Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment
Abstract
1. Introduction
2. Flocculant Classification and Conventional Preparation
2.1. Inorganic Coagulants
2.2. Organic Synthetic Flocculants
2.3. Bioflocculants
2.4. Limitations of Conventional Optimization
3. Machine Learning for Molecular Design, Process Simulation, and Performance Prediction of Flocculants
3.1. Data Processing
3.2. Modeling
- Support Vector Machine (SVM)
- Random Forest (RF)
- Artificial Neural Network (ANN)
- Support Vector Regression (SVR)
4. Machine Learning in Flocculant Synthesis
4.1. Structure-Oriented Design
4.2. Microstructure Image Data Representation
4.3. Reaction Condition Optimization
5. Machine Learning for Flocculant Application Optimization
5.1. Flocculant Selection
5.2. Flocculation Process Monitoring and Dosing Prediction
5.3. Flocculation Dynamics
6. Challenges and Prospects
6.1. Economic Cost of ML in Flocculant Research
6.2. Data Integration
6.3. Modeling Generalization
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Xu, H.; Zhang, Q.; Zhan, Z.; Liang, X.; Xing, J. Estimation methods of wetland carbon sink and factors influencing wetland carbon cycle: A review. Carbon Res. 2024, 3, 50. [Google Scholar] [CrossRef]
- Li, L.; Liang, T.; Zhao, M.; Lv, Y.; Song, Z.; Sheng, T.; Ma, F. A review on mycelial pellets as biological carriers: Wastewater treatment and recovery for resource and energy. Bioresour. Technol. 2022, 355, 127200. [Google Scholar] [CrossRef]
- Li, L.; Liu, S.; Ke, X.; Dong, Z.; Huang, L. Review on Anaerobic Ammonium Oxidation Process for Treating Coking Wastewater from Coal Chemical Industry. J. Min. Sci. Technol. 2025, 10, 351–362. [Google Scholar]
- Li, Y.; He, L.; Pan, Y.; Chen, K.; Zhuo, T.; Yu, K.; Zhang, J.; Zhou, S.; Lei, X.; Chai, B. Elevated hydrostatic pressure enhances the potential for microbially mediated carbon sequestration at the sediment–water interface in a deep-water reservoir by modulating functional genes and metabolic pathways. Carbon Res. 2024, 3, 19. [Google Scholar] [CrossRef]
- Lv, L.; Wang, X.; Zhang, D.; Liu, X.; Liang, J.; Liu, X.; Gao, W.; Sun, L.; Ren, Z.; Zhang, G. Strategies and applications of enhancing extracellular electron transfer in anaerobic digestion for wastewater resource recovery: A critical review. Environ. Funct. Mater. 2025, in press. [Google Scholar] [CrossRef]
- Gregory, J. Flocculation fundamentals. In Encyclopedia of Colloid and Interface Science; Springer: Berlin/Heidelberg, Germany, 2013; pp. 459–491. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, C.; Wang, X.; Fan, L.; Xie, Y.; Wang, D.; Yang, T.; Peng, J.; Zhang, X.; Zhuang, X. Unraveling the potential of microbial flocculants: Preparation, performance, and applications in wastewater treatment. Water 2024, 16, 1995. [Google Scholar] [CrossRef]
- Li, L.; Han, J.; Huang, L.; Liu, L.; Qiu, S.; Ding, J.; Liu, X.; Zhang, J. Activation of PMS by MIL-53 (Fe)@ AC composites contributes to tetracycline degradation: Properties and mechanisms. Surf. Interfaces 2024, 51, 104521. [Google Scholar] [CrossRef]
- Zhai, J.; Mao, H.; He, B.; Jia, T.; Zhou, S.; Chen, R.; Zhao, Y. A review of recent development in the enhancement mechanism of catalytic membranes for wastewater treatment. Environ. Funct. Mater. 2025, in press. [Google Scholar] [CrossRef]
- Zahoor, A.; Liu, X.; Liu, Y.; Liu, S.; Yi, W.; Sajnani, S.; Tai, L.; Tahir, N.; Abdoulaye, B.; Mahaveer; et al. Agricultural lignocellulose biochar material in wastewater treatment: A critical review and sustainability assessment. Environ. Funct. Mater. 2025, in press. [Google Scholar] [CrossRef]
- Li, S.; Xie, J.; Gu, J.; Zhou, M. Hybrid peroxi-coagulation/ozonation process for highly efficient removal of organic contaminants. Chin. Chem. Lett. 2023, 34, 108204. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, T.; Ma, S.; Shang, J.; Li, L.; Ning, Y.; Zhao, X. Enhancing microplastic removal and nitrogen mitigation in constructed wetlands: An earthworm-centric perspective. J. Hazard. Mater. 2025, 489, 137540. [Google Scholar] [CrossRef]
- Zhao, X.; Meng, X.; Li, Q.; Ho, S.-H. Nitrogen metabolic responses of non-rhizosphere and rhizosphere microbial communities in constructed wetlands under nanoplastics disturbance. J. Hazard. Mater. 2025, 484, 136777. [Google Scholar] [CrossRef]
- Pradhan, S.; Parthasarathy, P.; Mackey, H.R.; Al-Ansari, T.; McKay, G. Food waste biochar: A sustainable solution for agriculture application and soil–water remediation. Carbon Res. 2024, 3, 41. [Google Scholar] [CrossRef]
