Molecular Shadows of Per- and Polyfluoroalkyl Substances (PFASs): Unveiling the Impact of Perfluoroalkyl Substances on Ovarian Function, Polycystic Ovarian Syndrome (PCOS), and In Vitro Fertilization (IVF) Outcomes
Abstract
1. Introduction
2. PFAS as Endocrine Disruptors: Mechanisms of Action
3. Impact on Ovarian Function and Folliculogenesis
4. PFASs and Polycystic Ovary Syndrome (PCOS)
5. PFASs and IVF Outcomes
CC Dysfunction Contributes to This Detrimental Microenvironment
6. Clinical and Public Health Implications
7. Conclusions and Future Directions
Funding
Conflicts of Interest
References
- Panieri, E.; Baralic, K.; Djukic-Cosic, D.; Buha Djordjevic, A.; Saso, L. PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics 2022, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Lendewig, M.; Marquez, R.; Franco, J.; Vera, R.E.; Vivas, K.A.; Forfora, N.; Venditti, R.A.; Gonzalez, R. PFAS regulations and economic impact: A review of U.S. pulp & paper and textiles industries. Chemosphere 2025, 377, 144301. [Google Scholar] [PubMed]
- Worley, R.R.; Moore, S.M.; Tierney, B.C.; Ye, X.; Calafat, A.M.; Campbell, S.; Woudneh, M.B.; Fisher, J. Per- and polyfluoroalkyl substances in human serum and urine samples from a residentially exposed community. Environ. Int. 2017, 106, 135–143. [Google Scholar] [CrossRef]
- Di Nisio, A.; Corsini, C.; Foresta, C. Environmental Impact on the Hypothalamus-Pituitary-Testis Axis. In Environmental Endocrinology and Endocrine Disruptors; Pivonello, R., Diamanti-Kandarakis, E., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–32. [Google Scholar]
- Magata, F.; Tsukamura, H.; Matsuda, F. The impact of inflammatory stress on hypothalamic kisspeptin neurons: Mechanisms underlying inflammation-associated infertility in humans and domestic animals. Peptides 2023, 162, 170958. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.L.; Shukla, M.; George, J.W.; Gustin, S.; Rowley, M.J.; Davis, J.S. An environmentally relevant mixture of per- and polyfluoroalkyl substances (PFAS) impacts proliferation, steroid hormone synthesis, and gene transcription in primary human granulosa cells. Toxicol. Sci. 2024, 200, 57–69. [Google Scholar] [CrossRef]
- Ding, N.; Harlow, S.D.; Randolph, J.F., Jr.; Loch-Caruso, R.; Park, S.K. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum. Reprod. Update 2020, 26, 724–752. [Google Scholar] [CrossRef]
- Pederick, J.L.; Frkic, R.L.; McDougal, D.P.; Bruning, J.B. A structural basis for the activation of peroxisome proliferator-activated receptor gamma (PPARγ) by perfluorooctanoic acid (PFOA). Chemosphere 2024, 354, 141723. [Google Scholar] [CrossRef]
- Dupont, J.; Chabrolle, C.; Ramé, C.; Tosca, L.; Coyral-Castel, S. Role of the Peroxisome Proliferator-Activated Receptors, Adenosine Monophosphate-Activated Kinase, and Adiponectin in the Ovary. PPAR Res. 2008, 2008, 176275. [Google Scholar] [CrossRef]
- Li, Y.; Chang, H.M.; Sung, Y.W.; Zhu, H.; Leung, P.C.K.; Sun, Y.P. Betacellulin regulates gap junction intercellular communication by inducing the phosphorylation of connexin 43 in human granulosa-lutein cells. J. Ovarian Res. 2023, 16, 103. [Google Scholar] [CrossRef]
- Iwase, A.; Hasegawa, Y.; Tsukui, Y.; Kobayashi, M.; Hiraishi, H.; Nakazato, T.; Kitahara, Y. Anti-Müllerian hormone beyond an ovarian reserve marker: The relationship with the physiology and pathology in the life-long follicle development. Front. Endocrinol. 2023, 14, 1273966. [Google Scholar] [CrossRef]
- Vale-Fernandes, E.; Barreiro, M.; Leal, C.; Macedo, R.Z.; Tomé, A.; Monteiro, M.P. Elevated Anti-Müllerian Hormone as a Prognostic Factor for Poor Outcomes of In Vitro Fertilization in Women with Polycystic Ovary Syndrome. Biomedicines 2023, 11, 3150. [Google Scholar] [CrossRef]
- Sir-Petermann, T.; Codner, E.; Maliqueo, M.; Echiburú, B.; Hitschfeld, C.; Crisosto, N.; PérEz-Bravo, F.; Recabarren, S.E.; Cassorla, F. Increased Anti-Müllerian Hormone Serum Concentrations in Prepubertal Daughters of Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2006, 91, 3105–3109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Martin, L.; Mustieles, V.; Ghaly, M.; Archer, M.; Sun, Y.; Torres, N.; Coburn-Sanderson, A.; Souter, I.; Petrozza, J.C.; et al. Per- and polyfluoroalkyl substances exposure is associated with polycystic ovary syndrome risk among women attending a fertility clinic. Sci. Total Environ. 2024, 950, 175313. [Google Scholar] [CrossRef]
