Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,126)

Search Parameters:
Keywords = chemical zoning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3589 KB  
Article
Volumetric X-Band Radar Analysis of Acoustic Precipitation Enhancement: A Stratiform Precipitation Case over the Bayinbuluke Basin
by Jinzhao Wang, Guoxin Chen, Jie Zhao and Tiejian Li
Atmosphere 2026, 17(2), 170; https://doi.org/10.3390/atmos17020170 (registering DOI) - 6 Feb 2026
Abstract
Acoustic precipitation enhancement (APE) is an emerging non-chemical weather-modification technique, yet quantitative three-dimensional evidence of its impact on rainy clouds remains scarce. This study investigates a stratiform precipitation event over the Bayinbuluke Basin in the central Tianshan Mountains of northwestern China, 29–30 August [...] Read more.
Acoustic precipitation enhancement (APE) is an emerging non-chemical weather-modification technique, yet quantitative three-dimensional evidence of its impact on rainy clouds remains scarce. This study investigates a stratiform precipitation event over the Bayinbuluke Basin in the central Tianshan Mountains of northwestern China, 29–30 August 2024, using an X-band phased-array weather radar (X-PAR) coordinated with an upward-directed acoustic source. Rapid volumetric scans and sector-aligned range-height indicators were combined to reconstruct the three-dimensional cloud structure before, during, and after acoustic operation. During acoustic operation, the results were stronger and more persistent than during the non-operation period, with localized values exceeding 40 dBZ. Within the 3 km influence zone, low-level reflectivity increased across all azimuthal sectors with clear directional dependence. Dual-ratio analysis showed statistically significant enhancement in the windward sector (247°, DR = 1.91, p = 0.0004) and the leeward sector (137°, DR = 1.51, p = 0.008), indicating that acoustic-induced responses extended beyond the primary radiation sector and propagated downstream with cloud advection. These results, based on a single stratiform precipitation case, demonstrate that volumetric X-PAR observations can detect localized cloud-structure responses during acoustic operation. Full article
Show Figures

Figure 1

17 pages, 3990 KB  
Article
Rapid Identification and Traceability of Groundwater Pollution Using Fluorescence Spectroscopy Coupled with Hydrochemistry in a Chemical Industrial Park, Southwest, China
by Guo Liu, Yongchang Zhang, Guoming Liu and Guo Liu
Processes 2026, 14(3), 568; https://doi.org/10.3390/pr14030568 (registering DOI) - 6 Feb 2026
Abstract
Groundwater contamination in chemical industrial parks (CIPs) is a significant threat to global water security due to spills, leaks, and discharges, as well as the complexity of concealing a diverse range of industrial pollutants. In this article, we collected 30 groundwater samples from [...] Read more.
Groundwater contamination in chemical industrial parks (CIPs) is a significant threat to global water security due to spills, leaks, and discharges, as well as the complexity of concealing a diverse range of industrial pollutants. In this article, we collected 30 groundwater samples from zones of presumed influence across a CIP, including upstream background, within-park, periphery, and downstream, located in Luxian County, Sichuan, China. We employed excitation–emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis (PARAFAC) coupled with comprehensive hydrochemical analysis to deconvolve the dissolved organic matter (DOM) signature and statistically link its fluorescent components to specific hydrogeochemical processes and anthropogenic sources. Results revealed that industrial activities have transformed the groundwater to Ca-HCO3·Cl and Ca·Na-HCO3·Cl types from the hydrochemical facies comprising Ca-HCO3 and Ca·Mg-HCO3 types. Hydrogeology and groundwater chemistry depend primarily on weathering and atmospheric precipitation, but industrial effluents and evaporation concentration also significantly affect them. EEM-PARAFAC identified three dominant fluorescent components: fulvic-like (C1), humic-like (C2), and tryptophan-like (C3), with the latter serving as a sensitive indicator of recent anthropogenic inputs. The spatial distribution of these components, particularly the enrichment of C3, is primarily governed by anthropogenic inputs (e.g., sewage leakage), modulated by local hydrological conditions. This work demonstrates the integration of optical spectroscopy with conventional hydrochemistry for source apportionment in complex industrial settings. It provides a mechanistic understanding of pollution propagation and a practical, rapid diagnostic tool for targeted groundwater protection in CIPs. Full article
Show Figures