- Wang, G.; Wang, L.; Ma, F.; Yang, D.; You, Y. Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality. Environ. Pollut. 2021, 272, 115980. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Ju, C.; Wang, L.; Wang, X.; Ma, F.; Wang, G.; Wang, Y. The mechanism of arbuscular mycorrhizal enhancing cadmium uptake in Phragmites australis depends on the phosphorus concentration. J. Hazard. Mater. 2022, 440, 129800. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, D.; Chen, R.; Ma, F.; Wang, G. How a functional soil animal-earthworm affect arbuscular mycorrhizae-assisted phytoremediation in metals contaminated soil? J. Hazard. Mater. 2022, 435, 128991. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.; Bai, S. Enhancement of alfalfa growth resistance by arbuscular mycorrhiza and earthworm in molybdenum-contaminated soils: From the perspective of soil nutrient turnover. Environ. Res. 2025, 267, 120714. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, M.; Du, H.; Li, D.; Lv, D.; Hou, N. Influence of microbial agents-loaded biochar on bacterial community assembly and heavy metals morphology in sewage sludge compost: Insights from community stability and complexity. Bioresour. Technol. 2025, 419, 132070. [Google Scholar] [CrossRef]
- Zhang, S.; Yi, X.; He, D.; Tang, X.; Chen, Y.; Zheng, H. Recent progress and perspectives of typical renewable bio-based flocculants: Characteristics and application in wastewater treatment. Environ. Sci. Pollut. Res. 2024, 31, 46877–46897. [Google Scholar] [CrossRef]
- Bolto, B.; Gregory, J. Organic polyelectrolytes in water treatment. Water Res. 2007, 41, 2301–2324. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, S.; Swami, B.L.; Ikram, S. Adsorption of heavy metal ions: Role of chitosan and cellulose for water treatment. Langmuir 2015, 79, 109–155. [Google Scholar] [CrossRef]
- Ghiringhelli, L.M.; Vybiral, J.; Levchenko, S.V.; Draxl, C.; Scheffler, M. Big data of materials science: Critical role of the descriptor. Phys. Rev. Lett. 2015, 114, 105503. [Google Scholar] [CrossRef]
- Schleder, G.R.; Padilha, A.C.; Acosta, C.M.; Costa, M.; Fazzio, A. From DFT to machine learning: Recent approaches to materials science—A review. J. Phys. Mater. 2019, 2, 032001. [Google Scholar] [CrossRef]
- Tian, Y.; Li, X.; Ma, H.; Zhang, X.; Tan, K.C.; Jin, Y. Deep reinforcement learning based adaptive operator selection for evolutionary multi-objective optimization. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 7, 1051–1064. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, K.; Lü, Z.; Gu, Z.; Qian, H.; Zhang, Q. Machine vision detection of foreign objects in coal using deep learning. J. Min. Sci. Technol. 2021, 6, 115–123. [Google Scholar] [CrossRef]
- Wang, Z.; Song, Z.; Zhang, J.; Chi, M. The temporal-spatialotemporal differentiation characteristics and self-repairing law patterns of soil nutrients in a mining area in western China. J. Min. Sci. Technol. 2024, 9, 631–640. [Google Scholar]
- Talukder, M.J.; Alshami, A.S.; Tayyebi, A.; Ismail, N.; Yu, X. Membrane science meets machine learning: Future and potential use in assisting membrane material design and fabrication. Sep. Purif. Rev. 2024, 53, 216–229. [Google Scholar] [CrossRef]
- Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef]
- Sun, A.Y.; Scanlon, B.R. How can Big Data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environ. Res. Lett. 2019, 14, 073001. [Google Scholar] [CrossRef]
- Kim, J.; Hua, C.; Kim, K.; Lin, S.; Oh, G.; Park, M.-H.; Kang, S. Optimizing coagulant dosage using deep learning models with large-scale data. Chemosphere 2024, 350, 140989. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Balasubramanian, P.; Nguyen, X.C.; An, J.; Praneeth, S.; Zhang, P.; Huang, H. Enhanced machine learning prediction of biochar adsorption for dyes: Parameter optimization and experimental validation. Carbon Res. 2025, 4, 46. [Google Scholar] [CrossRef]
- Zhu, L.-T.; Chen, X.-Z.; Ouyang, B.; Yan, W.-C.; Lei, H.; Chen, Z.; Luo, Z.-H. Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors. Ind. Eng. Chem. Res. 2022, 61, 9901–9949. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, M.; Liang, X.; Huang, N.; Li, X. A novel vortex flocculation reactor for efficient water treatment: Kinetic modeling and experimental verification. Chem. Eng. Process.-Process Intensif. 2023, 183, 109245. [Google Scholar] [CrossRef]
- Lu, X.; Su, P. Design and application of metal-organic frameworks derivatives as 3-electron ORR electrocatalysts for •OH generation in wastewater treatment: A review. Chin. Chem. Lett. 2025, 110909, in press. [Google Scholar] [CrossRef]
