Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = chemical flocculants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4264 KiB  
Article
Study on the Performance Restoration of Aged Asphalt Binder with Vegetable Oil Rejuvenators: Colloidal Stability, Rheological Properties, and Solubility Parameter Analysis
by Heng Yan, Xinxin Cao, Wei Wei, Yongjie Ding and Jukun Guo
Coatings 2025, 15(8), 917; https://doi.org/10.3390/coatings15080917 - 6 Aug 2025
Abstract
This study evaluates the effectiveness of various rejuvenating oils, including soybean oil (N-oil), waste frying oil (F-oil), byproduct oil (W-oil), and aromatic hydrocarbon oil (A-oil), in restoring aged asphalt coatings by reducing asphaltene flocculation and improving colloidal stability. The rejuvenators were incorporated into [...] Read more.
This study evaluates the effectiveness of various rejuvenating oils, including soybean oil (N-oil), waste frying oil (F-oil), byproduct oil (W-oil), and aromatic hydrocarbon oil (A-oil), in restoring aged asphalt coatings by reducing asphaltene flocculation and improving colloidal stability. The rejuvenators were incorporated into aged asphalt binder via direct mixing at controlled dosages. Their effects were assessed using microscopy, droplet diffusion analysis, rheological testing (DSR and BBR), and molecular dynamics simulations. The aim is to compare the compatibility, solubility behavior, and rejuvenation potential of plant-based and mineral-based oils. The results indicate that N-oil and F-oil promote asphaltene aggregation, which supports structural rebuilding. In contrast, A-oil and W-oil act as solvents that disperse asphaltenes. Among the tested oils, N-oil exhibited the best overall performance in enhancing flowability, low-temperature flexibility, and chemical compatibility. This study presents a novel method to evaluate rejuvenator effectiveness by quantifying colloidal stability through grayscale analysis of droplet diffusion patterns. This integrated approach offers both mechanistic insights and practical guidance for selecting bio-based rejuvenators in asphalt recycling. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

17 pages, 6401 KiB  
Article
Vibrational and Resistance Responses for Ether-Amine Solutions of the Buckypaper-Based Chemiresistor Sensor
by Débora Ely Medeiros Ferreira, Paula Fabíola Pantoja Pinheiro, Luiza Marilac Pantoja Ferreira, Leandro José Sena Santos, Rosa Elvira Correa Pabón and Marcos Allan Leite Reis
Nanomaterials 2025, 15(15), 1197; https://doi.org/10.3390/nano15151197 - 5 Aug 2025
Abstract
The development of miniaturized sensors has become relevant for the detection of chemical/biological substances, since they use and detect low concentrations, such as flocculants based on amines for the mining industry. In this study, buckypaper (BP) films based on carboxylic acid functionalized multi-walled [...] Read more.
The development of miniaturized sensors has become relevant for the detection of chemical/biological substances, since they use and detect low concentrations, such as flocculants based on amines for the mining industry. In this study, buckypaper (BP) films based on carboxylic acid functionalized multi-walled carbon nanotubes (f-MWCNTs) were produced through vacuum filtration on cellulose filter paper to carry out sensory function in samples containing ether-amine (volumes: 1%, 5%, 10% and 100%). The morphological characterization of the BPs by scanning electron microscopy showed f-MWCNT aggregates randomly distributed on the cellulose fibers. Vibrational analysis by Raman spectroscopy indicated bands and sub-bands referring to f-MWCNTs and vibrational modes corresponding to chemical bonds present in the ether-amine (EA). The electrical responses of the BP to the variation in analyte concentration showed that the sensor differentiates deionized water from ether-amine, as well as the various concentrations present in the different analytes, exhibiting response time of 3.62 ± 0.99 min for the analyte containing 5 vol.% EA and recovery time of 21.16 ± 2.35 min for the analyte containing 10 vol.% EA, revealing its potential as a real-time response chemiresistive sensor. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

