Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,075)

Search Parameters:
Keywords = chemical and physical modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 4951 KB  
Review
A Comprehensive Review on the Mechanics of Cyclodextrin-Based Slide-Ring Polymers
by D. M. Li, Longyu Wei, Luxi Chen, Bingchang Zhao and Heyang Wei
Polymers 2026, 18(1), 37; https://doi.org/10.3390/polym18010037 - 23 Dec 2025
Abstract
The widespread application of polymer soft materials in cutting-edge fields such as flexible electronics and biomedicine has placed higher demands on their mechanical properties. Traditional chemically cross-linked or physically cross-linked polymers each have inherent limitations. In contrast, slide-ring polymers (SRPs), also known as [...] Read more.
The widespread application of polymer soft materials in cutting-edge fields such as flexible electronics and biomedicine has placed higher demands on their mechanical properties. Traditional chemically cross-linked or physically cross-linked polymers each have inherent limitations. In contrast, slide-ring polymers (SRPs), also known as sliding cross-linked polymers or topologically cross-linked polymers, effectively distribute chain tension through their slip-cross-link characteristics, thereby exhibiting remarkable toughness, elongation at break, and low hysteresis. Among them, cyclodextrin (CD) has emerged as an ideal building block, such as the CD-based rotaxane/polyrotaxane/pseudortaxane/polypseudortaxane, for constructing SRPs due to its unique cavity structure and ease of modification, enabling diverse regulation of material structure and function through molecular design. Currently, the preparation strategies for cross-linking are relatively well established. However, existing research on the physical and mechanical behavior of SRPs—particularly their responses and damage mechanisms under complex loading conditions—remains unsystematic. Furthermore, establishing a cross-scale correlation mechanism from molecular design to macroscopic performance remains a key challenge. This review systematically summarizes recent advances in the mechanics of cyclodextrin-based sliding cross-linked polymers (CD-based SRPs) focusing on the molecular design and network structures, physical and mechanical behaviors and properties, deformation mechanism and theoretical models, and simulation and prediction, to provide clear guidance for future development of these materials. Full article
(This article belongs to the Special Issue Mechanics of Polymer-Based Soft Materials)
Show Figures

Figure 1

30 pages, 1959 KB  
Review
Insights into the Mechanisms and Functional Effects of Insoluble Dietary Fiber Modification: A Review
by Jiayi Li, Wenjing Lang, Shuo Han, Xinyi Wu, Fuwei Hao, Yurong Zhou, Renpeng Du and Chen Song
Foods 2026, 15(1), 38; https://doi.org/10.3390/foods15010038 - 23 Dec 2025
Viewed by 51
Abstract
Dietary fiber is an essential component of the human diet, and insoluble dietary fiber (IDF) accounts for a significant proportion. However, its poor solubility and rigid structure limit its high-value applications. In recent years, modification technologies have become key strategies for enhancing the [...] Read more.
Dietary fiber is an essential component of the human diet, and insoluble dietary fiber (IDF) accounts for a significant proportion. However, its poor solubility and rigid structure limit its high-value applications. In recent years, modification technologies have become key strategies for enhancing the functional properties of IDF and expanding its applications. This review systematically summarizes the latest advances in the field of IDF modification, emphasizing how different modification strategies precisely regulate the multilevel structure of IDF to selectively improve its physicochemical properties and physiological functions. The principles and mechanisms of physical, chemical, biological, and combined modification methods are explained, and the unique advantages and limitations of each method in terms of structural changes, functional enhancement, and application scenarios are compared. Using high-pressure hydrostatic pressure-assisted cellulase treatment on potato dietary fiber can effectively disrupt fiber rigidity, increase soluble dietary fiber (SDF), and markedly enhance cholesterol and glucose adsorption capacities, outperforming single-treatment approaches. Microwave-assisted enzymatic treatment of millet bran IDF raises its intestinal fermentation rate from 36% to 59% and doubles butyrate production, significantly boosting prebiotic activity and offering a new pathway for targeted modulation of gut microbiota; combined modification strategies further demonstrate synergistic benefits. Modified IDF can serve not only as a low-calorie fat replacer in foods but also, through specific structural alterations, be incorporated into plant-based meat products to improve their fiber attributes and nutritional density. Moreover, this review explores the emerging potential of modified IDF in pharmaceutical carriers and gut microecology regulation. The aim is to provide theoretical guidance for selecting and optimizing IDF modification strategies, thereby promoting the high-value utilization of agricultural processing by-products and the development of high-quality dietary fiber products. Full article
Show Figures