Graphical abstract

26 pages, 27698 KB  
Article
Multidisciplinary Assessment of the Subsurface Contamination of Al-Musk Lake Wastewater Dumpsite in Jeddah City, KSA
by Mohamed Rashed, Nassir Al-Amri, Riyadh Halawani, Burhan Niyazi, El-Sawy K. El-Sawy, Milad Masoud and Maged El Osta
Earth 2026, 7(1), 21; https://doi.org/10.3390/earth7010021 - 4 Feb 2026
Viewed by 4
Abstract
Al-Musk Lake, an artificial waterbody of 2.9 km2 formed by illegal dumping of 9.5 million cubic meters of raw sewage near Jeddah, Saudi Arabia, remains a significant subsurface environmental hazard after drainage activities in 2010. The current research employs a multidisciplinary approach, [...] Read more.
Al-Musk Lake, an artificial waterbody of 2.9 km2 formed by illegal dumping of 9.5 million cubic meters of raw sewage near Jeddah, Saudi Arabia, remains a significant subsurface environmental hazard after drainage activities in 2010. The current research employs a multidisciplinary approach, integrating geological mapping, aeromagnetic and electromagnetic surveys, Landsat imagery, and chemical analyses, to investigate contamination migration and accumulation. The objective is to delineate subsurface contamination pathways and assess their impact on soil and groundwater quality. Frequency-domain electromagnetic (FDEM) surveys identified areas of high apparent conductivity (up to 200 mS/m at 2000 kHz), indicative of deep contamination saturation. Chemical analysis of water and soil samples revealed distressing levels of heavy metals, Na+ up to 2400 mg/L, Ca2+ up to 3648 mg/L, and Fe up to 4150 mg/L, far exceeding irrigation safe standards. Findings locate two at-risk areas several kilometers from the lake, where contaminants accumulate through basement depressions controlled by faults. These pose immediate risks to adjacent residential areas and expanding agricultural belts. In short, subsurface contamination continues to spread westward. Short-term remedies include halting agricultural activities, treating in-storage water, and paving infiltration zones. A larger-scale geophysical survey, along with denser geochemical sampling and analysis, is necessary to guide long-term remediation and to protect public health. Full article
Show Figures

Figure 1

24 pages, 7598 KB  
Article
Optimization of Electrical Resistivity Tomography Monitoring for Weak Electrical Response Pollutants: A Coupled Field–Sand Tank Experimental Study Taking Nitrate as an Example
by Yuhan La, Yuesuo Yang, Xi Chen, Changhong Zheng, Wenbo Li, Zhichao Cai, Zhaofei Yang, Haixin Peng and Jing Li
Water 2026, 18(3), 404; https://doi.org/10.3390/w18030404 - 4 Feb 2026
Viewed by 39
Abstract
Due to the weak electrical response characteristics of groundwater nitrate contamination, traditional monitoring and remediation assessment methods are limited by low spatiotemporal resolution, high cost, and strong subjectivity. To address this issue, this study proposed an integrated technical framework combining field detection, laboratory-controlled [...] Read more.
Due to the weak electrical response characteristics of groundwater nitrate contamination, traditional monitoring and remediation assessment methods are limited by low spatiotemporal resolution, high cost, and strong subjectivity. To address this issue, this study proposed an integrated technical framework combining field detection, laboratory-controlled experiments, and remediation process monitoring, aiming to explore the application potential of Electrical Resistivity Tomography (ERT) in nitrate pollution monitoring and remediation evaluation. First, ERT survey lines (L1 and L2) were deployed at a chemical-contaminated site in Luzhou, Sichuan Province, and groundwater samples were collected. Coupled with hydrochemical analysis, the feasibility of ERT for identifying nitrate plumes was verified. Second, a quantitative response model between nitrate concentration and resistivity was established through Miller box experiments, and a multi-line layout was optimized via sand tank experiments to mitigate boundary effects and improve monitoring accuracy. Finally, grouped sand tank experiments involving electroactive bacteria (EAB) and magnetite were conducted. Combined with 16S rRNA sequencing, the coupling mechanism between ERT electrical responses and biogeochemical processes was elucidated. The results showed that the low-resistivity anomaly zones identified by field ERT were accurately consistent with the high-nitrate contamination zones, and Piper diagrams confirmed that nitrate-related ions were the primary cause of the low-resistivity anomalies. The power function quantitative model established by the Miller box experiment (y = 1021.97x−0.74, R2 = 0.9589) enabled the indirect inversion of nitrate concentrations, with a small deviation between theoretical and measured values in the deep layer (16–18 m). The optimized layout of one main and three auxiliary survey lines effectively characterized the spatiotemporal migration of the contamination plume. Under high-water level conditions, the ternary system of nitrate–magnetite–EAB exhibited the strongest low-resistivity response. Microbial analysis indicated that electroactive groups (e.g., Pseudomonas and Flavobacterium) enriched in the EAB group were the core drivers of enhanced electrical conductivity. The integrated ERT monitoring technology system constructed in this study realizes the visual identification of nitrate plumes and dynamic tracking of remediation processes, providing technical support for the precise monitoring and in situ remediation of nitrate contamination in agricultural non-point sources and industrial sites. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