23 pages, 2888 KiB  
Review
Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment
by Caichang Ding, Ling Shen, Qiyang Liang and Lixin Li
Separations 2025, 12(8), 203; https://doi.org/10.3390/separations12080203 - 1 Aug 2025
Viewed by 215
Abstract
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such [...] Read more.
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such as sludge production and chemical residues. Recent advances in machine learning (ML) have opened transformative avenues for the design, optimization, and intelligent application of flocculants. This review systematically examines the integration of ML into flocculant research, covering algorithmic approaches, data-driven structure–property modeling, high-throughput formulation screening, and smart process control. ML models—including random forests, neural networks, and Gaussian processes—have successfully predicted flocculation performance, guided synthesis optimization, and enabled real-time dosing control. Applications extend to both synthetic and bioflocculants, with ML facilitating strain engineering, fermentation yield prediction, and polymer degradability assessments. Furthermore, the convergence of ML with IoT, digital twins, and life cycle assessment tools has accelerated the transition toward sustainable, adaptive, and low-impact treatment technologies. Despite its potential, challenges remain in data standardization, model interpretability, and real-world implementation. This review concludes by outlining strategic pathways for future research, including the development of open datasets, hybrid physics–ML frameworks, and interdisciplinary collaborations. By leveraging ML, the next generation of flocculant systems can be more effective, environmentally benign, and intelligently controlled, contributing to global water sustainability goals. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

36 pages, 6346 KiB  
Article
Thermoresponsive Effects in Droplet Size Distribution, Chemical Composition, and Antibacterial Effectivity in a Palmarosa (Cymbopogon martini) O/W Nanoemulsion
by Erick Sánchez-Gaitán, Ramón Rivero-Aranda, Vianney González-López and Francisco Delgado
Colloids Interfaces 2025, 9(4), 47; https://doi.org/10.3390/colloids9040047 - 19 Jul 2025
Viewed by 177
Abstract
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with [...] Read more.
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with organic and inorganic materials during application. In topical applications, not only is cell contact increased, but also permeability in the cell membrane. Nanoemulsions typically achieve kinetic stability rather than thermodynamic stability, so their commercial application requires reasonable resistance to flocculation and coalescence, which can be affected by temperature changes. Therefore, their thermoresponsive characterisation becomes relevant. In this work, we analyse this response in an O/W nanoemulsion of Palmarosa for antibacterial purposes that has already shown stability for one year at controlled room temperature. We now study hysteresis processes and the behaviour of the statistical distribution in droplet size by Dynamic Light Scattering, obtaining remarkable stability under temperature changes up to 50 °C. This includes a maintained chemical composition observed using Fourier Transform Infrared Spectroscopy and the preservation of antibacterial properties analysed through optical density tests on cultures and the Spread-Plate technique for bacteria colony counting. We obtain practically closed hysteresis curves for some tracers of droplet size distributions through controlled thermal cycles between 10 °C and 50 °C, exhibiting a non-linear behaviour in their distribution. In general, the results show notable physical, chemical, and antibacterial stability, suitable for commercial applications. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Graphical abstract

13 pages, 1363 KiB  
Article
Improving Anaerobic Digestion Process of Sewage Sludge in Terms of Energy Efficiency and Carbon Emission: Pre- or Post-Thermal Hydrolysis?
by Yawen Ye, Azizi Selemani Msuya, Xiaohu Dai, Xiaoli Chai and Boran Wu
Sustainability 2025, 17(13), 6147; https://doi.org/10.3390/su17136147 - 4 Jul 2025
Viewed by 360
Abstract
Sewage sludge, a by-product of biological wastewater treatment, poses significant environmental and health risks if not properly managed. Anaerobic digestion (AD), widely used as a stabilization technology for sewage sludge, faces challenges such as rate-limiting hydrolysis steps and difficult dewatering of residual digestate. [...] Read more.
Sewage sludge, a by-product of biological wastewater treatment, poses significant environmental and health risks if not properly managed. Anaerobic digestion (AD), widely used as a stabilization technology for sewage sludge, faces challenges such as rate-limiting hydrolysis steps and difficult dewatering of residual digestate. To address these issues, thermal hydrolysis (TH) has been explored as a pretreatment or post-treatment method. This study systematically analyzes the typical sludge treatment pathways incorporating TH either as a pretreatment step to AD or as a post-treatment step, combined with incineration or land application for the final disposal. The mass balance algorithm was applied to evaluate the chemical consumption, and energy input/output calculations were conducted to assess the potential effects of TH on energy recovery. Carbon emissions were estimated using the Intergovernmental Panel on Climate Change (IPCC) methodology, considering direct, indirect, and compensated carbon emissions. The results indicate that applying TH as a post-treatment significantly reduces the carbon emissions by 65.94% compared to conventional AD, primarily due to the enhanced dewaterability and reduced chemical flocculant usage. In contrast, TH as a pretreatment step only moderates the emission reduction. The combination of post-TH with land application results in the lowest carbon emissions among the evaluated pathways, highlighting the environmental benefits of this approach. All the findings here are expected to provide insights into optimizing the technical combination mode of sludge processing pathways in terms of minimizing carbon emission. Full article
(This article belongs to the Collection Environmental Assessment, Life Cycle Analysis and Sustainability)
Show Figures