- Kazemi-Khasragh, E.; Blázquez, J.P.F.; Gómez, D.G.; González, C.; Haranczyk, M. Facilitating polymer property prediction with machine learning and group interaction modelling methods. Int. J. Solids Struct. 2024, 286, 112547. [Google Scholar] [CrossRef]
- Salehizadeh, H.; Yan, N.; Farnood, R. Recent advances in polysaccharide bio-based flocculants. Biotechnol. Adv. 2018, 36, 92–119. [Google Scholar] [CrossRef]
- Rodrigues, A.C.; Boroski, M.; Shimada, N.S.; Garcia, J.C.; Nozaki, J.; Hioka, N. Treatment of paper pulp and paper mill wastewater by coagulation–flocculation followed by heterogeneous photocatalysis. J. Photochem. Photobiol. A Chem. 2008, 194, 1–10. [Google Scholar] [CrossRef]
- Renault, F.; Sancey, B.; Badot, P.-M.; Crini, G. Chitosan for coagulation/flocculation processes—An eco-friendly approach. Eur. Polym. J. 2009, 45, 1337–1348. [Google Scholar] [CrossRef]
- Renault, F.; Sancey, B.; Charles, J.; Morin-Crini, N.; Badot, P.-M.; Winterton, P.; Crini, G. Chitosan flocculation of cardboard-mill secondary biological wastewater. Chem. Eng. J. 2009, 155, 775–783. [Google Scholar] [CrossRef]
- Özacar, M.; Şengil, İ.A. Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles. Colloids Surf. A Physicochem. Eng. Asp. 2003, 229, 85–96. [Google Scholar] [CrossRef]
- Roussy, J.; Chastellan, P.; Van Vooren, M.; Guibal, E. Treatment of ink-containing wastewater by coagulation/flocculation using biopolymers. Water SA 2005, 31, 369–376. [Google Scholar] [CrossRef]
- Heredia, J.B.; Martín, J.S. Removing heavy metals from polluted surface water with a tannin-based flocculant agent. J. Hazard. Mater. 2009, 165, 1215–1218. [Google Scholar] [CrossRef]
- Beltrán-Heredia, J.; Sánchez-Martín, J. Municipal wastewater treatment by modified tannin flocculant agent. Desalination 2009, 249, 353–358. [Google Scholar] [CrossRef]
- Mishra, A.; Agarwal, M.; Bajpai, M.; Rajani, S.; Mishra, R. Plantago psyllium mucilage for sewage and tannery effluent treatment. Iran. Polym. J. 2002, 11, 381–386. [Google Scholar]
- Mishra, A.; Yadav, A.; Agarwal, M.; Bajpai, M. Fenugreek mucilage for solid removal from tannery effluent. React. Funct. Polym. 2004, 59, 99–104. [Google Scholar] [CrossRef]
- Mishra, A.; Bajpai, M. The flocculation performance of Tamarindus mucilage in relation to removal of vat and direct dyes. Bioresour. Technol. 2006, 97, 1055–1059. [Google Scholar] [CrossRef] [PubMed]
- Anastasakis, K.; Kalderis, D.; Diamadopoulos, E. Flocculation behavior of mallow and okra mucilage in treating wastewater. Desalination 2009, 249, 786–791. [Google Scholar] [CrossRef]
- Al-Hamadani, Y.A.; Yusoff, M.S.; Umar, M.; Bashir, M.J.; Adlan, M.N. Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. J. Hazard. Mater. 2011, 190, 582–587. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Y.; Gao, B.; Zhao, Y.; Yue, Q. Coagulation performance and floc characteristics of aluminum sulfate using sodium alginate as coagulant aid for synthetic dying wastewater treatment. Sep. Purif. Technol. 2012, 95, 180–187. [Google Scholar] [CrossRef]
- Khiari, R.; Dridi-Dhaouadi, S.; Aguir, C.; Mhenni, M.F. Experimental evaluation of eco-friendly flocculants prepared from date palm rachis. J. Environ. Sci. 2010, 22, 1539–1543. [Google Scholar] [CrossRef]
- Suopajärvi, T.; Liimatainen, H.; Hormi, O.; Niinimäki, J. Coagulation–flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chem. Eng. J. 2013, 231, 59–67. [Google Scholar] [CrossRef]
- Zhong, J.; Sun, X.; Wang, C. Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Sep. Purif. Technol. 2003, 32, 93–98. [Google Scholar] [CrossRef]
- Sarika, R.; Kalogerakis, N.; Mantzavinos, D. Treatment of olive mill effluents: Part II. Complete removal of solids by direct flocculation with poly-electrolytes. Environ. Int. 2005, 31, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Ebeling, J.M.; Rishel, K.L.; Sibrell, P.L. Screening and evaluation of polymers as flocculation aids for the treatment of aquacultural effluents. Aquac. Eng. 2005, 33, 235–249. [Google Scholar] [CrossRef]
- Ginos, A.; Manios, T.; Mantzavinos, D. Treatment of olive mill effluents by coagulation–flocculation–hydrogen peroxide oxidation and effect on phytotoxicity. J. Hazard. Mater. 2006, 133, 135–142. [Google Scholar] [CrossRef]
- Pang, J.; Luo, W.; Yao, Z.; Chen, J.; Dong, C.; Lin, K. Water quality prediction in urban waterways based on wavelet packet Denoising and LSTM. Water Resour. Manag. 2024, 38, 2399–2420. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Gao, D.; Gao, Z.; Jia, J.; Zhu, J.; Gao, J. Seismic attribute analysis with a combination of convolutional autoencoder and random forest in a turbidite reservoir. Geophysics 2024, 89, WA207–WA217. [Google Scholar] [CrossRef]