- Baralić, K.; Petkovski, T.; Piletić, N.; Marić, Đ.; Buha Djordjevic, A.; Antonijević, B.; Đukić-Ćosić, D. Exploring Toxicity of Per- and Polyfluoroalkyl Substances (PFAS) Mixture Through ADMET and Toxicogenomic In Silico Analysis: Molecular Insights. Int. J. Mol. Sci. 2024, 25, 12333. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Qiu, W.; Ao, Y.; Zhou, W.; Sun, Y.; Zhao, H.; Zhang, J. Environmental Exposure to Emerging Alternatives of Per- and Polyfluoroalkyl Substances and Polycystic Ovarian Syndrome in Women Diagnosed with Infertility: A Mixture Analysis. Env. Health Perspect. 2023, 131, 057001. [Google Scholar] [CrossRef]
- Zeng, X.W.; Bloom, M.S.; Wei, F.; Liu, L.; Qin, J.; Xue, L.; Wang, S.; Huang, G.; Teng, M.; He, B.; et al. Perfluoroalkyl Acids in Follicular Fluid and Embryo Quality during IVF: A Prospective IVF Cohort in China. Environ. Health Perspect. 2023, 131, 027002. [Google Scholar] [CrossRef]
- Pattarawat, P.; Zhan, T.; Fan, Y.; Zhang, J.; Yang, H.; Zhang, Y.; Moyd, S.; Douglas, N.C.; Urbanek, M.; Buckley, B.; et al. Exposure to Long- and Short-Chain Per- and Polyfluoroalkyl Substances in Mice and Ovarian-Related Outcomes: An In Vivo and In Vitro Study. Environ. Health Perspect. 2025, 133, 057024. [Google Scholar] [CrossRef]
- Petroff, R.L.; Cavalcante, R.G.; Langen, E.S.; Dolinoy, D.C.; Padmanabhan, V.; Goodrich, J.M. Mediation effects of DNA methylation and hydroxymethylation on birth outcomes after prenatal per- and polyfluoroalkyl substances (PFAS) exposure in the Michigan mother–infant Pairs cohort. Clin. Epigenet. 2023, 15, 49. [Google Scholar] [CrossRef]
- Rashid, F.; Ramakrishnan, A.; Fields, C.; Irudayaraj, J. Acute PFOA exposure promotes epigenomic alterations in mouse kidney tissues. Toxicol. Rep. 2020, 7, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Wang, J.; Li, X.; Zhang, Y.; Yin, T.; Yang, P. Per- and Polyfluoroalkyl Substances (PFAS) Affect Female Reproductive Health: Epidemiological Evidence and Underlying Mechanisms. Toxics 2024, 12, 678. [Google Scholar] [CrossRef]
- Rickard, B.P.; Rizvi, I.; Fenton, S.E. Per- and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease. Toxicology 2022, 465, 153031. [Google Scholar] [CrossRef]
- Pan, J.; Liu, P.; Yu, X.; Zhang, Z.; Liu, J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front. Endocrinol. 2024, 14, 1324993. [Google Scholar] [CrossRef] [PubMed]
- Clay, C.M.; Cherrington, B.D.; Navratil, A.M. Plasticity of Anterior Pituitary Gonadotrope Cells Facilitates the Pre-Ovulatory, L.H. Surge. Front. Endocrinol. 2021, 11, 616053. [Google Scholar] [CrossRef]
- Kakuta, H.; Iguchi, T.; Sato, T. The Involvement of Granulosa Cells in the Regulation by Gonadotropins of Cyp17a1 in Theca Cells. In Vivo 2018, 32, 1387–1401. [Google Scholar] [CrossRef] [PubMed]
- Behr, A.C.; Lichtenstein, D.; Braeuning, A.; Lampen, A.; Buhrke, T. Perfluoroalkylated substances (PFAS) affect neither estrogen and androgen receptor activity nor steroidogenesis in human cells in vitro. Toxicol. Lett. 2018, 291, 51–60. [Google Scholar] [CrossRef]
- Lockington, C.; Favetta, L.A. How Per- and Poly-Fluoroalkyl Substances Affect Gamete Viability and Fertilization Capability: Insights from the Literature. J. Xenobiot. 2024, 14, 651–678. [Google Scholar] [CrossRef]
- Marinkovic, D.Z.; Medar, M.L.J.; Becin, A.P.; Andric, S.A.; Kostic, T.S. Growing Up Under Constant Light: A Challenge to the Endocrine Function of the Leydig Cells. Front. Endocrinol. 2021, 12, 653602. [Google Scholar] [CrossRef]
- Lu, Y.; Pan, Y.; Sheng, N.; Zhao, A.Z.; Dai, J. Perfluorooctanoic acid exposure alters polyunsaturated fatty acid composition, induces oxidative stress and activates the AKT/AMPK pathway in mouse epididymis. Chemosphere 2016, 158, 143–153. [Google Scholar] [CrossRef]
- Bushong, A.; Sepúlveda, M.; Scherer, M.; Valachovic, A.C.; Neill, C.M.; Horn, S.; Choi, Y.; Lee, L.S.; Baloni, P.; Hoskins, T. Effects of Perfluorinated Alkyl Substances (PFAS) on Amphibian Body and Liver Conditions: Is Lipid Metabolism Being Perturbed throughout Metamorphosis? Toxics 2024, 12, 732. [Google Scholar] [CrossRef]
- Clark, K.L.; George, J.W.; Przygrodzka, E.; Plewes, M.R.; Hua, G.; Wang, C.; Davis, J.S. Hippo Signaling in the Ovary: Emerging Roles in Development, Fertility, and Disease. Endocr. Rev. 2022, 43, 1074–1096. [Google Scholar] [CrossRef]