29 pages, 4716 KB  
Article
Tracking the Environmental Impact of Mine Residues and Tailings in Sardinia (Italy) Using Imaging Spectroscopy
by Susanna Grita, Lorenzo Sedda, Marco Casu, Saeid Asadzadeh and Piero Boccardo
Remote Sens. 2026, 18(3), 499; https://doi.org/10.3390/rs18030499 - 3 Feb 2026
Viewed by 223
Abstract
Italy is estimated to host thousands of abandoned mines, many of which contain large volumes of mine residues that negatively affect land and aquatic ecosystems, also posing a risk to human health. This study evaluates the effectiveness of spaceborne imaging spectroscopy combined with [...] Read more.
Italy is estimated to host thousands of abandoned mines, many of which contain large volumes of mine residues that negatively affect land and aquatic ecosystems, also posing a risk to human health. This study evaluates the effectiveness of spaceborne imaging spectroscopy combined with laboratory spectroscopy for characterizing the mineralogy and geochemistry of residues from the abandoned Montevecchio sulfide mine in southwestern Sardinia, a site recognized as a significant source of environmental pollution. Mine tailings and their downstream dispersion along the Rio Irvi River were systematically studied and sampled in the field. Collected samples were analyzed in the lab using an Analytical Spectral Device (ASD) spectroradiometer, complemented by powder X-ray Diffraction (XRD) for mineralogical characterization. Affected zones were subsequently mapped using the Environmental Mapping and Analysis Program (EnMAP) hyperspectral satellite data at a 30 m spatial resolution, by applying a polynomial fitting technique to the image spectra. The results reveal the presence of Fe- and Zn-bearing sulfates and oxy/hydroxides, indicative of acidic-to-circum-neutral drainage conditions in the mine tailings and along affected streams. Specifically, EnMAP was able to detect jarosite and subtle chemical and physical variations in Fe-hydroxides. This integrated approach enabled the delineation of environmental conditions and zones with varying acidity based on the spectral characteristics of secondary minerals. Overall, the study demonstrates the potential of EnMAP data for mapping acid mine drainage and assessing environmental impacts in legacy mining areas. Full article
Show Figures

Figure 1

19 pages, 8765 KB  
Article
Kinetics of Decomposition in Alkaline Media NaOH and Ca(OH)2 of Thallium Jarosite
by Hernán Islas, J. Eliecer Méndez, Francisco Patiño, Sayra Ordoñez, Iván A. Reyes, Paola B. Bocardo, Martín Reyes, Miriam Estrada and Mizraim U. Flores
ChemEngineering 2026, 10(2), 24; https://doi.org/10.3390/chemengineering10020024 - 3 Feb 2026
Viewed by 125
Abstract
Thallium is one of the most toxic elements on the planet, and one alternative method for its precipitation is through jarosite-type compounds. Therefore, in this work, the kinetics of thallium jarosite were evaluated in an alkaline medium (NaOH and Ca(OH)2). Experiments [...] Read more.
Thallium is one of the most toxic elements on the planet, and one alternative method for its precipitation is through jarosite-type compounds. Therefore, in this work, the kinetics of thallium jarosite were evaluated in an alkaline medium (NaOH and Ca(OH)2). Experiments were conducted to assess the effect of medium concentration from 0.03 M to 5.5 × 10−4 M and the effect of temperature from 20 °C to 60 °C. The sigmoidal curves showed an induction period, during which there was no release of sulfur or thallium ions into the solution, nor the formation of solid byproducts, according to the X ray diffraction (XRD) results. Similarly, a progressive conversion period was observed, evidenced by the release of sulfur and thallium ions into the solution and the formation of amorphous solids. Finally, a stability zone is reached, indicating that the decomposition reaction has ended, as there are no changes in the concentration of sulfur and thallium ions in the solution. The reaction was monitored by determining S using Inductively Coupled Plasma (ICP). The experimental results for the progressive conversion period show a better fit to the chemically controlled shrinking core kinetic model. The reaction order for the kinetics in NaOH medium is 1.09 for the induction period and 0.89 for the progressive conversion period, while for Ca(OH)2 medium it is 0.78 for the induction period and 0.47 for the progressive conversion period. The activation energies for the progressive conversion period in the two proposed media are 91.87 kJ mol−1 in NaOH and 71.14 kJ mol−1 in Ca(OH)2, indicating that the controlling mechanism in both systems is the chemical reaction. For the induction period, the activation energies are 101.52 kJ mol−1 and 79.45 kJ mol−1, respectively, indicating that the chemical reaction also controls the initiation of the reactions. The high activation energy in both reaction media suggests that high concentrations of OH and high temperatures are required to initiate the decomposition reaction. Thallium jarosite precipitates a large amount of thallium and requires high energy to decompose, so it could be a viable alternative in thallium retention. Full article
Show Figures