- Tang, Q.; Liang, J.; Zhu, F. A comparative review on multi-modal sensors fusion based on deep learning. Signal Process. 2023, 213, 109165. [Google Scholar] [CrossRef]
- Ma, S.; Ding, W.; Zheng, Y.; Zhou, L.; Yan, Z.; Xu, J. Edge-cloud collaboration-driven predictive planning based on LSTM-attention for wastewater treatment. Comput. Ind. Eng. 2024, 195, 110425. [Google Scholar] [CrossRef]
- Boumezbeur, H.; Laouacheria, F.; Heddam, S.; Djemili, L. Modelling coagulant dosage in drinking water treatment plant using advance machine learning model: Hybrid extreme learning machine optimized by Bat algorithm. Environ. Sci. Pollut. Res. 2023, 30, 72463–72483. [Google Scholar] [CrossRef]
- Coppola, S. Optimization of Water Treatment Processes Using Computational Fluid Dynamics. Ph.D. Thesis, University of Salerno, Fisciano, Italy, 2021. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, J.; Wang, C. Algorithm for Predicting Flocculation Rate of Particulate Minerals in Water under Different Influencing Factors. J. Coast. Res. 2019, 93, 61–69. [Google Scholar] [CrossRef]
- Guo, X.; Meng, M.; Ning, Y.; Chen, C.; Xiao, L. Data-Driven Model Predictive Control Strategy for Coagulant Dosing in Water Treatment Plants. In Proceedings of the 2024 Second International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE), Shenyang, China, 17–19 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Álvarez Díez, A.; Pena Rois, R.; Mocanu, I.; Orzan, C.; Brebenel, C.; Stere, J.; Muíños Landín, S.; Fernández Montenegro, J.M. Reinforcement learning-based DSS for coagulant and disinfectant dosage selection on drinking water treatment plants. Water Supply 2024, 24, 86–102. [Google Scholar] [CrossRef]
- Wang, A.-J.; Li, H.; He, Z.; Tao, Y.; Wang, H.; Yang, M.; Savic, D.; Daigger, G.T.; Ren, N. Digital twins for wastewater treatment: A technical review. Engineering 2024, 36, 21–35. [Google Scholar] [CrossRef]
- Tang, W.; Li, H.; Fei, L.; Wei, B.; Zhou, T.; Zhang, H. The removal of microplastics from water by coagulation: A comprehensive review. Sci. Total Environ. 2022, 851, 158224. [Google Scholar] [CrossRef]
- Tang, X.; Zheng, H.; Teng, H.; Sun, Y.; Guo, J.; Xie, W.; Yang, Q.; Chen, W. Chemical coagulation process for the removal of heavy metals from water: A review. Desalination Water Treat. 2016, 57, 1733–1748. [Google Scholar] [CrossRef]
- Exall, K.N. Examination of the Behaviour of Aluminum-Based Coagulants During Organic Matter Removal in Drinking Water Treatment; National Library of Canada = Bibliothèque Nationale du Canada: Ottawa, ON, Canada, 2002. [Google Scholar]
- Exley, C. The chemistry of human exposure to aluminum. In Neurotoxicity of Aluminum; Springer: Berlin/Heidelberg, Germany, 2023; pp. 33–37. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Liang, H.; Yan, Z.; Ma, Z.; Wang, Z.; Du, C. Preparation, oil removal and flocculation efficiency evaluation of a PAC-P (AM-BA) hybrid polymer flocculant based on response surface method. J. Environ. Chem. Eng. 2024, 12, 114503. [Google Scholar] [CrossRef]
- Fu, Q.; Liu, X.; Wu, Y.; Wang, D.; Xu, Q.; Yang, J. The fate and impact of coagulants/flocculants in sludge treatment systems. Environ. Sci. Water Res. Technol. 2021, 7, 1387–1401. [Google Scholar] [CrossRef]
- Wei, H.; Gao, B.; Ren, J.; Li, A.; Yang, H. Coagulation/flocculation in dewatering of sludge: A review. Water Res. 2018, 143, 608–631. [Google Scholar] [CrossRef]
- Yu, J.; Cheng, Y.; Cai, A.; Huang, X.; Zhang, Q. Synthetic Cu(III) from copper plating wastewater for onsite decomplexation of Cu(II)- and Ni(II)-organic complexes. Chin. Chem. Lett. 2025, 36, 110549. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of coagulation/flocculation in oily wastewater treatment: A review. Sci. Total Environ. 2021, 765, 142795. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Li, Y.; Tang, X.; Jiang, J.; He, Q.; Xiong, Z.; Zheng, H. Biopolymer-based flocculants: A review of recent technologies. Environ. Sci. Pollut. Res. 2021, 28, 46934–46963. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wei, H.; Li, A.; Yang, H. Evaluation of structural effects on the flocculation performance of a co-graft starch-based flocculant. Water Res. 2017, 118, 160–166. [Google Scholar] [CrossRef]
- Qiu, J.; Charleux, B.; Matyjaszewski, K. Controlled/living radical polymerization in aqueous media: Homogeneous and heterogeneous systems. Prog. Polym. Sci. 2001, 26, 2083–2134. [Google Scholar] [CrossRef]