- Rosen, M.B.; Das, K.P.; Rooney, J.; Abbott, B.; Lau, C.; Corton, J.C. PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by transcript profiling. Toxicology 2017, 387, 95–107. [Google Scholar] [CrossRef]
- Roy, S.K.; Srivastava, R.K.; Shankar, S. Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J. Mol. Signal. 2010, 5, 10. [Google Scholar] [CrossRef]
- Zhao, Y.; Namei, E.; Yang, B.; Bao, X.; Sun, W.; Subudeng, G.; Cao, G.; Li, H.; Wang, G. Cyclic AMP mediates ovine cumulus–oocyte gap junctional function via balancing connexin 43 expression and phosphorylation. Endocr. Connect. 2023, 12, e230337. [Google Scholar] [CrossRef] [PubMed]
- Totland, M.Z.; Rasmussen, N.L.; Knudsen, L.M.; Leithe, E. Regulation of gap junction intercellular communication by connexin ubiquitination: Physiological and pathophysiological implications. Cell Mol. Life Sci. 2020, 77, 573–591. [Google Scholar] [CrossRef]
- Fountas, S.; Petinaki, E.; Bolaris, S.; Kargakou, M.; Dafopoulos, S.; Zikopoulos, A.; Moustakli, E.; Sotiriou, S.; Dafopoulos, K. The Roles of GDF-9, BMP-15, BMP-4 and EMMPRIN in Folliculogenesis and In Vitro Fertilization. J. Clin. Med. 2024, 13, 3775. [Google Scholar] [CrossRef] [PubMed]
- Del Bianco, D.; Gentile, R.; Sallicandro, L.; Biagini, A.; Quellari, P.T.; Gliozheni, E.; Sabbatini, P.; Ragonese, F.; Malvasi, A.; D’amato, A.; et al. Electro-Metabolic Coupling of Cumulus–Oocyte Complex. Int. J. Mol. Sci. 2024, 25, 5349. [Google Scholar] [CrossRef]
- Moolhuijsen, L.M.E.; Visser, J.A. Anti-Müllerian Hormone and Ovarian Reserve: Update on Assessing Ovarian Function. J. Clin. Endocrinol. Metab. 2020, 105, 3361–3373. [Google Scholar] [CrossRef]
- Cimino, I.; Casoni, F.; Liu, X.; Messina, A.; Parkash, J.; Jamin, S.P.; Catteau-Jonardm, S.; Collierm, F.; Baroncini, M.; Dewailly, D.; et al. Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat. Commun. 2016, 7, 10055. [Google Scholar] [CrossRef]
- Odermatt, A.; Strajhar, P.; Engeli, R.T. Disruption of steroidogenesis: Cell models for mechanistic investigations and as screening tools. J. Steroid Biochem. Mol. Biol. 2016, 158, 9–21. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Huang, J.; Liu, Y.; Wang, Q.; Chen, J.; Sun, L.; Tu, W. Mitochondrial dysfunction in metabolic disorders induced by per- and polyfluoroalkyl substance mixtures in zebrafish larvae. Environ. Int. 2023, 176, 107977. [Google Scholar] [CrossRef]
- Voros, C.; Athanasiou, D.; Mavrogianni, D.; Varthaliti, A.; Bananis, K.; Athanasiou, A.; Papadimas, G.; Gkirgkinoudis, A.; Papapanagiotou, I. Exosomal Communication Between Cumulus–Oocyte Complexes and Granulosa Cells: A New Molecular Axis for Oocyte Competence in Human-Assisted Reproduction. Int. J. Mol. Sci. 2025, 26, 5363. [Google Scholar] [CrossRef]
- Otsuka, F.; Yamamoto, S.; Erickson, G.F.; Shimasaki, S. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing, F.S.H receptor expression. J. Biol. Chem. 2001, 276, 11387–11392. [Google Scholar] [CrossRef] [PubMed]
- Pangas, S.A. Bone morphogenetic protein signaling transcription factor (SMAD) function in granulosa cells. Mol Cell Endocrinol. 2012, 356, 40–47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, Y.; Li, H.; Lin, C.; Mao, Y.; Rao, J.; Lou, Y.; Yang, X.; Xu, X.; Jin, F. Perfluorooctanoic acid (PFOA) inhibits the gap junction intercellular communication and induces apoptosis in human ovarian granulosa cells. Reprod. Toxicol. 2020, 98, 125–133. [Google Scholar] [CrossRef]
- Clarke, H.J. History, origin, and function of transzonal projections: The bridges of communication between the oocyte and its environment. Anim. Reprod. 2018, 15, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Kong, L.; Zhang, J.; Xu, Q.; Wang, J.; Xue, Z.; Wang, J.; Gomez, E. Involvement of GJA1 and Gap Junctional Intercellular Communication between Cumulus Cells and Oocytes from Women with PCOS. BioMed Res. Int. 2020, 2020, 5403904. [Google Scholar] [CrossRef]
- Fülöp, C.; Szántó, S.; Mukhopadhyay, D.; Bárdos, T.; Kamath, R.V.; Rugg, M.S.; Day, A.J.; Salustri, A.; Hascall, V.C.; Glant, T.T.; et al. Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice. Development 2003, 130, 2253–2261. [Google Scholar] [CrossRef]
- Evans, J. Hyperglycosylated hCG: A Unique Human Implantation and Invasion Factor. Am. J. Rep. Immunol. 2016, 75, 333–340. [Google Scholar] [CrossRef]
- Donley, G.M.; Taylor, E.; Jeddy, Z.; Namulanda, G.; Hartman, T.J. Association between in utero perfluoroalkyl substance exposure and anti-Müllerian hormone levels in adolescent females in a British cohort. Environ. Res. 2019, 177, 108585. [Google Scholar] [CrossRef]