Figure 1

18 pages, 3225 KB  
Article
Using High-Resolution Hydrodynamic Models to Assess the Environmental Status of Highly Modified Transitional Waters in Salt Marshes
by Cira Buonocore, Juan J. Gomiz-Pascual, Ander López Puertas, Óscar Álvarez Esteban, Rafael Mañanes, María L. Pérez Cayeiro, Alfredo Izquierdo González, Antonio Gómez Ferrer, Noelia P. Sobrino González and Miguel Bruno
Hydrology 2026, 13(2), 55; https://doi.org/10.3390/hydrology13020055 - 2 Feb 2026
Viewed by 86
Abstract
Effective management of transitional waters requires collaboration between administrative and scientific institutions, in line with the sustainable water management principles established by the Water Framework Directive (WFD, 2000/60/EC). The Cadiz and San Fernando salt marshes, classified as wetlands of international importance, currently exhibit [...] Read more.
Effective management of transitional waters requires collaboration between administrative and scientific institutions, in line with the sustainable water management principles established by the Water Framework Directive (WFD, 2000/60/EC). The Cadiz and San Fernando salt marshes, classified as wetlands of international importance, currently exhibit an ecological and chemical status that is “worse than good.” However, there is still a lack of high-resolution, spatially explicit tools to identify where contaminants are most likely to accumulate in highly modified transitional waters, which limits effective monitoring and management strategies. This study aims to fill this gap by combining a high-resolution hydrodynamic model with a Lagrangian-particle-tracking approach to determine areas most vulnerable to contaminant accumulation from wastewater discharges. Simulations across multiple tidal cycles revealed that contamination is concentrated near discharge points and in low-flow channels, with tidal dynamics strongly influencing transport patterns. Key findings indicate that certain marsh sectors consistently experience higher contaminant exposure, highlighting priority areas for monitoring and management. The study provides novel insights by integrating modeling tools to produce a vulnerability classification of high-, medium-, and low-risk zones. These results contribute to the broader scientific understanding of contaminant dynamics in transitional waters and offer a transferable framework for improving wetland management in other heavily modified coastal systems. Full article
Show Figures

Figure 1

33 pages, 6167 KB  
Article
Comprehensive Insights into Friction Stir Butt Welding (FSBW) of 3D-Printed Novel Nano Chromium (Cr) Particles-Reinforced PLA Composites
by Syed Farhan Raza, Muhammad Umair Furqan, Sarmad Ali Khan, Khurram Hameed Mughal, Ehsan Ul Haq and Ahmed Murtaza Mehdi
J. Compos. Sci. 2026, 10(2), 72; https://doi.org/10.3390/jcs10020072 - 1 Feb 2026
Viewed by 198
Abstract
Additive manufacturing (AM) is a significant contributor to Industry 4.0. However, one considerable challenge is usually encountered by AM due to the bed size limitations of 3D printers, which prevent them from being adopted. An appropriate post-joining technique should be employed to address [...] Read more.
Additive manufacturing (AM) is a significant contributor to Industry 4.0. However, one considerable challenge is usually encountered by AM due to the bed size limitations of 3D printers, which prevent them from being adopted. An appropriate post-joining technique should be employed to address this issue properly. This study investigates the influence of key friction stir butt welding (FSBW) factors (FSBWFs), such as tool rotational speed (TRS), tool traverse speed (TTS), and pin profile (PP), on the weldability of 3D-printed PLA–Chromium (PC) composites (3PPCC). A filament containing 10% by weight of chromium reinforced in PLA was used to prepare samples. The material extrusion additive manufacturing process (MEX) was employed to prepare the 3D-printed PCC. A Taguchi-based design of experiments (DOE) (L9 orthogonal array) was employed to systematically assess weld hardness (WH), weld temperature (WT), weld strength (WS), and weld efficiency. As far as the 3D-printed samples were concerned, two distinct infill patterns (linear and tri-hexagonal) were also examined to evaluate their effect on joint performance; however, all other 3D printing factors were kept constant. Experimentally validated findings revealed that weld efficiency varied significantly with PP and infill pattern, with the square PP and tri-hexagonal infill pattern yielding the highest weld efficiency, i.e., 108%, with the corresponding highest WS of 30 MPa. The conical PP resulted in reduced WS. Hardness analysis demonstrated that tri-hexagonal infill patterns exhibited superior hardness retention, i.e., 46.1%, as compared to that of linear infill patterns, i.e., 34%. The highest WTs observed with conical PP were 132 °C and 118 °C for both linear and tri-hexagonal infill patterns, which were far below the melting point of PLA. The lowest WT was evaluated to be 65 °C with a tri-hexagonal infill, which is approximately equal to the glass transition temperature of PLA. Microscopic analysis using a coordinate measuring machine (CMM) indicated that optimal weld zones featured minimal void formation, directly contributing to improved weld performance. In addition, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were also performed on four deliberately selected samples to examine the microstructural features and elemental distribution in the weld zones, providing deeper insight into the correlation between morphology, chemical composition, and weld performance. Full article
(This article belongs to the Special Issue Welding and Friction Stir Processes for Composite Materials)
Show Figures