Graphical abstract

13 pages, 914 KiB  
Article
Natural Coagulants as an Efficient Alternative to Chemical Ones for Continuous Treatment of Aquaculture Wastewater
by Isabella T. Tomasi, Rui A. R. Boaventura and Cidália M. S. Botelho
Appl. Sci. 2025, 15(12), 6908; https://doi.org/10.3390/app15126908 - 19 Jun 2025
Viewed by 394
Abstract
Aquaculture effluents are a growing source of water pollution, releasing suspended solids, organic matter, nitrogen, and phosphorus into aquatic environments. Recirculating aquaculture systems (RASs) have emerged as a more sustainable solution, allowing water to be continuously treated and reused. Within RASs, coagulation–flocculation is [...] Read more.
Aquaculture effluents are a growing source of water pollution, releasing suspended solids, organic matter, nitrogen, and phosphorus into aquatic environments. Recirculating aquaculture systems (RASs) have emerged as a more sustainable solution, allowing water to be continuously treated and reused. Within RASs, coagulation–flocculation is a key treatment step due to its simplicity and effectiveness. Tannin-based coagulants have gained attention as natural alternatives to traditional chemical agents. Although natural coagulants have been studied in aquaculture, only a few works explore their use in continuous-flow systems. This study evaluates a chestnut shell-based (CS) coagulant applied in continuous mode for the post-treatment of aquaculture effluent. The performance of CS was compared with Tanfloc, aluminum sulfate, and ferric chloride in removing color and dissolved organic carbon (DOC). At natural pH (6.5) and 50 mg·L−1, CS and Tanfloc achieved color removal of 61.0% and 65.5%, respectively, outperforming chemical coagulants. For DOC, Tanfloc and chemical coagulants removed 45–50%, while CS removed 32%. All coagulants removed over 90% of phosphorus, but nitrogen removal was limited (30–40%). These results highlight the potential of tannin-derived coagulants, particularly from agro-industrial residues, as sustainable solutions for aquaculture wastewater treatment in continuous systems. Full article
Show Figures

Figure 1

15 pages, 1589 KiB  
Article
Structural Analysis of Aggregates in Clayey Tailings Treated with Coagulant and Flocculant
by Steven Nieto, Eder Piceros, Elter Reyes, Jahir Ramos, Pedro Robles and Ricardo Jeldres
Minerals 2025, 15(6), 627; https://doi.org/10.3390/min15060627 - 10 Jun 2025
Viewed by 396
Abstract
This study evaluated the combined effect of a cationic coagulant (Magnafloc 1727®) and a high molecular weight anionic flocculant (SNF 604®) on the settling properties, aggregate structure, and rheological behavior of synthetic tailings suspensions composed of kaolinite and quartz [...] Read more.
This study evaluated the combined effect of a cationic coagulant (Magnafloc 1727®) and a high molecular weight anionic flocculant (SNF 604®) on the settling properties, aggregate structure, and rheological behavior of synthetic tailings suspensions composed of kaolinite and quartz in industrial water at pH 11. Settling tests, focused beam reflectance measurement (FBRM), zeta potential measurement, and rheological characterization were used to analyze the system’s performance under different coagulant dosages (0–150 g/t), while keeping the flocculant dosage constant (20 g/t). The results indicated that the coagulant favored surface charge neutralization, shifting the zeta potential from −13.2 mV to +4.0 mV. This resulted in larger, more efficient flocs capturing fines, with a 46% turbidity reduction. FBRM analysis revealed a significant increase in aggregate size and a slight decrease in fractal dimension (from 2.35 to 2.20), consistent with larger volume structures and lower bulk density. Rheologically, a substantial increase in yield stress was observed, especially in 50 wt% suspensions, suggesting the development of a continuous flocculated network with greater mechanical strength. These findings highlight the importance of sequential chemical conditioning in clayey tailings and its impact on clarification efficiency and water recovery under alkaline conditions representative of industrial mining processes. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