- Patel, R.H.; Truong, V.B.; Sabry, R.; Acosta, J.E.; McCahill, K.; Favetta, L.A. SMAD signaling pathway is disrupted by BPA via the AMH receptor in bovine granulosa cells. Biol. Reprod. 2023, 109, 994–1008. [Google Scholar] [CrossRef]
- Pierre, A.; Taieb, J.; Giton, F.; Grynberg, M.; Touleimat, S.; El Hachem, H.; Fanchin, R.; Monniaux, D.; Cohen-Tannoudji, J.; di Clemente, N.; et al. Dysregulation of the Anti-Müllerian Hormone System by Steroids in Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2017, 102, 3970–3978. [Google Scholar] [CrossRef]
- Rebuzzini, P.; Fabozzi, G.; Cimadomo, D.; Ubaldi, F.M.; Rienzi, L.; Zuccotti, M.; Garagna, S. Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction. Cells 2022, 11, 3163. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Yang, J.; Bai, S.; Wei, S. MicroRNAs regulate granulosa cells apoptosis and follicular development—A review. Asian-Australas. J. Anim. Sci. 2020, 33, 1714–1724. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, X.; Chen, J.; Du, X.; Sun, Y.; Zhan, L.; Wang, W.; Li, Y. Exploring the molecular mechanisms by which per- and polyfluoroalkyl substances induce polycystic ovary syndrome through in silico toxicogenomic data mining. Ecotoxicol. Environ. Saf. 2024, 275, 116251. [Google Scholar] [CrossRef]
- Trevisan, C.M.; Montagna, E.; de Oliveira, R.; Christofolini, D.M.; Barbosa, C.P.; Crandall, K.A.; Bianco, B. Kisspeptin/GPR54 System: What Do We Know About Its Role in Human Reproduction? Cell Physiol. Biochem. 2018, 49, 1259–1276. [Google Scholar] [CrossRef]
- Roseweir, A.K.; Millar, R.P. The role of kisspeptin in the control of gonadotrophin secretion. Hum. Reprod. Update 2008, 15, 203–212. [Google Scholar] [CrossRef]
- Kim, T.; Lawson, M.A. GnRH Regulates Gonadotropin Gene Expression Through NADPH/Dual Oxidase-Derived Reactive Oxygen Species. Endocrinology 2015, 156, 2185–2199. [Google Scholar] [CrossRef]
- Comim, F.V.; Teerds, K.; Hardy, K.; Franks, S. Increased protein expression of LHCG receptor and 17α-hydroxylase/17-20-lyase in human polycystic ovaries. Hum. Reprod. 2013, 28, 3086–3092. [Google Scholar] [CrossRef]
- Chang, H.M.; Qiao, J.; Leung, P.C.K. Oocyte–somatic cell interactions in the human ovary—Novel role of bone morphogenetic proteins and growth differentiation factors. Hum. Reprod. Update 2016, 23, 1–18. [Google Scholar] [CrossRef]
- Triebl, A.; Hartler, J.; Trötzmüller, M.; Köfeler, H.C. Lipidomics: Prospects from a technological perspective. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2017, 1862, 740–746. [Google Scholar] [CrossRef]
- Mishra, S.; Deep, G. Mitochondria-derived vesicles: Potential nano-batteries to recharge the cellular powerhouse. Extracell. Vesicles Circ. Nucleic Acids 2024, 5, 271–275. [Google Scholar] [CrossRef]
- Głód, P.; Smoleniec, J.; Marynowicz, W.; Gogola-Mruk, J.; Ptak, A. The Ovary as a Target Organ for New Generation Bisphenols Toxicity. Toxics 2025, 13, 164. [Google Scholar] [CrossRef]
- De Felici, M.; Klinger, F.G. PI3K/PTEN/AKT Signaling Pathways in Germ Cell Development and Their Involvement in Germ Cell Tumors and Ovarian Dysfunctions. Int. J. Mol. Sci. 2021, 22, 9838. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, N.; Hadden, T.J.; Rishi, A.K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 2011, 1813, 1978–1986. [Google Scholar] [CrossRef]
- Li, J.; Long, H.; Cong, Y.; Gao, H.; Lyu, Q.; Yu, S.; Kuang, Y. Quercetin prevents primordial follicle loss via suppression of, P.I.3K/Akt/Foxo3a pathway activation in cyclophosphamide-treated mice. Reprod. Biol. Endocrinol. 2021, 19, 63. [Google Scholar] [CrossRef] [PubMed]
- Klotz, L.O.; Sánchez-Ramos, C.; Prieto-Arroyo, I.; Urbánek, P.; Steinbrenner, H.; Monsalve, M. Redox regulation of FoxO transcription factors. Redox Biol. 2015, 6, 51–72. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, H.; Zheng, F.; Sheng, N.; Guo, X.; Dai, J. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice. Sci. Rep. 2015, 5, 11029. [Google Scholar] [CrossRef]
- Luan, Y.; So, W.; Dong, R.; Abazarikia, A.; Kim, S.Y. KIT in oocytes: A key factor for oocyte survival and reproductive lifespan. eBioMedicine 2024, 106, 105263. [Google Scholar] [CrossRef]
