Exposure in China from 2015 to 2020. GeoHealth 2022, 6, e2021GH000531. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Chen, H.; Liu, J. Air pollution-induced health impacts and health economic losses in China driven by US demand exports. J. Environ. Manag. 2022, 324, 116355. [Google Scholar] [CrossRef] [PubMed]
- Li, X.B.; Fan, G. Interannual variations, sources, and health impacts of the springtime ozone in Shanghai. Environ. Pollut. 2022, 306, 119458. [Google Scholar] [CrossRef] [PubMed]
- Ghude, S.D.; Chate, D.M.; Jena, C.; Beig, G.; Kumar, R.; Barth, M.C.; Pfister, G.G.; Fadnavis, S.; Pithani, P. Premature mortality in India due to PM2.5 and ozone exposure. Geophys. Res. Lett. 2016, 43, 4650–4658. [Google Scholar] [CrossRef]
- Maji, K.J.; Ye, W.F.; Arora, M.; Nagendra, S.M.S. Ozone pollution in Chinese cities: Assessment of seasonal variation, health effects and economic burden. Environ. Pollut. 2019, 247, 792–801. [Google Scholar] [CrossRef]
- Deschênes, O.; Greenstone, M.; Shapiro, J.S. Defensive Investments and the Demand for Air Quality: Evidence from the NOx Budget Program. Am. Econ. Rev. 2017, 107, 2958–2989. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, K.; Li, L.; Lei, Y.; Wu, S.; Jiang, Y.; Xi, Y.; Wang, F.; Cui, Y. Assessing the Public Health Economic Loss from PM2.5 Pollution in ‘2 + 26’ Cities. Int. J. Environ. Res. Public Health 2022, 19, 10647. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, Q. The positive impact of the Omicron pandemic lockdown on air quality and human health in cities around Shanghai. Environ Dev. Sustain. 2024, 26, 8791–8816. [Google Scholar] [CrossRef]
- OECD Publishing. The Cost of Air Pollution: Health Impacts of Road Transport; OECD Publishing: Paris, France, 2014. [Google Scholar]
- Liu, Y.; Wang, T.; Stavrakou, T.; Elguindi, N.; Doumbia, T.; Granier, C.; Bouarar, I.; Gaubert, B.; Brasseur, G.P. Diverse response of surface ozone to COVID-19 lockdown in China. Sci. Total Environ. 2021, 789, 147739. [Google Scholar] [CrossRef]
- Deroubaix, A.; Brasseur, G.; Gaubert, B.; Labuhn, I.; Menut, L.; Siour, G.; Tuccella, P. Response of surface ozone concentration to emission reduction and meteorology during the COVID-19 lockdown in Europe. Meteorol. Appl. 2021, 28, e1990. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef]
- Hu, L.; Shi, M.; Li, M.; Ma, J. The effectiveness of control measures during the 2022 COVID-19 outbreak in Shanghai, China. PLoS ONE 2023, 18, e0285937. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Wang, T. What caused ozone pollution during the 2022 Shanghai lockdown? Insights from ground and satellite observations. Atmos. Chem. Phys. 2022, 22, 14455–14466. [Google Scholar] [CrossRef]