23 pages, 3013 KiB  
Review
Recent Advances in Antibiotic Degradation by Ionizing Radiation Technology: From Laboratory Study to Practical Application
by Yuening Song, Yulin Wang and Jianlong Wang
Water 2025, 17(12), 1719; https://doi.org/10.3390/w17121719 - 6 Jun 2025
Cited by 2 | Viewed by 729
Abstract
The widespread presence of antibiotics in aquatic environments poses significant ecological and public health risks due to their persistence, antimicrobial activity, and contribution to resistance gene proliferation. This review systematically evaluated the advancements in antibiotic degradation using ionizing radiation (γ-rays and electron beam) [...] Read more.
The widespread presence of antibiotics in aquatic environments poses significant ecological and public health risks due to their persistence, antimicrobial activity, and contribution to resistance gene proliferation. This review systematically evaluated the advancements in antibiotic degradation using ionizing radiation (γ-rays and electron beam) from laboratory studies to practical applications. By using keywords such as “antibiotic degradation” and “ionizing irradiation OR gamma radiation OR electron beam,” 328 publications were retrieved from Web of Science, with China contributing 33% of the literature, and a number of global representative studies were selected for in-depth discussion. The analysis encompassed mechanistic insights into oxidative (•OH) and reductive (eaq) pathways, degradation kinetics influenced by absorbed dose (1–10 kGy), initial antibiotic concentration, pH, and matrix complexity. The results demonstrated ≥90% degradation efficiency for major antibiotic classes (macrolides, β-lactams, quinolones, tetracyclines, and sulfonamides), though mineralization remains suboptimal (<50% TOC removal). Synergistic integration with peroxymonosulfate (PMS), H2O2, or O3 enhances mineralization rates. This review revealed that ionizing radiation is a chemical-free, compatible, and highly efficient technology with effective antibiotic degradation potential. However, it still faces several challenges in practical applications, including incomplete mineralization, matrix complexity in real wastewater, and operating costs. Further improvements and optimization, such as hybrid system development (e.g., coupling electron beam with other conventional technologies, such as flocculation, membrane separation, anaerobic digestion, etc.), catalytic enhancement, and life-cycle assessments of this emerging technology would be helpful for promoting its practical environmental application. Full article
Show Figures

Figure 1

32 pages, 2270 KiB  
Review
Natural Coagulants for Sustainable Wastewater Treatment: Current Global Research Trends
by Motasem Y. D. Alazaiza, Tharaa M. Alzghoul, Dia Eddin Nassani and Mohammed J. K. Bashir
Processes 2025, 13(6), 1754; https://doi.org/10.3390/pr13061754 - 2 Jun 2025
Viewed by 1777
Abstract
Natural coagulants have gained significant attention as effective agents for wastewater treatment, particularly in the removal of heavy metals. This study conducts a comprehensive bibliometric analysis of 268 publications over the past decade, aiming to assess research trends and developments in the application [...] Read more.
Natural coagulants have gained significant attention as effective agents for wastewater treatment, particularly in the removal of heavy metals. This study conducts a comprehensive bibliometric analysis of 268 publications over the past decade, aiming to assess research trends and developments in the application of natural coagulants in wastewater management. The analysis reveals a marked increase in publication output, with the number of articles rising from just five in 2015 to fifty-one in 2024, indicating a growing global awareness and investment in sustainable wastewater treatment practices. “Environmental science” emerges as the leading discipline, accounting for 31.3% of the total publications. Notably, Malaysia is identified as the foremost contributor, with 60 publications and 1149 citations, followed by India and Brazil, highlighting the robust research activity in these regions. The study identifies key natural coagulants, such as Moringa oleifera and chitosan, which are frequently cited for their efficacy in reducing heavy metal concentrations and improving overall water quality. Leading funding organizations, such as the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior in Brazil, have significantly contributed to the growth of this field by financing numerous studies. Prominent journals, including the Journal of Environmental Chemical Engineering and Water Research, play a crucial role in disseminating research findings and advancing knowledge in this area. These publications are vital for sharing innovative methodologies and effective treatment solutions in the field of natural coagulants. Effective treatment methodologies identified in the literature include coagulation/flocculation and adsorption. The study highlights a variety of natural materials utilized for wastewater treatment, including plant-based coagulants derived from agricultural by-products, which not only address environmental concerns but also promote resource recovery. Full article
Show Figures