Graphical abstract

37 pages, 2504 KB  
Review
Molecular Biochemistry and Physiology of Postharvest Chilling Injury in Fruits: Mechanisms and Mitigation
by Hansika Sati, Priyanka Kataria, Sunil Pareek and Daniel Alexandre Neuwald
Agronomy 2025, 15(12), 2914; https://doi.org/10.3390/agronomy15122914 - 18 Dec 2025
Viewed by 246
Abstract
Postharvest chilling injury (PCI) is a significant limitation in the storage of temperature-sensitive fruits, leading to quality deterioration and reduced marketability. However, low temperatures delay senescence—consistent with the Q10 principle, where metabolic reaction rates change 2–3-fold per 10 °C—and chilling-sensitive fruits experience membrane [...] Read more.
Postharvest chilling injury (PCI) is a significant limitation in the storage of temperature-sensitive fruits, leading to quality deterioration and reduced marketability. However, low temperatures delay senescence—consistent with the Q10 principle, where metabolic reaction rates change 2–3-fold per 10 °C—and chilling-sensitive fruits experience membrane destabilization, oxidative imbalances, and structural degradation under cold stress. Physiological assessments consistently report elevated electrolyte leakage, increased malondialdehyde accumulation, and reduced membrane fluidity, coupled with disruptions in respiration and cellular energy metabolism. Biochemically, PCI is characterized by enhanced ROS production and a 20–50% decline in key antioxidant enzymes, along with disturbances in calcium signaling and hormone regulation. At the molecular level, chilling-responsive transcription factors such as CBF, CAM, HSF, and WRKY show strong induction, while lipid remodeling and epigenetic modifications further shape cold adaptation responses. Advances in multi-omics, including transcriptomics, proteomics, metabolomics, lipidomics, and volatilomics, have revealed chilling-associated metabolic shifts and regulatory cascades, enabling the identification of potential biomarkers of tolerance. Emerging mitigation strategies, including physical and chemical treatments, as well as CRISPR-based interventions, have shown a 30–60% reduction in PCI in controlled studies. This review synthesizes recent progress in physiology, molecular biochemistry, and postharvest technology to support future research and practical PCI management. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

29 pages, 6187 KB  
Review
Sustainable Utilization of Coal Gangue in Asphalt Pavement: A Review on Design, Mechanism, and Performance
by Yanshun Jia, Mingyang Lan, Si Peng, Wang Zhang, Chundi Si, Jie Yu, Jiupeng Zhang, Yi Zhang and Zeqi Chen
Materials 2025, 18(24), 5666; https://doi.org/10.3390/ma18245666 - 17 Dec 2025
Viewed by 158
Abstract
Coal gangue, a solid waste from coal mining, has long been underutilized while posing environmental and safety risks. This study reviews the current research progress and future prospects of coal gangue as a resource in asphalt pavement. The physical and chemical properties of [...] Read more.
Coal gangue, a solid waste from coal mining, has long been underutilized while posing environmental and safety risks. This study reviews the current research progress and future prospects of coal gangue as a resource in asphalt pavement. The physical and chemical properties of coal gangue were summarized, and the environmental issues caused by its accumulation were highlighted. The effects of using coal gangue as aggregates or fillers in asphalt mixture were reviewed, along with its activation methods. The research progress on using coal gangue as an aggregate or a cementitious material in mixtures stabilized with inorganic binders was also examined, emphasizing the effects of binder content and coal gangue properties on mechanical and durability performance. The findings indicate that despite its inferior physical properties, coal gangue demonstrates practical feasibility as a pavement material when appropriately incorporated and activated. Proper content enabled coal gangue to meet asphalt mixture or base material requirements, while excessive content reduced low-temperature resistance and caused structural defects. Activated or modified methods can effectively enhance interfacial interaction, high-temperature stability, or structural densification of coal gangue. Recent studies have expressed enthusiasm for innovative activation or modification methods and AI-based performance optimization, while key challenges remain regarding high activation-energy demand, limited aggregate-related research, and an incomplete understanding of interfacial mechanisms. Full article
Show Figures