- Chen, Z.; Deng, X.; Fang, L.; Sun, K.; Wu, Y.; Che, T.; Zoua, J.; Cai, J.; Liu, H.; Wang, Y.; et al. Epidemiological characteristics and transmission dynamics of the outbreak caused by the SARS-CoV-2 Omicron variant in Shanghai, China: A descriptive study. Lancet Reg. Health—West. Pac. 2022, 29, 100592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, S.; Xue, R.; Zhu, J.; He, S.; Duan, Y.; Huo, J.; Zhou, B. Impacts of Omicron associated restrictions on vertical distributions of air pollution at a suburb site in Shanghai. Atmos. Environ. 2023, 294, 119461. [Google Scholar] [CrossRef]
- Cheng, N.; Zhang, W.; Xiong, T. Heterogenous impact of China’s place-based environmental regulations on its hog industry: A synthetic difference-in-differences approach. Can. J. Agric. Econ./Rev. Can. d’Agroecon. 2025, 73, 203–223. [Google Scholar] [CrossRef]
- Seo, J.H.; Kim, J.S.; Yang, J.; Yun, H.; Roh, M.; Roh, M.; Yu, S.; Jeong, N.N.; Jeon, H.W.; Choi, J.S.; et al. Changes in Air Quality during the COVID-19 Pandemic and Associated Health Benefits in Korea. Appl. Sci. 2020, 10, 8720. [Google Scholar] [CrossRef]
- Kumar, P.; Hama, S.; Omidvarborna, H.; Sharma, A.; Sahani, J.; Abhijith, K.V.; Debele, S.E.; Zavala-Reyes, J.C.; Barwise, Y.; Tiwari, A. Temporary reduction in fine particulate matter due to ‘anthropogenic emissions switch-off’ during COVID-19 lockdown in Indian cities. Sustain. Cities Soc. 2020, 62, 102382. [Google Scholar] [CrossRef]
- Leão, M.L.P.; Penteado, J.O.; Ulguim, S.M.; Gabriel, R.R.; Santos, M.D.; Brum, A.N.; da Silva Júnior, F.M.R. Health impact assessment of air pollutants during the COVID-19 pandemic in a Brazilian metropolis. Environ. Sci. Pollut. Res. 2021, 28, 41843–41850. [Google Scholar] [CrossRef]
- Ye, T.; Guo, S.; Xie, Y.; Chen, Z.; Abramson, M.J.; Heyworth, J.; Hales, S.; Woodward, A.; Bell, M.; Guo, Y.; et al. Health and related economic benefits associated with reduction in air pollution during COVID-19 outbreak in 367 cities in China. Ecotoxicol. Environ. Saf. 2021, 222, 112481. [Google Scholar] [CrossRef]
Parameter | All-Cause (95% CI) | Cardiovascular (95% CI) | Respiratory (95% CI) |
---|---|---|---|
β (O3) | 0.00198 | 0.00296 | 0.00392 |
(0.001, 0.00392) | (0.001, 0.00583) | (0, 0.00862) | |
RR (O3) | 1.0221 | 1.0197 | 1.0262 |
(1.0066, 1.0262) | (1.0066, 1.0393) | (1.0066, 1.0586) | |
p (O3) | 0.00654 | 0.00296 | 0.00072 |
Variable | Shanghai | Remaining YRD Region Cities | Mean Diff. | |||||
---|---|---|---|---|---|---|---|---|
Pre- LCD | 2022 LCD | Relative Change | Pre- LCD | 2022 LCD | Relative Change | Pre- LCD | 2022 LCD | |
MDA8 O3 (μg/m3) | 93.2 ± 17.6 | 123.8 ± 29.3 | 32.8% | 88.9 ± 27.5 | 123.6 ± 35.7 | 39.0% | 4.3 | 0.2 |
NO2 (μg/m3) | 30.7 ± 11.8 | 17.2 ± 6.3 | −44.0% | 26.2 ± 12.2 | 21.7 ± 9.3 | −17.2% | 4.5 ** | −4.5 *** |
CO (mg/m3) | 0.6 ± 0.1 | 0.7 ± 0.1 | 16.7% | 0.6 ± 0.2 | 0.5 ± 0.1 | −11.3% | 0 | 0.2 *** |
PM10 (μg/m3) | 48.7 ± 28.2 | 33.3 ± 17.0 | −31.6% | 67.2 ± 41.2 | 53.6 ± 21.1 | −20.2% | −18.5 *** | −20.3 *** |
PM2.5 (μg/m3) | 30.0 ± 17.6 | 20.6 ± 10.3 | −31.3% | 38.4 ± 21.2 | 28.1 ± 11.7 | −26.8% | −8.4 *** | −7.5 *** |
SO2 (μg/m3) | 5.6 ± 1.4 | 6.3 ± 1.6 | 14.3% | 7.1 ± 2.6 | 7.5 ± 2.7 | 5.6% | −1.5 *** | −1.2 *** |