- Save, M.; Guillaneuf, Y.; Gilbert, R.G. Controlled radical polymerization in aqueous dispersed media. Aust. J. Chem. 2006, 59, 693–711. [Google Scholar] [CrossRef]
- Lee, C.S.; Robinson, J.; Chong, M.F. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 2014, 92, 489–508. [Google Scholar] [CrossRef]
- Vajihinejad, V.; Gumfekar, S.P.; Bazoubandi, B.; Rostami Najafabadi, Z.; Soares, J.B. Water soluble polymer flocculants: Synthesis, characterization, and performance assessment. Macromol. Mater. Eng. 2019, 304, 1800526. [Google Scholar] [CrossRef]
- Wang, J.-P.; Yuan, S.-J.; Wang, Y.; Yu, H.-Q. Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties. Water Res. 2013, 47, 2643–2648. [Google Scholar] [CrossRef]
- Salehizadeh, H.; Yan, N. Recent advances in extracellular biopolymer flocculants. Biotechnol. Adv. 2014, 32, 1506–1522. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Bangar, S.P.; Ashogbon, A.O.; Singh, A.; Chaudhary, V.; Whiteside, W.S. Enzymatic modification of starch: A green approach for starch applications. Carbohydr. Polym. 2022, 287, 119265. [Google Scholar] [CrossRef]
- Marimuthu, S.; Rajendran, K. Artificial neural network modeling and statistical optimization of medium components to enhance production of exopolysaccharide by Bacillus sp. EPS003. Prep. Biochem. Biotechnol. 2023, 53, 136–147. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, S.; Yang, L.; Wang, Q.; Hou, N.; Zhang, J.; Tong, Y.; Li, X. Remediation strategies of biochar and microbial inoculum for PAHs-contaminated soil: Quorum sensing-mediated PAHs degradation and element cycling. J. Hazard. Mater. 2025, 490, 137854. [Google Scholar] [CrossRef] [PubMed]
- Agbovi, H.K. Biopolymer Flocculant Systems and Their Chemically Modified Forms for Aqueous Phosphate and Kaolinite Removal; University of Saskatchewan: Saskatoon, SK, Canada, 2020. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Li, C.; Zhang, X.; Zhang, H. Study on the characteristics and mechanism of the flocculation behaviour in a novel fluidized bed flocculator. Sep. Purif. Technol. 2023, 307, 122724. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A review of the application of machine learning in water quality evaluation. Eco-Environ. Health 2022, 1, 107–116. [Google Scholar] [CrossRef]
- Tung, T.M.; Yaseen, Z.M. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol. 2020, 585, 124670. [Google Scholar] [CrossRef]
- El Bouchefry, K.; de Souza, R.S. Learning in big data: Introduction to machine learning. In Knowledge Discovery in Big Data from Astronomy and Earth Observation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 225–249. [Google Scholar] [CrossRef]
- Han, D.; Liu, Q.; Fan, W. A new image classification method using CNN transfer learning and web data augmentation. Expert Syst. Appl. 2018, 95, 43–56. [Google Scholar] [CrossRef]
- Liu, J.; Long, Y.; Zhu, G.; Hursthouse, A.S. Application of Artificial Intelligence in the Management of Coagulation Treatment Engineering System. Processes 2024, 12, 1824. [Google Scholar] [CrossRef]
- Randive, P.; Bhagat, M.S.; Bhorkar, M.P.; Bhagat, R.M.; Vinchurkar, S.M.; Shelare, S.; Sharma, S.; Beemkumar, N.; Hemalatha, S.; Kumar, P.; et al. Adaptive optimization of natural coagulants using hybrid machine learning approach for sustainable water treatment. Sci. Rep. 2025, 15, 16096. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.G.; Krishnamoorthy Lakshmi, P.; Chellappan, S. Artificial neural network modelling approach for the prediction of turbidity removal efficiency of PACl and Moringa Oleifera in water treatment plants. Model. Earth Syst. Environ. 2023, 9, 2893–2903. [Google Scholar] [CrossRef]
- Abobakr Yahya, A.S.; Ahmed, A.N.; Binti Othman, F.; Ibrahim, R.K.; Afan, H.A.; El-Shafie, A.; Fai, C.M.; Hossain, M.S.; Ehteram, M.; Elshafie, A. Water Quality Prediction Model Based Support Vector Machine Model for Ungauged River Catchment under Dual Scenarios. Water 2019, 11, 1231. [Google Scholar] [CrossRef]
- Lu, Z.; Fan, Y.; Sun, Z.; He, X.; Yang, C.; Yin, H.; Zhang, J.; Song, G.; Zheng, Y.; Bai, Y. A fast composition-stability machine learning model for screening MAX phases and guiding discovery of Ti2SnN. J. Adv. Ceram. 2025, 14, 9221050. [Google Scholar] [CrossRef]
- Hipni, A.; El-shafie, A.; Najah, A.; Karim, O.A.; Hussain, A.; Mukhlisin, M. Daily forecasting of dam water levels: Comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS). Water Resour. Manag. 2013, 27, 3803–3823. [Google Scholar] [CrossRef]
- Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Prachayasittikul, V. Advances in computational methods to predict the biological activity of compounds. Expert Opin. Drug Discov. 2010, 5, 633–654. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. IJSR. 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Mahmoodzadeh, A.; Fakhri, D.; Mohammed, A.H.; Mohammed, A.S.; Ibrahim, H.H.; Rashidi, S. Estimating the effective fracture toughness of a variety of materials using several machine learning models. Eng. Fract. Mech. 2023, 286, 109321. [Google Scholar] [CrossRef]
- El Naqa, I.; Murphy, M.J. What is machine learning. In Machine Learning in Radiation Oncology: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–11. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Zhao, Y.; Han, Y.; Ren, L.; Sun, Y. A comparison of micro-flocculation and ozonation as pretreatments for ultrafiltration: Organic removal and membrane fouling. Environ. Sci. Pollut. Res. 2023, 30, 112267–112276. [Google Scholar] [CrossRef]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Yang, H.; Gao, C.; Jiang, D.; Zhong, D.; Ma, Y.; Li, Y.; Xing, L.; Zhao, H.; Yang, L.; Li, Z.; et al. Machine learning assisted prediction for the coefficient of thermal expansion of binary crystals. J. Adv. Ceram. 2025, 14. [Google Scholar] [CrossRef]
- Wu, J. Introduction to Convolutional Neural Networks; National Key Lab for Novel Software Technology, Nanjing University: Nanjing, China, 2017; Volume 5, p. 495. [Google Scholar]
- Pan, F.; Zhu, S.; Shang, L.; Wang, P.; Liu, L.; Liu, J. Assessment of drinking water quality and health risk using water quality index and multiple computational models: A case study of Yangtze River in suburban areas of Wuhan, central China, from 2016 to 2021. Environ. Sci. Pollut. Res. 2024, 31, 22736–22758. [Google Scholar] [CrossRef]
- Bankole, A.O.; Moruzzi, R.; Negri, R.G.; Bressane, A.; Reis, A.G.; Sharifi, S.; James, A.O.; Bankole, A.R. Machine learning framework for modeling flocculation kinetics using non-intrusive dynamic image analysis. Sci. Total Environ. 2024, 908, 168452. [Google Scholar] [CrossRef] [PubMed]
- Ban, Y.; Liu, L.; Du, J.; Ma, C. Investigation of the treatment efficiency and mechanism of microporous flocculation magnetic fluidized bed (MFMFB) reactor for Pb (II)-containing wastewater. Sep. Purif. Technol. 2024, 334, 125963. [Google Scholar] [CrossRef]
- Wei, J.; Chu, X.; Sun, X.Y.; Xu, K.; Deng, H.X.; Chen, J.; Wei, Z.; Lei, M. Machine learning in materials science. InfoMat 2019, 1, 338–358. [Google Scholar] [CrossRef]
- Jha, D.; Ward, L.; Paul, A.; Liao, W.-K.; Choudhary, A.; Wolverton, C.; Agrawal, A. Elemnet: Deep learning the chemistry of materials from only elemental composition. Sci. Rep. 2018, 8, 17593. [Google Scholar] [CrossRef]
- Oliynyk, A.O.; Antono, E.; Sparks, T.D.; Ghadbeigi, L.; Gaultois, M.W.; Meredig, B.; Mar, A. High-throughput machine-learning-driven synthesis of full-Heusler compounds. Chem. Mater. 2016, 28, 7324–7331. [Google Scholar] [CrossRef]
- Lu, S.; Zhou, Q.; Ouyang, Y.; Guo, Y.; Li, Q.; Wang, J. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat. Commun. 2018, 9, 3405. [Google Scholar] [CrossRef]
- Legrain, F.; Carrete, J.; Van Roekeghem, A.; Madsen, G.K.; Mingo, N. Materials screening for the discovery of new half-Heuslers: Machine learning versus ab initio methods. J. Phys. Chem. B 2018, 122, 625–632. [Google Scholar] [CrossRef]
- Antoniuk, E.R.; Li, P.; Kailkhura, B.; Hiszpanski, A.M. Representing polymers as periodic graphs with learned descriptors for accurate polymer property predictions. J. Chem. Inf. Model. 2022, 62, 5435–5445. [Google Scholar] [CrossRef]
- Nguyen, T.; Bavarian, M. Machine Learning Approach to Polymerization Reaction Engineering: Determining Monomers Reactivity Ratios. arXiv 2023, arXiv:2301.01231. [Google Scholar] [CrossRef]
- Dalal, R.J.; Oviedo, F.; Leyden, M.C.; Reineke, T.M. Polymer design via SHAP and Bayesian machine learning optimizes pDNA and CRISPR ribonucleoprotein delivery. Chem. Sci. 2024, 15, 7219–7228. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Wang, Z.; Dou, C.; Zhao, W. Constructing a visual detection model for floc settling velocity using machine learning. J. Environ. Manag. 2024, 370, 122805. [Google Scholar] [CrossRef]
- Li, L.; Chai, W.; Kang, J.; Liu, J.; Xing, J.; Li, G.; Zhan, Z. Utilization of graphite tailings and coal gangue in the preparation of foamed ceramics. Int. J. Appl. Ceram. Technol. 2025, 22, e15012. [Google Scholar] [CrossRef]