Figure 1

28 pages, 1861 KiB  
Review
Bio-Flocculation: A Green Tool in Biorefineries for Recovering High Added-Value Compounds from Microalgae
by Luis G. Heredia-Martínez, Alba María Gutiérrez-Diánez and Encarnación Díaz-Santos
Phycology 2025, 5(2), 19; https://doi.org/10.3390/phycology5020019 - 20 May 2025
Viewed by 2354
Abstract
The growing demand for the sustainable production of high-value compounds, such as biofuels, lipids, and pigments like carotenoids and phycobilin, has become the subject of numerous investigations. Furthermore, this has led to the exploration of renewable methods utilizing microalgae as feedstock to mitigate [...] Read more.
The growing demand for the sustainable production of high-value compounds, such as biofuels, lipids, and pigments like carotenoids and phycobilin, has become the subject of numerous investigations. Furthermore, this has led to the exploration of renewable methods utilizing microalgae as feedstock to mitigate the challenges associated with producing these valuable compounds. Nevertheless, despite the numerous advantages of microalgae, the development of a microalgal biorefinery that employs sustainable, environmentally friendly, and economically efficient technologies remains a necessity. To address this challenge, the bio-flocculation process, and more specifically self-flocculation, is presented as a cost-effective and energy-efficient solution. This method is as easy and effective as chemical flocculation, which is applied at an industrial scale; however, in contrast, it is sustainable and cost-effective as no costs are involved in the pre-treatment of the biomass for oil extraction or in the pre-treatment of the medium before it can be re-used. In addition, microalgae possess molecular tools that would allow the efficiency of these processes to be increased. In the present review, we summarize the microalgal harvesting technologies used, with a particular focus on bio- and self-flocculation processes, and identify the improvements that could be made to enhance the production of high-added-value compounds while simultaneously reducing costs in microalgae biorefineries. Full article
Show Figures

Graphical abstract

16 pages, 3399 KiB  
Article
Separation of Iron Oxide from Harbor Waste Using Selective Flocculation
by Alexandru-Florin Mihai, Ljiljana Tankosić, Svjetlana Sredić, Alena Zdravković, Camelia Traista, Maria Lazar and Eugen Traista
Appl. Sci. 2025, 15(10), 5678; https://doi.org/10.3390/app15105678 - 19 May 2025
Viewed by 389
Abstract
Constanta port operations involving the handling of bulk minerals often lead to material losses, resulting in mineral waste, containing a mixture of iron ore, bauxite, and coal, amongst others. In order to recover these minerals, a processing plant was built, which successfully separates [...] Read more.
Constanta port operations involving the handling of bulk minerals often lead to material losses, resulting in mineral waste, containing a mixture of iron ore, bauxite, and coal, amongst others. In order to recover these minerals, a processing plant was built, which successfully separates most of this waste into its constituents. However, a byproduct obtained from this process is a sludge containing fine particles below 0.5 mm, which are deposited in a reservoir that represents definitive tailings. Since this is a “rich” tailing material, which is difficult to be extracted by using conventional methods due to its small size, the selective flocculation procedure was tested as an alternative method. This paper presents the results obtained for standard methods of selective flocculation tests using polyacrylamide A 100 at a pH value of 10.5. SEM-EDS and XRD analyses were performed, and the chemical composition of the sample components was given. According to preliminary tests, using the selective flocculation procedure, the expected results were obtained in terms of separating the overflow between the content of impurities (with a reduced share of Fe in relation to the input) and sediment with an increased content of Fe (with a reduced share of impurities in relation to the entrance). Full article
Show Figures