- Zhuchen, H.Y.; Wang, J.Y.; Liu, X.S.; Shi, Y.W. Research Progress on Neurodevelopmental Toxicity in Offspring after Indirect Exposure to PFASs in Early Life. Toxics 2023, 11, 571. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abdulkadir, A.; Kandel, S.; Lewis, N.; D’Auvergne, O.; Rosby, R.; Hossain, E. Epigenetic Consequences of In Utero PFAS Exposure: Implications for Development and Long-Term Health. Int. J. Environ. Res. Public Health 2025, 22, 917. [Google Scholar] [CrossRef] [PubMed]
- Salustri, A.; Garlanda, C.; Hirsch, E.; De Acetis, M.; Maccagno, A.; Bottazzi, B.; Doni, A.; Bastone, A.; Mantovani, G.; Beck Peccoz, P.; et al. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development 2004, 131, 1577–1586, Erratum in Development 2004, 131, 2235. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.X.; Sun, J.T.; Jiang, C.Q.; Cui, H.D.; Bian, Y.; Lee, S.; Zhang, L.; Lee, B.C.; Liu, Z.H. Melatonin Regulates Lipid Metabolism in Porcine Cumulus-Oocyte Complexes via the Melatonin Receptor 2. Antioxidants 2022, 11, 687. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gowkielewicz, M.; Lipka, A.; Zdanowski, W.; Waśniewski, T.; Majewska, M.; Carlberg, C. Anti-Müllerian hormone: Biology and role in endocrinology and cancers. Front. Endocrinol. 2024, 15, 1468364. [Google Scholar] [CrossRef] [PubMed]
- Sanfins, A.; Rodrigues, P.; Albertini, D.F. GDF-9 and BMP-15 direct the follicle symphony. J. Assist. Reprod. Genet. 2018, 5, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.Q.; Sugiura, K.; Wigglesworth, K.; O’Brien, M.J.; Affourtit, J.P.; Pangas, S.A.; Matzuk, M.M.; Eppig, J.J. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 2008, 135, 111–121. [Google Scholar] [CrossRef]
- Guo, C.; Sun, L.; Chen, X.; Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 2013, 8, 2003–2014. [Google Scholar]
- Behr, A.C.; Kwiatkowski, A.; Ståhlman, M.; Schmidt, F.F.; Luckert, C.; Braeuning, A.; Buhrke, T. Impairment of bile acid metabolism by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in human HepaRG hepatoma cells. Arch. Toxicol. 2020, 94, 1673–1686. [Google Scholar] [CrossRef]
- Li, M. The role of P53 up-regulated modulator of apoptosis (PUMA) in ovarian development, cardiovascular and neurodegenerative diseases. Apoptosis 2021, 26, 235–247. [Google Scholar] [CrossRef]
- Owen, C.M.; Jaffe, L.A. Luteinizing hormone stimulates ingression of mural granulosa cells within the mouse preovulatory follicle. bioRxiv 2023. [Google Scholar] [CrossRef]
- Mann, O.N.; Kong, C.S.; Lucas, E.S.; Brosens, J.J.; Hanyaloglu, A.C.; Brighton, P.J. Expression and function of the luteinizing hormone choriogonadotropin receptor in human endometrial stromal cells. Sci. Rep. 2022, 12, 8624. [Google Scholar] [CrossRef]
- Wang, X.; Bai, Y.; Tang, C.; Cao, X.; Chang, F.; Chen, L. Impact of Perfluorooctane Sulfonate on Reproductive Ability of Female Mice through Suppression of Estrogen Receptor α-Activated Kisspeptin Neurons. Toxicol. Sci. 2018, 165, 475–486. [Google Scholar] [CrossRef]
- Ali, E.S.; Sahu, U.; Villa, E.; O’Hara, B.P.; Gao, P.; Beaudet, C.; Wood, A.W.; Asara, J.M.; Ben-Sahra, I. ERK2 Phosphorylates PFAS to Mediate Posttranslational Control of De Novo Purine Synthesis. Mol. Cell. 2020, 78, 1178–1191.e6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roux, P.P.; Blenis, J. ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 2004, 68, 320–344. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takahashi, T.; Hagiwara, A.; Ogiwara, K. Follicle rupture during ovulation with an emphasis on recent progress in fish models. Reproduction 2019, 157, R1–R13. [Google Scholar] [CrossRef] [PubMed]
- Yung, Y.; Ophir, L.; Yerushalmi, G.M.; Baum, M.; Hourvitz, A.; Maman, E. HAS2-AS1 is a novel LH/hCG target gene regulating HAS2 expression and enhancing cumulus cells migration. J. Ovarian Res. 2019, 12, 21. [Google Scholar] [CrossRef]
- Lin, T.; Wang, K.; Chuang, K.; Kao, A.; Kuo, T. Downregulation of gap junctional intercellular communication and connexin 43 expression by bisphenol A in human granulosa cells. Biotechnol. Appl. Biochem. 2021, 68, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Xiao, L.; Zhang, Z.; Wang, Y.; Kouis, P.; Rasmussen, L.J.; Dai, F. Effects of reactive oxygen species and mitochondrial dysfunction on reproductive aging. Front. Cell Dev. Biol. 2024, 12, 1347286. [Google Scholar] [CrossRef]
- Pezeshki, H.; Rajabi, S.; Hashemi, M.; Moradalizadeh, S.; Nasab, H. Per- and poly-fluoroalkyl substances as forever chemicals in drinking water: Unraveling the nexus with obesity and endocrine disruption—A mini review. Heliyon 2025, 11, e42782. [Google Scholar] [CrossRef]