Figure 1

30 pages, 8187 KB  
Review
The Production of Biochar and Its Impact on the Removal of Various Emerging Pollutants from Wastewater: A Review
by Zafran Ullah, Collin G. Joseph, Zhen-Yu Tian, Muhammad Yasin, Muhammad Naeem Khan, Sajid Ali, Aqsa Khan, Jonathan Suazo-Hernández, Patricia Poblete-Grant and Muhammad Ikram Nabeel
Toxics 2025, 13(12), 1079; https://doi.org/10.3390/toxics13121079 - 15 Dec 2025
Viewed by 371
Abstract
Recent advances in agricultural biotechnology and sustainable farming have drawn attention to biochar as a multifunctional material for environmental remediation. Among its emerging applications, biochar has demonstrated remarkable potential in wastewater treatment, particularly as an efficient and sustainable adsorbent for pollutant removal. Numerous [...] Read more.
Recent advances in agricultural biotechnology and sustainable farming have drawn attention to biochar as a multifunctional material for environmental remediation. Among its emerging applications, biochar has demonstrated remarkable potential in wastewater treatment, particularly as an efficient and sustainable adsorbent for pollutant removal. Numerous studies over the past decades have highlighted its effectiveness in eliminating a wide range of contaminants. This efficiency is mainly due to its abundant feedstock availability, simple production processes, and favorable surface and structural properties. This review summarizes current developments in biochar use for wastewater treatment, emphasizing its adsorption capabilities and the underlying mechanisms responsible for pollutant removal. Key modification strategies, physical, chemical, and biological, are discussed in detail to illustrate how biochar performance can be optimized for specific treatment goals. Furthermore, the prospects of biochar-based technologies are explored, with a focus on their role in addressing both inorganic and organic pollutants. This review also describes the use of biochar in adsorbing metals, organic contaminants, and industrial waste. The integration of biochar into sustainable water management systems presents a promising pathway toward achieving long-term environmental and agricultural resilience. Full article
Show Figures

Graphical abstract

19 pages, 2244 KB  
Article
Enhancement of Rheological Performance and Smoke Suppression in Sepiolite-Modified Asphalt
by Yongle Xu, Hongling Fan, Jing Yang and Peng Yin
Materials 2025, 18(24), 5627; https://doi.org/10.3390/ma18245627 - 15 Dec 2025
Viewed by 183
Abstract
To address the technical bottleneck of the coordinated improvement of high-temperature rutting resistance, low-temperature cracking resistance and environmental protection performance of road asphalt, and to address the existing problems in the research of sepiolite modified asphalt, such as the ambiguous microscopic mechanism of [...] Read more.
To address the technical bottleneck of the coordinated improvement of high-temperature rutting resistance, low-temperature cracking resistance and environmental protection performance of road asphalt, and to address the existing problems in the research of sepiolite modified asphalt, such as the ambiguous microscopic mechanism of action, the lack of quantitative relationship between dosage and performance, and the unclear adaptability of modification processes, this study employed high-purity sepiolite as a modifier. After optimizing its microstructure through organic and surface modification, the sepiolite with the best compatibility with asphalt was selected. Four dosage gradients of 2%, 4%, 6%, and 8% were designed. Rheological tests were conducted to investigate the effects of sepiolite on the rutting resistance at high temperature, the cracking resistance at low temperature, and the fatigue durability of asphalt. Gas chromatography–mass spectrometry (GC–MS) was used to analyze changes in the organic components of asphalt fumes, while Fourier-transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) were applied to reveal the microscopic interaction mechanisms and smoke-suppression principles. Results show that pristine sepiolite exhibits the best compatibility with asphalt. Although modified sepiolite shows a 43–45% increase in specific surface area, the overall high–low temperature coordination of the modified asphalt decreases by 10–15%. The sepiolite dosage has a significant influence on asphalt performance: when the dosage is 4–6%, the rutting factor of asphalt increases by 25–30%, indicating the best high-temperature deformation resistance; at 4%, the asphalt creep stiffness decreases by over 15%, minimizing the low-temperature cracking risk; and at 2–4%, the fatigue life extends by 9–13%, with the most notable improvement at 2%. In terms of smoke suppression, the porous structure of sepiolite adsorbs 3–5% of the light volatile components in asphalt, while its metal oxides inhibit the release of aliphatic and aromatic hydrocarbons, reducing toxic fume emissions by 12–18%. Microscopically, the interaction between sepiolite and asphalt is dominated by physical adsorption without chemical functional group recombination. The fibrous network of sepiolite enhances the structural stability of asphalt, while the adsorption of small and medium molecular components optimizes the molecular weight distribution, achieving a dual effect of performance enhancement and smoke suppression. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

42 pages, 8149 KB  
Review
Bio-Based Coatings: Progress, Challenges and Future Perspectives
by Lijian Xia, Taijiang Gui, Junjun Wang, Haoyuan Tian, Yue Wang, Liang Ning and Lianfeng Wu
Polymers 2025, 17(24), 3266; https://doi.org/10.3390/polym17243266 - 9 Dec 2025
Cited by 1 | Viewed by 960
Abstract
In response to environmental concerns and the depletion of fossil resources, transitioning coatings toward sustainability is imperative. Bio-based coatings, derived from renewable biomass, represent a highly promising development pathway. This review comprehensively summarizes recent advances, prevailing challenges, and future prospects of bio-based coatings, [...] Read more.
In response to environmental concerns and the depletion of fossil resources, transitioning coatings toward sustainability is imperative. Bio-based coatings, derived from renewable biomass, represent a highly promising development pathway. This review comprehensively summarizes recent advances, prevailing challenges, and future prospects of bio-based coatings, with a focus on bio-based polymer resins—serving as the primary film-forming materials—and key auxiliary components such as pigments and fillers, additives, and solvents. This review systematically elaborates on the definition of bio-based coatings, their raw material sources, and international standards for bio-based carbon content determination. The core strategies for converting biomass into coating components are critically analyzed, namely direct utilization, physical blending, chemical modification, and biosynthesis. Furthermore, the synthesis, properties, and applications of key bio-based polymer systems—including epoxy, polyurethane, alkyd, and acrylic resins—are critically discussed, with particular emphasis on how molecular engineering enhances their performance and functionality. Despite significant progress, bio-based coatings still face several challenges, such as balancing performance and cost, ensuring the stability of raw material supply chains, and establishing globally unified standards. This review concludes that the integration of chemical modification and biosynthesis technologies, coupled with the establishment of a unified bio-based content standard system, constitutes two core drivers for advancing bio-based coatings from “green alternatives” toward “high-performance dominance” in the future. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Coatings)
Show Figures