Figure 1

25 pages, 6105 KB  
Article
Three-Dimensional Characterization and Management of Heavy Metal Contamination in Site Soils
by Xiangyuan Wu, Feng Li, Sensen Wang, Zhuoli Zhang and Yan Li
Land 2026, 15(2), 248; https://doi.org/10.3390/land15020248 - 31 Jan 2026
Viewed by 121
Abstract
As former chemical sites, especially retired pesticide plants, the redevelopment of “brownfield” land imposes urgent demands for detailed environmental investigation and remediation. Addressing the current limitations in pollution characterization, which often remain confined to two-dimensional representations and lack research on the vertical migration [...] Read more.
As former chemical sites, especially retired pesticide plants, the redevelopment of “brownfield” land imposes urgent demands for detailed environmental investigation and remediation. Addressing the current limitations in pollution characterization, which often remain confined to two-dimensional representations and lack research on the vertical migration mechanisms of heavy metals and their integration with three-dimensional remediation and management strategies, this study focuses on a typical retired pesticide plant site in Southeastern Zhejiang, China. Through systematic analysis of 916 soil borehole samples collected from 92 sampling points, the study integrates three-dimensional visualization technology and three-dimensional ordinary kriging interpolation to establish a high-precision three-dimensional characterization system covering stratigraphy, pollution plumes, and composite risks. The findings reveal that the As and Ni pollution plumes have volumes of 5.35 × 104 m3 and 2.78 × 105 m3, respectively. Furthermore, As and Ni exhibit significant vertical migration capabilities within sandy and silty soil layers, while elements such as Hg, Cd, and Pb are primarily concentrated in the surface fill layer. By combining three-dimensional risk modeling based on the single-factor pollution index, Nemerow comprehensive index, and potential ecological risk index, the study precisely classifies the site into four graded zones: safe use zone, basically safe use zone, low-risk control zone, and high-risk control zone. This approach enables the visualization and quantification of pollution levels. The research constructs a comprehensive methodological framework that extends from three-dimensional pollution characterization to zonal management decision-making, providing scientific evidence and technical support for the precise remediation and sustainable redevelopment of similar retired industrial sites. Full article
Show Figures