- Rashtian, J.; Chavkin, D.E.; Merhi, Z. Water and soil pollution as determinant of water and food quality/contamination and its impact on female fertility. Reprod. Biol. Endocrinol. 2019, 17, 5. [Google Scholar] [CrossRef]
- Lentini, G.; Querqui, A.; Monti, N.; Bizzarri, M. PCOS and Inositols—Advances and Lessons We are Learning. A Narrative Review. Drug Des. Devel. Ther. 2025, 19, 4183–4199. [Google Scholar] [CrossRef]
- Gregorio, K.C.R.; Laurindo, C.P.; Machado, U.F. Estrogen and Glycemic Homeostasis: The Fundamental Role of Nuclear Estrogen Receptors ESR1/ESR2 in Glucose Transporter GLUT4 Regulation. Cells 2021, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dewailly, D.; Barbotin, A.L.; Dumont, A.; Catteau-Jonard, S.; Robin, G. Role of Anti-Müllerian Hormone in the Pathogenesis of Polycystic Ovary Syndrome. Front. Endocrinol. 2020, 11, 641. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Li, Y.; Ma, J.; Ma, H.; Liang, X. Potential factors result in diminished ovarian reserve: A comprehensive review. J. Ovarian Res. 2023, 16, 208. [Google Scholar] [CrossRef]
- Russell, S.J.; Schneider, M.F. Alternative signaling pathways from IGF1 or insulin to AKT activation and FOXO1 nuclear efflux in adult skeletal muscle fibers. J. Biol. Chem. 2020, 295, 15292–15306. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Shirakabe, A.; Maejima, Y.; Zhai, P.; Sciarretta, S.; Toli, J.; Nomura, M.; Mihara, K.; Egashira, K.; Ohishi, M.; et al. Endogenous Drp1 Mediates Mitochondrial Autophagy and Protects the Heart Against Energy Stress. Circ. Res. 2015, 116, 264–278. [Google Scholar] [CrossRef]
- Stocker, W.A.; Walton, K.L.; Richani, D.; Chan, K.L.; Beilby, K.H.; Finger, B.J.; Green, M.P.; Gilchrist, R.B.; Harrison, C.A. A variant of human growth differentiation factor-9 that improves oocyte developmental competence. J. Biol. Chem. 2020, 95, 7981–7991. [Google Scholar] [CrossRef]
- Gu, M.; Wang, Y.; Yu, Y. Ovarian fibrosis: Molecular mechanisms and potential therapeutic targets. J. Ovarian Res. 2024, 17, 139. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Kristensen, S.G.; Jiang, H.; Rasmussen, A.; Andersen, C.Y. Survival and growth of isolated pre-antral follicles from human ovarian medulla tissue during long-term 3D culture. Hum. Reprod. 2016, 31, 1531–1539. [Google Scholar] [CrossRef]
- Panghiyangani, R.; Soeharso, P.; Andrijono; Suryandari, D.; Wiweko, B.; Kurniati, M.; Pujianto, D.A. CYP19A1 gene expression in patients with polycystic ovarian syndrome. J. Hum. Reprod. Sci. 2020, 13, 100. [Google Scholar] [CrossRef]
- Xu, H.; Cai, Y.; Yang, H.; Zhang, C.; Liu, W.; Zhao, B.; Wang, F.; Zhang, Y. AMH regulates granulosa cell function via ESR2/p38-MAPK signaling pathway in sheep. Commun. Biol. 2025, 8, 824. [Google Scholar] [CrossRef]
- Martinez-Sarmiento, J.A.; Cosma, M.P.; Lakadamyali, M. Dissecting gene activation and chromatin remodeling dynamics in single human cells undergoing reprogramming. Cell Rep. 2024, 43, 114170. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Xu, J.; Song, B.; Zhu, R.; Liu, J.; Liu, Y.F.; Ma, Y.J. The role of epigenetics in women’s reproductive health: The impact of environmental factors. Front. Endocrinol. 2024, 15, 1399757. [Google Scholar] [CrossRef] [PubMed]
- Takemori, H.; Kanematsu, M.; Kajimura, J.; Hatano, O.; Katoh, Y.; Lin, X.Z.; Min, L.; Yamazaki, T.; Doi, J.; Okamoto, M. Dephosphorylation of TORC initiates expression of the StAR gene. Mol. Cell. Endocrinol. 2007, 265–266, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Hajshafiha, M.; Oshnouei, S.; Mostafavi, M.; Dindarian, S.; Kiarang, N.; Mohammadi, S. Evaluation of the relationship between serum estradiol levels on human chorionic gonadotropin administration day and intracytoplasmic sperm injection outcomes: A retrospective population-based study. Int. J. Reprod. Biomed. 2021, 19, 599–606. [Google Scholar] [CrossRef]
- Hofmann, A.; Mishra, J.S.; Yadav, P.; Dangudubiyyam, S.V.; Blesson, C.S.; Kumar, S. PFOS Impairs Mitochondrial Biogenesis and Dynamics and Reduces Oxygen Consumption in Human Trophoblasts. J. Env. Sci. Public Health 2023, 7, 164–175. [Google Scholar] [CrossRef]
- Garcia, D.; Shaw, R.J. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol. Cell 2017, 66, 789–800. [Google Scholar] [CrossRef]