Figure 1

13 pages, 7111 KiB  
Article
Utilization of High Iron Content Sludge and Ash as Partial Substitutes for Portland Cement
by Hui Gu, Zhenyong Zhang, Wen Li, Zhaobo Meng and Jianxiong Sheng
Materials 2025, 18(10), 2309; https://doi.org/10.3390/ma18102309 - 15 May 2025
Viewed by 414
Abstract
Sludge is a semi-solid waste generated during the process of wastewater treatment. Due to the addition of polymerized ferric chloride in the flocculation process, the sludge produced by the sewage treatment plant in Liaocheng Jiaming Industrial Park contains a high content of iron [...] Read more.
Sludge is a semi-solid waste generated during the process of wastewater treatment. Due to the addition of polymerized ferric chloride in the flocculation process, the sludge produced by the sewage treatment plant in Liaocheng Jiaming Industrial Park contains a high content of iron oxide. In this paper, chemical analysis and particle size analysis of local sludge and sludge ash were conducted. In order to assess the potential of substituting cement as cementitious material with different dosages of sludge or sludge ash with high iron oxide content, setting time, compressive strength, microscopic analysis using microscopic testing (XRD, TG/DTG, SEM) and a toxicity characteristic leaching procedure (TCLP) were analyzed. These procedures determined the physical properties, compressive strength, hydration products, microstructure, and heavy metal contaminants of cement slurries replaced by local sludge or sludge ash with different dosages of high iron oxide content. The results show that less than 5% of local sludge or sludge ash can be incorporated into cement slurry as an alternative cementitious material for solid waste disposal. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

16 pages, 4066 KiB  
Article
Synthesis and Characterization of MAPTAC-Modified Cationic Corn Starch: An Integrated DFT-Based Experimental and Theoretical Approach for Wastewater Treatment Applications
by Joaquín Alejandro Hernández Fernández and Jose Alfonso Prieto Palomo
J. Compos. Sci. 2025, 9(5), 240; https://doi.org/10.3390/jcs9050240 - 14 May 2025
Viewed by 504
Abstract
Phosphorus contamination in water bodies is a major contributor to eutrophication, leading to algal overgrowth, oxygen depletion, and ecological imbalance. Conventional treatment methods, including chemical precipitation and synthetic adsorbents, are often limited by high operational costs, low biodegradability, and secondary pollutant generation. In [...] Read more.
Phosphorus contamination in water bodies is a major contributor to eutrophication, leading to algal overgrowth, oxygen depletion, and ecological imbalance. Conventional treatment methods, including chemical precipitation and synthetic adsorbents, are often limited by high operational costs, low biodegradability, and secondary pollutant generation. In this study, a cationic starch was synthesized through free radical graft polymerization of 3-methacrylamoylaminopropyl trimethyl ammonium chloride (MAPTAC) onto corn starch. The modified polymer exhibited a high degree of substitution (DS = 1.24), indicating successful functionalization with quaternary ammonium groups. Theoretical calculations using zDensity Functional Theory (DFT) at the B3LYP/6-311+G(d,p) level revealed a decrease in chemical hardness (from 0.10442 eV to 0.04386 eV) and a lower ionization potential (from 0.24911 eV to 0.15611 eV) in the modified starch, indicating enhanced electronic reactivity. HOMO-LUMO analysis and molecular electrostatic potential (MEP) maps confirmed increased electron-accepting capacity and the formation of new electrophilic sites. Experimentally, the cationic starch showed stable zeta potential values averaging +15.3 mV across pH 5.0–10.0, outperforming aluminum sulfate (Alum), which reversed its charge above pH 7.5. In coagulation-flocculation trials, the modified starch achieved 87% total suspended solids (TSS) removal at a low coagulant-to-biomass ratio of 0.0601 (w/w) using Scenedesmus obliquus, and 78% TSS removal in real wastewater at a 1.5:1 ratio. Additionally, it removed 30% of total phosphorus (TP) under environmentally benign conditions, comparable to Alum but with lower chemical input. The integration of computational and experimental approaches demonstrates that MAPTAC-modified starch is an efficient, eco-friendly, and low-cost alternative for nutrient and solids removal in wastewater treatment. Full article
Show Figures