- Wang, K.; Li, K.; Du, F.; Zhang, X.; Wang, Y.; Zhou, J. Prediction of coal-gas compound dynamic disaster based on convolutional neural network. J. Min. Sci. Technol. 2023, 8, 613–622. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, Y.; Jiang, Q.; Jin, N.; Lin, Z.; Ye, J. Improvement of mechanical properties and investigation of strengthening mechanisms on the Ti3AlC2 ceramic with nanosized WC addition. J. Adv. Ceram. 2024, 13, 861–876. [Google Scholar] [CrossRef]
- Baum, A.; Moiseyenko, R.; Glanville, S.; Martini Jørgensen, T. Image-based characterization of flocculation processes through PLS inspired representation learning in convolutional neural networks. J. Chemom. 2024, 38, e3534. [Google Scholar] [CrossRef]
- Yamamura, H.; Putri, E.U.; Kawakami, T.; Suzuki, A.; Ariesyady, H.D.; Ishii, T. Dosage optimization of polyaluminum chloride by the application of convolutional neural network to the floc images captured in jar tests. Sep. Purif. Technol. 2020, 237, 116467. [Google Scholar] [CrossRef]
- Al-Ani, S.; Guo, H.; Fyfe, S.; Long, Z.; Donnaz, S.; Kim, Y. Deep learning-based image analysis for filamentous and floc-forming bacteria in wastewater treatment. J. Water Process Eng. 2024, 65, 105772. [Google Scholar] [CrossRef]
- Zhao, B.; Cheng, J.; Gao, J.; Haddleton, D.M.; Wilson, P. Active Learning as a Tool for Optimizing “Plug-n-Play” Electrochemical Atom Transfer Radical Polymerization. Macromol. Chem. Phys. 2023, 224, 2300039. [Google Scholar] [CrossRef]
- Whitman, S.E.; Latypov, M.I. Machine learning of microstructure--property relationships in materials with robust features from foundational vision transformers. arXiv 2025, arXiv:2501.18637. [Google Scholar] [CrossRef]
- Lu, C.; Xu, Z.; Dong, B.; Zhang, Y.; Wang, M.; Zeng, Y.; Zhang, C. Machine learning for the prediction of heavy metal removal by chitosan-based flocculants. Carbohydr. Polym. 2022, 285, 119240. [Google Scholar] [CrossRef]
- Shi, Z.; Chow, C.W.; Fabris, R.; Liu, J.; Sawade, E.; Jin, B. Determination of coagulant dosages for process control using online UV-Vis spectra of raw water. J. Water Process Eng. 2022, 45, 102526. [Google Scholar] [CrossRef]
- Lin, P.; Sun, C.; Ren, K.; Liu, Y.; Li, Y. Research on intelligent fault identification method of coalfield based on the PSO-XGBoost algorithm. J. Min. Sci. Technol. 2025, 10, 57–69. [Google Scholar] [CrossRef]
- Sharafi, M.; Rezaverdinejad, V.; Behmanesh, J.; Samadianfard, S. Development of long short-term memory along with differential optimization and neural networks for coagulant dosage prediction in water treatment plant. J. Water Process Eng. 2024, 65, 105784. [Google Scholar] [CrossRef]
- Yokoyama, H.; Yamashita, T.; Kojima, Y.; Nakamura, K. Deep learning-based flocculation sensor for automatic control of flocculant dose in sludge dewatering processes during wastewater treatment. Water Res. 2024, 260, 121890. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Lin, J.; Fang, H.; Yuan, F.; Li, X.; Yuan, C.; Hursthouse, A.S. A flocculation tensor to monitor water quality using a deep learning model. Environ. Chem. Lett. 2022, 20, 3405–3414. [Google Scholar] [CrossRef]
- Helm, W.; Zhong, S.; Reid, E.; Igou, T.; Chen, Y. Development of gradient boosting-assisted machine learning data-driven model for free chlorine residual prediction. Front. Environ. Sci. Eng. 2024, 18, 17. [Google Scholar] [CrossRef]
- Hernández-Chover, V.; Bellver-Domingo, Á.; Castellet-Viciano, L.; Hernández-Sancho, F. Economies of Scale and Efficiency in the Wastewater Treatment Sector: A Decision Tree Approach. Appl. Sci. 2025, 15, 3423. [Google Scholar] [CrossRef]
- Martin, N.; White, J. Water Resources’ AI–ML Data Uncertainty Risk and Mitigation Using Data Assimilation. Water 2024, 16, 2758. [Google Scholar] [CrossRef]
- Peerzade, S.; Kamat, P. Enhancing water quality prediction: A machine learning approach across diverse water environments. Water Qual. Res. J. 2025, 60, 298–317. [Google Scholar] [CrossRef]
- Zhang, T.; Shi, Y.; Liu, Y.; Yang, J.; Guo, M.; Bai, S.; Hou, N.; Zhao, X. A study on microbial mechanism in response to different nano-plastics concentrations in constructed wetland and its carbon footprints analysis. Chem. Eng. J. 2024, 480, 148023. [Google Scholar] [CrossRef]
- Barbiero, P.; Squillero, G.; Tonda, A. Modeling Generalization in Machine Learning: A Methodological and Computational Study. arXiv 2020, arXiv:2006.15680. [Google Scholar] [CrossRef]
Flocculant(s) | Types of Wastewater | Optimum Results | References |
---|---|---|---|
Chitosan | Pulp and paper mill wastewater | Turbidity: 10–1.1 NTU | [38,39,40] |
Cardboard industry wastewater | COD: 1303–516 mg/L; 80% removal | ||