- Fleming, R. Gonadotropin releasing hormone analogs as part of controlled ovarian stimulation. FS Rep. 2023, 4, 8–14. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, W.; Zhang, B.; Gao, Z.; Zhang, Q.; Deng, H.; Han, L.; Shen, X.L. Perfluorooctanoic acid induces hepatocellular endoplasmic reticulum stress and mitochondrial-mediated apoptosis in vitro via endoplasmic reticulum-mitochondria communication. Chem. Biol. Interact. 2022, 354, 109844. [Google Scholar] [CrossRef]
- Kobayashi, H.; Imanaka, S. Mitochondrial DNA Damage and Its Repair Mechanisms in Aging Oocytes. Int. J. Mol. Sci. 2024, 25, 13144. [Google Scholar] [CrossRef]
- Fournier, S.; Clarhaut, J.; Cronier, L.; Monvoisin, A. GJA1-20k, a Short Isoform of Connexin43, from Its Discovery to Its Potential Implication in Cancer Progression. Cells 2025, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Babayev, E.; Suebthawinkul, C.; Gokyer, D.; Parkes, W.S.; Rivas, F.; Pavone, M.E.; Hall, A.R.; Pritchard, M.T.; Duncan, F.E. Cumulus expansion is impaired with advanced reproductive age due to loss of matrix integrity and reduced hyaluronan. Aging Cell 2023, 22, e14004. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Mao, Y.; Zhang, H.; Lou, H.; Zhang, L.; Moreira, J.P.; Jin, F. Exposure of women undergoing in-vitro fertilization to per-and polyfluoroalkyl substances: Evidence on negative effects on fertilization and high-quality embryos. Environ. Pollut. 2024, 359, 124474. [Google Scholar] [CrossRef]
- Lessey, B.A.; Young, S.L. What exactly is endometrial receptivity? Fertil. Steril. 2019, 111, 611–617. [Google Scholar] [CrossRef] [PubMed]
- DeMayo, F.J.; Lydon, J.P. 90 YEARS OF PROGESTERONE: New insights into progesterone receptor signaling in the endometrium required for embryo implantation. J. Mol. Endocrinol. 2020, 65, T1–T14. [Google Scholar] [CrossRef]
- Drożdż, D.; Drożdż, M.; Wójcik, M. Endothelial dysfunction as a factor leading to arterial hypertension. Pediatr. Nephrol. 2023, 38, 2973–2985. [Google Scholar] [CrossRef]
- Fukui, A.; Funamizu, A.; Fukuhara, R.; Shibahara, H. Expression of natural cytotoxicity receptors and cytokine production on endometrial natural killer cells in women with recurrent pregnancy loss or implantation failure, and the expression of natural cytotoxicity receptors on peripheral blood natural killer cells in pregnant women with a history of recurrent pregnancy loss. J. Obs. Gynaecol. 2017, 43, 1678–1686. [Google Scholar]
- Synakiewicz, A.; Stanislawska-Sachadyn, A.; Owczarzak, A.; Skuza, M.; Stachowicz-Stencel, T. Cytokine IL6, but not IL-1β, TNF-α and NF-κB is increased in paediatric cancer patients. Acta Biochim. Pol. 2023, 70, 395–400. [Google Scholar] [CrossRef]
- Khanaghaei, M.; Tourkianvalashani, F.; Hekmatimoghaddam, S.; Ghasemi, N.; Rahaie, M.; Khorramshahi, V.; Sheikhpour, A.; Heydari, Z.; Pourrajab, F. Circulating miR-126 and miR-499 reflect progression of cardiovascular disease; correlations with uric acid and ejection fraction. Heart Int. 2016, 11, e1–e9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Axis Level | Molecular Target | PFAS Effect | Disrupted Signalling Pathway | Functional Outcome | References |
---|---|---|---|---|---|
Hypothalamus | Kiss1, GPR54, Esr1 | Downregulation of Kiss1 and Esr1 expression in ARC and AVPV neurons; reduced GPR54 activation | ERα/Kisspeptin GnRH axis | Reduced GnRH pulsatility and delayed pubertal onset | Trevisan et al., 2018; Roseweir et al., 2008 [56,57] |
Hypothalamus | GnRH neurons | Attenuated pulsatile GnRH release; altered neuronal firing | Glutamate/GABA imbalance; reduced Npy and Tac3 expression | Blunted LH surge; disrupted ovarian cycling | Liu et al., 2022 [41] |
Pituitary | Gnrhr, Lhb, Fshb | Suppressed GnRH receptor and β-subunit gene expression | GnRH–Ca2⁺–PKC and MAPK pathways | Reduced LH and FSH secretion; impaired ovulatory trigger | Kim and Lawson 2015 [58] |
Pituitary | Pitx1, Egr1 | Downregulation of key transcription factors for gonadotropin biosynthesis | GnRH-induced nuclear signalling | Inadequate gonadotropin production | Zhang et al., 2024 [14] |
Ovary (GCs) | Fshr, Cyp19a1, Star, Hsd3b1 | Decreased receptor density and steroidogenic enzyme expression | cAMP/PKA/CREB, FSHR-mediated signalling | Reduced estradiol biosynthesis; poor response to COS | Zhang et al., 2024; Liu et al., 2022 [14,41] |
Ovary (TCs) | Lhcgr, Cyp17a1, Hsd3b2 | Upregulated expression of androgenic enzymes (especially in PCOS) | PKA activation, loss of negative feedback by Esr1 | Elevated A4 and T levels; exacerbated HA | Clark et al., 2024, Comim et al., 2013 [6,59] |