Figure 1

20 pages, 8412 KiB  
Article
Wastewater Treatment Using a Combination of Pumpkin seed Waste After Extraction of Essential Oils (Bio-Coagulant) and Ferric Chloride (Chemical Coagulant): Optimization and Modeling Using a Box–Behnken Design
by Abderrezzaq Benalia, Ouiem Baatache, Katr Enada Zerguine, Amel Khediri, Kerroum Derbal, Nawal Ferroudj, Amel Khalfaoui and Antonio Pizzi
Appl. Sci. 2025, 15(10), 5439; https://doi.org/10.3390/app15105439 - 13 May 2025
Viewed by 497
Abstract
The wastewater treatment involves various techniques at different technological levels. Treatment takes place in several stages, of which coagulation and flocculation are the most important. Most suspended solids are indeed eliminated during this stage by the addition of a coagulant. In this research, [...] Read more.
The wastewater treatment involves various techniques at different technological levels. Treatment takes place in several stages, of which coagulation and flocculation are the most important. Most suspended solids are indeed eliminated during this stage by the addition of a coagulant. In this research, bio-coagulant was extracted from pumpkin seed (PS) waste after extraction of the essential oils, and used with ferric chloride to treat wastewater from the plant of Chalghoum El Aid-Oued El Athmania Mila. In this study, the Box–Behnken design (BBD) with three factors was used to investigate the effect of pH, organic coagulant dosage Pumpkin seed extract (PSE), and chemical coagulant dosage (FeCl3) on coagulation–flocculation performance in relation to turbidity, chemical oxygen demand (COD), aromatic organic matter (UV 254), and phosphate. The main characteristics of the raw water were turbidity (250 NTU), COD (640 mg/L), UV 254 (0.893 cm−1), and phosphate (0.115 mg/L). The results obtained were very significant. All the statistical estimators (R2 ≥ 97% and p ≤ 0.05) reveal that the models developed are statistically validated for simulating the coagulation–flocculation process. It should be noted that the residual values of turbidity, COD, UV 254, and phosphate after treatment by this process were 0.754 NTU; 190.88 mg/L; 0.0028 cm−1; and 0.0149 mg/L, respectively. In this case, the pH, bio-coagulant dosage, and chemical coagulant dosage values were 4; 17.81 mL/L; and 10 mL/L, respectively. In this study, Fourier-transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) characterization of the bio-coagulant proved the presence of the active functional groups responsible for coagulation, namely carboxyl group. Full article
(This article belongs to the Special Issue Promising Sustainable Technologies in Wastewater Treatment)
Show Figures

Figure 1

17 pages, 3472 KiB  
Article
A Hybrid Treatment System of the Coagulation/Flocculation/Settling Stage Followed by a Membrane Bioreactor (CFS-MBR) for Superior Removal of Cr and Nutrient Pollutants from Tannery Wastewater
by Hadis Saeedikia, Minoo Ghanbarzadeh, Milad Mahmoudzadeh, Manijeh Khorsi, Masoud Barani, Saeed Bazgir, Omid Tavakoli, Amir Heidarinasab, Geoffroy Lesage, Marc Heran and Farshid Pajoum Shariati
Water 2025, 17(10), 1432; https://doi.org/10.3390/w17101432 - 9 May 2025
Viewed by 627
Abstract
The effluent from the tannery industry contains high concentrations of organic pollutants, particularly chromium (Cr), which is a priority pollutant that harms human health, plants, animals, and affects compliance with environmental standards. This study significantly reduced tannery wastewater pollution and its toxic effects [...] Read more.
The effluent from the tannery industry contains high concentrations of organic pollutants, particularly chromium (Cr), which is a priority pollutant that harms human health, plants, animals, and affects compliance with environmental standards. This study significantly reduced tannery wastewater pollution and its toxic effects through the innovative use of an integrated treatment system with a coagulation/flocculation/settling process followed by a membrane bioreactor (MBR). Experiments were conducted to maximize the removal of pollutants by evaluating the effects of pH values, coagulant doses in the chemical treatment, and the biological treatment coupled with membrane separation within the MBR. The results indicated that optimizing the parameters achieved the highest reductions during the chemical treatment step: 97% for Cr, 63% for chemical oxygen demand (COD), and 90% for turbidity. The wastewater was then treated using the MBR system, which further improved removal efficiency to 99% for Cr, 96% for COD, and 99.8% for turbidity. These outcomes demonstrate the effectiveness of the hybrid treatment process in significantly lowering pollutant concentrations in tannery wastewater, ensuring compliance with Environmental Protection Agency (EPA) standards and the regulatory obligations under European Regulation (EU) 2020/741. This hybrid approach offers promising potential for broader industrial applications. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

Back to TopTop