Figure 1

26 pages, 8601 KB  
Article
Hidden Technologies of Thai Gold Glass Mirrors: Interface Chemistry and Raw Material Signatures Across Thailand
by Supapon Deechob, Surapich Poolprasroed, Kamonpan Pengpat, Sukum Eitssyeam, Arnon Kraipok, Pratthana Intawin, Surapong Panyata, Ekarat Meechoowas, Terd Disayathanoowat, Pinit Kidkhunthod, Phakkhananan Pakawanit, Jintara Padchasri, Chanvit Sriprom, Manlika Kamnoy, Thapanee Srichoompong, Napassorn Kietisirirojana and Tawee Tunkasiri
Heritage 2026, 9(2), 53; https://doi.org/10.3390/heritage9020053 - 31 Jan 2026
Viewed by 203
Abstract
This study identifies the technological signature of ancient and alternative “Chu” and “Kriab” gold glass mosaic mirrors from Thailand. Although these mirrors play an important role in Thai decorative heritage, their production routes and interfacial chemistry at the lead-to-glass interface have remained unclear. [...] Read more.
This study identifies the technological signature of ancient and alternative “Chu” and “Kriab” gold glass mosaic mirrors from Thailand. Although these mirrors play an important role in Thai decorative heritage, their production routes and interfacial chemistry at the lead-to-glass interface have remained unclear. A survey of 154 sites across Thailand shows mosaic glass was widely distributed and likely produced during the Ayutthaya period (~300 years ago). Portable X-Ray Fluorescence (pXRF), Wavelength-Dispersive XRF (WD-XRF), scanning electron microscopy (SEM), and X-ray Photoelectron Spectroscopy (XPS) were used to examine the material properties of observed Chu mirrors. Most samples can be classified as a mixed lead–alkaline glass type, with a PbO content ranging from 4.28 to 48.17 wt%. Their yellow tone is controlled by iron and manganese redox states. Chemical and physical analyses distinguish between Chu from the northern part of Thailand and Kriab from the central part of Thailand, which share a silica source but rely on different fluxes, pointing to different glass workshops. Crucially, XPS depth profiling reveals a well-defined interfacial reaction zone extending to approximately 6 nm in the ancient mirrors, predominantly characterized by disordered, chain-like Pb–O–Pb linkages. These polymeric structures enable a “chemical bridging” mechanism that effectively accommodates interfacial strain arising from thermal expansion mismatch, thereby ensuring exceptional long-term adhesion. Furthermore, the depth-dependent distribution of hydrated lead species and the emergence of photoelectron energy-loss features beyond ~6 nm distinguish the superior metallic integrity of the ancient coatings from the alternative reproductions. This distinct stratification confirms that ancient artisans achieved a sophisticated balance between a chemically bonded interface and a coherent metallic bulk. These findings offer significant insights into the ingenuity of ancient Thai artisans, providing a scientific foundation for the conservation, restoration, and replication of these culturally significant artifacts. Full article
(This article belongs to the Special Issue Advanced Analysis of Archaeological Glass)
Show Figures

Figure 1

15 pages, 3336 KB  
Article
Numerical Simulation Study of Multi-Component Discontinuous Chemical Flooding
by Zhijie Wei, Yongzheng Cui, Yanchun Su, Jian Zhang and Wensheng Zhou
Energies 2026, 19(3), 750; https://doi.org/10.3390/en19030750 - 30 Jan 2026
Viewed by 167
Abstract
Discontinuous phase flooding (such as polymer microspheres) is an important method for enhancing oil recovery. With the hydration swelling and elastic properties, a unique “migration–entrapment–remigration” discontinuous flow behavior is identified during flooding. And a more pronounced conformance control effect is observed in high-permeability [...] Read more.
Discontinuous phase flooding (such as polymer microspheres) is an important method for enhancing oil recovery. With the hydration swelling and elastic properties, a unique “migration–entrapment–remigration” discontinuous flow behavior is identified during flooding. And a more pronounced conformance control effect is observed in high-permeability flow channels and deeper reservoir regions compared to continuous phase flooding. These complex seepage mechanisms pose significant challenges to reservoir numerical simulation. Based upon a chemical reaction framework, a multi-component mathematical model comprising oil, gas, water, pre-discontinuous phase, and discontinuous phase components is developed in this study. The discontinuous phase is generated through chemical reactions involving the pre-discontinuous phase. A minimum reaction porosity is first introduced in the chemical reaction process to enhance the discontinuous phase generation in high-permeability regions. A threshold pressure is incorporated into the discontinuous phase equation for the “migration–entrapment–remigration” discontinuous flow characteristics. The model is subsequently solved using a fully implicit finite volume method. A new numerical simulator implementing this approach is developed in C++. Validation through physical experiments confirms the method’s accuracy. The discontinuous migration process of “migration–entrapment–remigration” is clearly reflected through the injection pressure fluctuations during simulation. Mechanistic models and field-scale simulations both confirm that discontinuous phase flooding significantly enhances oil recovery efficiency, outperforming both water flooding and continuous phase flooding. The novel reaction specification enhances conformance control in high-permeability channels, as demonstrated by the simulation results. The proposed model accurately captures the migration characteristics of the discontinuous phase and holds important practical value for reservoirs with discontinuous phase flooding. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