Dye-containing solutions | Turbidity: 85% removal; dye: 99% removal | ||
Anionic tannin | Drinking water | Turbidity: 300–2 FTU | [41,42] |
Ink-containing effluent from cardboard box-making factory | Color > 99% removal | ||
Modified tannin (cationic Tanfloc) | Polluted surface water | COD: 84% removal; Cu2+, Zn2+, and Ni2+ 90%, 75%, and 70% | [43,44] |
Municipal wastewater | Turbidity: almost 100% removal | ||
Anionic Psyllium mucilage (Plantago psyllium) | Sewage effluent | COD around 50%; BOD5 around 50%; TSS: 95% removal | [45] |
Neutral Fenugreek mucilage (Trigonella foenum-graecum) | Tannery effluent | TSS: 87% removal | [46] |
Tamarind mucilage (Tamarindus indica) | Golden yellow dye and direct fast scarlet dye | TDS: 40% removal; dye: 60% and 25% removal | [47] |
Mallow mucilage (Malva sylvestris) | Biologically treated effluent | Turbidity: 67% removal | [48] |
Anionic Isabgol mucilage (Plantago ovata) | Semi-aerobic landfill leachate | COD: 64% removal | [49] |
Anionic sodium alginate | Synthetic and actual textile wastewater | Color: 90–93.4% removal; TSS: 96% | [50] |
Anionic sodium carboxymethylcellulose (CMCNa) | Drinking water | COD: 80.1%; turbidity: 93% | [51] |
Anionic dicarboxylic acid nanocellulose (DCC) | Municipal wastewater | Turbidity: 40–80%; COD: 40–60% | [52] |
Derivative of polyacrylamide | Oily wastewater from refinery plant | Oil: 6 g/L to 220 mg/L; COD: 3 g/L to 668 mg/L | [53] |
Four cationic (FO-4700-SH, FO-4490-SH, FO-4350-SHU, and FO-4190-SH) and two anionic (FLOCAN 23 and AN 934-SH) polyelectrolytes | Olive mill effluent | TSS: nearly 100% removal; COD: 55% removal; BOD5: 23% removal | [54] |
Cationic polyamine (Magnofloc LT 7991), cationic organic polyelectrolytes (Magnofloc LT 7992 and 7995), cationic polyacrylamide (Hyperfloc CE 854 and CE 1950), and copolymer of quaternary acrylate salt and acrylamide (Magnofloc 22S) | Aquaculture wastewater | TSS: 99% removal; RP: 92–95% removal | [55] |
Cationic (FO-4700-SH and FO-4490-SH) polyelectrolytes | Olive mill effluent | TSS: 97–99% removal; TP: 50–56% removal; COD: 17–35% removal | [56] |
ML Application | ML-Algorithms/Models | Results | References |
---|---|---|---|
Sensor data preprocessing and feature extraction | 1. Wavelet denoising and adaptive baseline correction. 2. Convolutional autoencoders on turbidity time series. 3. Multimodal neural network fusing optical and zeta potential sensors. | 1. Improved turbidity prediction by 1.7×. 2. Latent features correlated with suspended solids (R2 = 0.92). 3. Predicted optimal dosing points with 95% accuracy, which is 20% better than single-sensor models. | [57,58,59] |
Dosage prediction from real-time water quality | 1. De-model with turbidity, pH, and temperature inputs. 2. LSTM for turbidity and organic matter forecasting. 3. Hybrid model (first principles + ML kernel ridge regression). | 1. MAE of 0.12 mg/L, reduced chemical usage by 8% over 6 months. 2. Reduced turbidity spikes by 65% in pilot trials. 3. Dose predictions within 5% of optimal across varying chemistries. | [60,61] |
Modeling floc structure and sedimentation | 1. Random forest surrogate for CFD simulation outputs. 2. SVM trained on laser diffraction measurements 3. CNN on microscope images. | 1. Enabled fast what-if analyses for settling dynamics. 2. R2 = 0.88 for floc size prediction. 3. 97% morphology classification accuracy, used for membrane bioreactor tuning. | [62,63] |
Integration of ML into control frameworks | 1. XGBoost + MPC framework. 2. Reinforcement learning in a drinking water plant. 3. Digital twin combining ML surrogates and real-time data. | 1. 12% lower polymer usage than rule-based systems. 2. 14% reduction in chemical costs, improved effluent quality. 3. 30% reduction in dosing errors through virtual testing. | [64,65,66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, C.; Shen, L.; Liang, Q.; Li, L. Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment. Separations 2025, 12, 203. https://doi.org/10.3390/separations12080203
Ding C, Shen L, Liang Q, Li L. Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment. Separations. 2025; 12(8):203. https://doi.org/10.3390/separations12080203
Chicago/Turabian StyleDing, Caichang, Ling Shen, Qiyang Liang, and Lixin Li. 2025. "Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment" Separations 12, no. 8: 203. https://doi.org/10.3390/separations12080203
APA StyleDing, C., Shen, L., Liang, Q., & Li, L. (2025). Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment. Separations, 12(8), 203. https://doi.org/10.3390/separations12080203