Temperature (°C) | 12.6 ± 6.53 | 22.2 ± 4.9 | 76.2% | 12.4 ± 7.29 | 22.8 ± 5.5 | 83.9% | 0.2 | −0.6 |
Wind speed (m/s) | 0.2 ± 0.1 | 0.2 ± 0.1 | −0.3% | 0.7 ± 0.7 | 0.6 ± 0.6 | −14.3% | −0.5 *** | −0.4 *** |
Relative humidity (%) | 72.2 ± 13.5 | 70.4 ± 16.6 | −2.5% | 72.3 ± 15.5 | 67.9 ± 14.8 | −6.1% | −0.1 | 2.5 |
Pressure (hPa) | 1022.5 ± 7.0 | 1015.5 ± 6.3 | −0.7% | 1022.2 ± 7.2 | 1014.9 ± 6.4 | −0.7% | 0.3 | 0.6 |
Whole LCD | One Week Earlier | |||
---|---|---|---|---|
(1) w/o Covariates | (2) With Covariates | (3) w/o Covariates | (4) With Covariates | |
ATT | 3.5 | 3.7 * | 4.0 * | 4.4 ** |
(2.35) | (2.26) | (2.30) | (2.12) | |
p value | 0.13 | 0.09 | 0.08 | 0.04 |
95% CI | (−1.09, 8.09) | (−0.72, 8.12) | (−0.49, 8.49) | (0.24, 8.56) |
Covariates | No | Yes | No | Yes |
Time FE | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes |
N | 4920 | 4920 | 4633 | 4633 |
In-Time Placebo | In-Place Placebo | Spillover Effect | Alternative Method | ||||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
Stage 0 | Stage 1 | Top 5 | Top 10 | Border 1 | Border 2 | SCM | |
ATT | −4.3 | 4.1 | −2.2 | −2.0 | 4.8 * | 5.2 * | 4.6 *** |
(4.88) | (3.77) | (1.44) | (1.36) | (2.56) | (2.60) | (2.05) | |
p value | 0.38 | 0.28 | 0.13 | 0.14 | 0.06 | 0.05 | 0.01 |
95% CI | (−13.86, 5.26) | (−3.30, 11.50) | (−5.03, 0.63) | (−4.67, 0.67) | (−0.23, 9.83) | (0.10, 10.30) | (0.59, 8.61) |
N | 4633 | 4633 | 4520 | 4520 | 4181 | 3164 | 4633 |
Pollutants | Reference | Year | Country (City) | Premature Mortality | Economic Influence (USD) |
---|---|---|---|---|---|
O3 | Ye et al. [63] | 2020 | China | 215 | 0.95 billion |
PM2.5 | Wang & Ge [50] | 2022 | China (YRD) | 35,342 | 18.86 billion |
Seo et al. [60] | 2020 | Korea (Seoul) | 250 | 884 million | |
Kumar et al. [61] | 2020 | India | 630 | 0.69 billion | |
Leão et al. [62] | 2021 | Brazil (Recife) | 164 | 294 million | |
Li et al. [16] | 2020 | China (YRD) | 42,400 | / | |
Cole et al. [27] | 2020 | China | 50,800 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, J.; Fan, Y.; Chen, C.; Campos Gutiérrez, J.; Huang, L.; Lin, Z.; Li, S.; Lei, Y. A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels. Sustainability 2025, 17, 6997. https://doi.org/10.3390/su17156997
Li Y, Wang J, Fan Y, Chen C, Campos Gutiérrez J, Huang L, Lin Z, Li S, Lei Y. A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels. Sustainability. 2025; 17(15):6997. https://doi.org/10.3390/su17156997
Chicago/Turabian StyleLi, Yumin, Jun Wang, Yuntong Fan, Chuchu Chen, Jaime Campos Gutiérrez, Ling Huang, Zhenxing Lin, Siyuan Li, and Yu Lei. 2025. "A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels" Sustainability 17, no. 15: 6997. https://doi.org/10.3390/su17156997
APA StyleLi, Y., Wang, J., Fan, Y., Chen, C., Campos Gutiérrez, J., Huang, L., Lin, Z., Li, S., & Lei, Y. (2025). A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels. Sustainability, 17(15), 6997. https://doi.org/10.3390/su17156997