32 pages, 3323 KB  
Article
Specificity of Ore Generation (Tin, Pegmatites, and Gems) in Trans-Porphyry Deposits
by Jean-Louis Vigneresse
Minerals 2026, 16(2), 157; https://doi.org/10.3390/min16020157 - 30 Jan 2026
Viewed by 187
Abstract
During the magmatic stage, base and rarer metals segregate from silicate melts to form ore deposits. The usual case is the porphyry (PD) type (Cu, Mo, and W) above subduction zones. The metal grade increases from some ppb or ppm up to percent [...] Read more.
During the magmatic stage, base and rarer metals segregate from silicate melts to form ore deposits. The usual case is the porphyry (PD) type (Cu, Mo, and W) above subduction zones. The metal grade increases from some ppb or ppm up to percent levels. A new type of trans-porphyry (TPD) deposits (Sn, Ta, Nb, and gems) results from large-scale shear between cratons within continental plates, internal decoupling, and vertical motion. The bulk ore generation process develops along three stages: from magma generation, emplacement, and the formation of an immiscible magmatic phase (MIP), fluids, and melt. However, in TPD, metals segregate from the crust during melting below 800 °C, biotites break down, and the melt remains below the critical point (731 °C). Fluid advection competes with chemical diffusion, yielding the required enrichment. The subcritical MIP splits into a silicate-rich and an aqueous-rich phase, which are both incompatible with each other. Granite, pegmatites, and greisen coexist in the magma chamber. Their respective extraction from a composite mush involves electron exchanges between charges, or orbitals, yielding metal oxides through chemical diffusion. In contrast, in metals (Nb and Ta) observed in pegmatites, and also in gems, electrons rearrange their electronic cloud through their polarizability. Lastly, gems independently grow under the influence of the extremely hard fluids (Li, Be, and B). Magma generation, involving the lower crust (garnet and pyroxene), results in melts that form the two observed pegmatite groups (NYF and LCT), with each being associated with alkaline (A-type) or continental (S-type) granitic melts. Full article
Show Figures

Graphical abstract

33 pages, 7625 KB  
Article
Software for Hazard Zone Visualization in Case of Fire at Industrial Facility Based on Cellular Automaton Method
by Fares Abu-Abed, Yuri Matveev, Ruslan Fedyakin, Olga Zhironkina and Sergey Zhironkin
Fire 2026, 9(2), 63; https://doi.org/10.3390/fire9020063 - 29 Jan 2026
Viewed by 177
Abstract
Modeling and visualizing zones within the spread of toxic clouds from fires and explosions during accidents at industrial facilities located near residential areas is of high practical value. This tool is critical for the rapid planning of population evacuation measures and emergency response. [...] Read more.
Modeling and visualizing zones within the spread of toxic clouds from fires and explosions during accidents at industrial facilities located near residential areas is of high practical value. This tool is critical for the rapid planning of population evacuation measures and emergency response. Of particular importance is the development of computer software that can quickly model the hazard zone of toxic cloud spread and superimpose it on a terrain map to determine the potential impact on residential areas. This software should be based on a mathematical model that can accurately predict the parameters of the hazard zone both near the industrial facility and beyond it, at a distance of more than 1 km. The objective of this study is to create algorithms for modeling the hazard zone during a fire or explosion at an industrial facility using a cellular automaton method and to develop a software tool for its visualization. The software must display the hazard zone for the population of a nearby residential area on a map in real time, which is necessary for assessing potential harm to residents’ health and in planning their rapid evacuation. To achieve this objective, this article presents a model for determining the boundaries and main parameters of a hazard zone based on the cellular automaton method (frontal and probabilistic). The proposed model takes into account both constants (properties of chemical substances, building parameters, population size, etc.) and variables (the mass of the substance at each explosion and fire, wind speed and direction, air temperature, etc.). The FireSoft III software, developed by the authors and based on the cellular automaton model, provides more rapid calculation of the parameters and delineation of the hazard zone boundaries compared to similar software, which was tested in cases of an ammonia tank explosion and a prolonged fire in a warehouse containing polyvinyl chloride at an enterprise. This makes FireSoft III promising for use in a fire and explosion response at enterprises. Full article
(This article belongs to the Special Issue Advances in Industrial Fire and Urban Fire Research: 3rd Edition)
Show Figures