Follicular Stage | Cell Type | Key Molecular Targets | PFAS-Induced Alterations | Disrupted Pathways | Functional Outcome |
---|---|---|---|---|---|
Primordial → Primary | Pre-GCs, oocyte | Pten, Foxo3a, Kitl, Gdf9, Bmp15 | ↑ Nuclear FOXO3a, ↓ Kitl/Gdf9 expression | PI3K/AKT/FOXO3a | Inhibited activation, follicle dormancy or apoptosis |
Primary → Secondary | GCs, oocyte | Cx43, Gja1, Zp3, Tnfaip6 | ↓ Connexin expression, impaired GJIC | GJIC/cAMP/PKA | Disrupted GC–oocyte communication; poor cytoplasmic maturation |
Secondary → Antral | GCs, TCs | Fshr, Cyp19a1, Star, Hsd3b1, Lhcgr, Cyp17a1 | ↓ Fshr/Cyp19a1, ↑ Lhcgr/Cyp17a1 | cAMP/PKA/CREB, PPARγ, steroidogenesis | Reduced E2, ↑ A4/T, impaired antral expansion |
Antral → Preovulatory | GCs, oocyte | Pgr, Esr1, Areg, Ereg, Has2 | ↓ LH-responsiveness, impaired cumulus expansion | LH/EGFR, ERK1/2 | Ovulatory failure; reduced MII rate |
Atresia (any stage) | GCs | Bax, Bcl2, Casp3, Foxo1 | ↑ Pro-apoptotic, ↓ anti-apoptotic signals | Mitochondrial apoptosis pathway | Accelerated follicular atresia |
Follicular Stage | Cell Type | Key Molecular Targets | PFAS-Induced Alterations | Disrupted Pathways | Functional Outcome |
Primordial → Primary | Pre-GCs, oocyte | Pten, Foxo3a, Kitl, Gdf9, Bmp15 | ↑ Nuclear FOXO3a, ↓ Kitl/Gdf9 expression | PI3K/AKT/FOXO3a | Inhibited activation, follicle dormancy or apoptosis |
PFAS-Induced Molecular Effect | Affected Structure/Axis | Clinical Consequence |
---|---|---|
Suppression of GnRH and LH/FSH secretion | Hypothalamus and pituitary | Delayed puberty, amenorrhea |
Inhibition of FSHR–cAMP–CREB signalling | Granulosa cells | Poor response to stimulation, reduced E2 production |
PPARγ activation | Ovarian tissue | Hypoaromatisation, hyperandrogenism |
Disruption of GDF9/BMP15 and Cx43 signalling | Oocyte–cumulus complex | Poor oocyte quality, impaired maturation |
Methylation of Amhr2/Esr1 promoters | Endometrium | Reduced receptivity, implantation failure |
Elevated TNFα/IL6/ROS | Ovary/endometrium | Inflammation, oxidative stress, accelerated aging |
Disruption of maternal miRNAs | Oocyte/extracellular vesicles | Transgenerational fertility effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voros, C.; Athanasiou, D.; Papapanagiotou, I.; Mavrogianni, D.; Varthaliti, A.; Bananis, K.; Athanasiou, A.; Athanasiou, A.; Papadimas, G.; Gkirgkinoudis, A.; et al. Molecular Shadows of Per- and Polyfluoroalkyl Substances (PFASs): Unveiling the Impact of Perfluoroalkyl Substances on Ovarian Function, Polycystic Ovarian Syndrome (PCOS), and In Vitro Fertilization (IVF) Outcomes. Int. J. Mol. Sci. 2025, 26, 6604. https://doi.org/10.3390/ijms26146604
Voros C, Athanasiou D, Papapanagiotou I, Mavrogianni D, Varthaliti A, Bananis K, Athanasiou A, Athanasiou A, Papadimas G, Gkirgkinoudis A, et al. Molecular Shadows of Per- and Polyfluoroalkyl Substances (PFASs): Unveiling the Impact of Perfluoroalkyl Substances on Ovarian Function, Polycystic Ovarian Syndrome (PCOS), and In Vitro Fertilization (IVF) Outcomes. International Journal of Molecular Sciences. 2025; 26(14):6604. https://doi.org/10.3390/ijms26146604
Chicago/Turabian StyleVoros, Charalampos, Diamantis Athanasiou, Ioannis Papapanagiotou, Despoina Mavrogianni, Antonia Varthaliti, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Athanasios Gkirgkinoudis, and et al. 2025. "Molecular Shadows of Per- and Polyfluoroalkyl Substances (PFASs): Unveiling the Impact of Perfluoroalkyl Substances on Ovarian Function, Polycystic Ovarian Syndrome (PCOS), and In Vitro Fertilization (IVF) Outcomes" International Journal of Molecular Sciences 26, no. 14: 6604. https://doi.org/10.3390/ijms26146604
APA StyleVoros, C., Athanasiou, D., Papapanagiotou, I., Mavrogianni, D., Varthaliti, A., Bananis, K., Athanasiou, A., Athanasiou, A., Papadimas, G., Gkirgkinoudis, A., Migklis, K., Vaitsis, D., Koulakmanidis, A.-M., Tsimpoukelis, C., Ivanidou, S., Stepanyan, A. J., Daskalaki, M. A., Theodora, M., Antsaklis, P., ... Daskalakis, G. (2025). Molecular Shadows of Per- and Polyfluoroalkyl Substances (PFASs): Unveiling the Impact of Perfluoroalkyl Substances on Ovarian Function, Polycystic Ovarian Syndrome (PCOS), and In Vitro Fertilization (IVF) Outcomes. International Journal of Molecular Sciences, 26(14), 6604. https://doi.org/10.3390/ijms26146604