Figure 1

36 pages, 11192 KB  
Article
Orbital Forcing of Paleohydrology in a Marginal Sea Lacustrine Basin: Mechanisms and Sweet-Spot Implications for Eocene Shale Oil, Bohai Bay Basin
by Qinyu Cui, Yangbo Lu, Yiquan Ma, Mianmo Meng, Xinbei Liu, Kong Deng, Yongchao Lu and Wenqi Sun
J. Mar. Sci. Eng. 2026, 14(3), 273; https://doi.org/10.3390/jmse14030273 - 28 Jan 2026
Viewed by 202
Abstract
Investigating how climatic and hydrological conditions in ecological resource-enriched zones of marginal seas respond to external forcing, particularly during past greenhouse climates, holds considerable significance for understanding current environmental and resource challenges driven by global warming. In marginal seas, climatic hydrological states, including [...] Read more.
Investigating how climatic and hydrological conditions in ecological resource-enriched zones of marginal seas respond to external forcing, particularly during past greenhouse climates, holds considerable significance for understanding current environmental and resource challenges driven by global warming. In marginal seas, climatic hydrological states, including salinity, redox conditions, and productivity, are key environmental parameters controlling organic matter production, preservation, and ultimately the formation of high-quality shale. Herein, high-resolution cyclostratigraphic and multi-proxy geochemical analyses were conducted on a continuous core from the upper part of Member 4 of the Eocene Shahejie Formation (Es4cu) in Well NY1, Dongying Sag, Bohai Bay Basin. Based on these data, a refined astronomical timescale was accordingly established for the studied interval. By integrating sedimentological observations with multiple proxy indicators, including elemental geochemistry (e.g., Sr/Ba and Ca/Al ratios), organic geochemistry, and mineralogical data, the evolution of climate and paleo-water mass conditions during the study period was reconstructed. Spectral analyses revealed prominent astronomical periodicities in paleosalinity, productivity, and redox proxies, indicating that sedimentation was modulated by cyclic changes in eccentricity, obliquity, and precession. It was hereby proposed that orbital forcing governed periodic shifts in basin hydrology by regulating the intensity and seasonality of the East Asian monsoon. Intervals of enhanced summer monsoon associated with high eccentricity and obliquity were typically accompanied by increased sediment supply and intensified chemical weathering. Increased precipitation and runoff raised the lake level while promoting stronger connectivity with the ocean. In contrast, during weak seasonal monsoon intervals linked to eccentricity minima, basin conditions shifted from humid to arid, characterized by reduced precipitation, lower lake level, decreased sediment supply, and a concomitant decline in proxies for water salinity. The present results demonstrated orbital forcing as a primary external driver of cyclical changes in conditions favorable for resource formation in the Eocene lacustrine strata of the Bohai Bay Basin. Overall, this study yields critical paleoclimate evidence and a mechanistic framework for predicting the spatial-temporal distribution of high-quality shale under comparable astronomical-climate boundary conditions. Full article
(This article belongs to the Special Issue Advances in Offshore Oil and Gas Exploration and Development)
Show Figures

Figure 1

28 pages, 6654 KB  
Article
Evaluation and Classification of Emergency and Disaster Assembly Areas with ORESTE-Sort
by Umit Ozdemir, Suleyman Mete and Muhammet Gul
Sustainability 2026, 18(3), 1281; https://doi.org/10.3390/su18031281 - 27 Jan 2026
Viewed by 207
Abstract
Emergency and Disaster Assembly Areas (EDAA) are designated safe zones where basic needs can be met until temporary shelters are established following natural or man-made disasters like floods, fires, earthquakes, explosions, or chemical incidents. Promptly relocating disaster victims to these areas is crucial [...] Read more.
Emergency and Disaster Assembly Areas (EDAA) are designated safe zones where basic needs can be met until temporary shelters are established following natural or man-made disasters like floods, fires, earthquakes, explosions, or chemical incidents. Promptly relocating disaster victims to these areas is crucial for minimizing loss of life and facilitating effective search and rescue operations by maintaining an uninterrupted flow of information. To prepare for disasters like earthquakes, which cause significant material and emotional damage to large populations, sustainable disaster management must be ensured to evaluate site suitability, correct deficiencies, and avoid inappropriate locations. This study will examine the evaluation criteria for EDAAs established by the Tunceli Provincial Disaster and Emergency Management Authority (AFAD) in terms of area, structure, security, and accessibility, taking into account the region’s specific characteristics. Based on a literature review, eleven criteria have been proposed and ranked using the Besson mean ranking method. Areas have been classified into four categories (e.g., adequate, not suitable) using the optimistic, pessimistic, and comprise approaches of the Assignment Rule Driven by Attitudes (ARDA) and the ORESTE-Sort method. The examination of 19 EDAA provides two perspectives: an optimistic view that recommends classifying eleven areas as first class and using all areas as they are, and a pessimistic view that calls for urgent improvements in three areas and states that one area (EDAA 1) is deemed unsuitable due to its assignment to class K4. It is also advised that the second area should not be used, despite being rated as class K3, due to its proximity to the river and its slope characteristics. The study also performs a sensitivity analysis of the method and provides recommendations for future research. Full article
Show Figures

Figure 1

Back to TopTop