Figure 1

21 pages, 6758 KB  
Review
Advancements in Basalt Fiber-Reinforced Composites: A Critical Review
by Jiadong Li, Lin Lan, Yanliang Zhang, Baofeng Pan, Wei Shi, Zhanyu Gu, Yulong Zhang, Yongbo Yan, Jia Wang, Jianwei Zhou, Rongxiang Wang and Can Wang
Coatings 2025, 15(12), 1441; https://doi.org/10.3390/coatings15121441 - 8 Dec 2025
Viewed by 420
Abstract
Recent comprehensive research (2023–2024) on basalt fiber-reinforced composites (BFRCs) has meticulously documented significant progress across diverse applications, including protective coatings, high-performance concrete, reinforcement bars, and advanced laminates. The central theme of these developments revolves around innovative composite design strategies that strategically incorporate basalt [...] Read more.
Recent comprehensive research (2023–2024) on basalt fiber-reinforced composites (BFRCs) has meticulously documented significant progress across diverse applications, including protective coatings, high-performance concrete, reinforcement bars, and advanced laminates. The central theme of these developments revolves around innovative composite design strategies that strategically incorporate basalt fibers to markedly enhance mechanical properties, durability, and protective capabilities against environmental challenges. Key advancements in synthesis methodologies highlight that the integration of BFs substantially improves abrasion and corrosion resistance, effectively inhibits crack propagation through superior fiber-matrix bonding, and confers exceptional thermal stability, with composites maintaining structural integrity at temperatures of 600–700 °C and demonstrating short-term resistance exceeding 900 °C. The underlying mechanisms for this enhanced performance are attributed to both chemical modifications—such as the application of silane-based coupling agents which improve interfacial adhesion—and physical–mechanical interlocking between the fibers and the matrix. These interactions facilitate efficient stress transfer, leading to a breakthrough in the overall multifunctional performance of the composites. Despite these promising results, the field continues to grapple with challenges, particularly concerning the long-term durability under sustained loads and harsh environments, and a notable lack of standardized global testing protocols hinders direct comparison and widespread certification. This review distinguishes itself by offering a critical synthesis of the latest findings, underscoring the immense application potential of BFRCs in critical sectors such as civil engineering for seismic retrofitting and structural strengthening, the automotive industry for lightweight yet robust components, and advanced passive fireproofing systems. Furthermore, it emphasizes the growing, innovative role of simulation techniques like finite element analysis (FEA) in predicting and optimizing the performance and design of these composites, thereby providing a robust scientific foundation for developing the next generation of high-performance, sustainable structural components. Full article
Show Figures

Figure 1

33 pages, 4560 KB  
Review
Modified Tuber Starches as Sustainable Biopolymers for the Encapsulating Bioactive Compounds: A Comprehensive Review
by César Samaniego-Rafaele, Rebeca Salvador-Reyes, Grimaldo Quispe-Santivañez and Maritza Barriga-Sánchez
Polymers 2025, 17(24), 3257; https://doi.org/10.3390/polym17243257 - 7 Dec 2025
Viewed by 358
Abstract
Modified tuber starches have gained relevance as innovative and versatile materials for the encapsulation of bioactive compounds, distinguishing themselves from synthetic polymers due to their biocompatibility, biodegradability, and tunable functionality. This review analyzes the effects of physical, chemical, and biochemical modifications on the [...] Read more.
Modified tuber starches have gained relevance as innovative and versatile materials for the encapsulation of bioactive compounds, distinguishing themselves from synthetic polymers due to their biocompatibility, biodegradability, and tunable functionality. This review analyzes the effects of physical, chemical, and biochemical modifications on the composition and morphological, rheological, thermal, and techno-functional properties of tuber starches, as well as their development prospects as coating materials in encapsulation techniques such as spray drying, freeze-drying, electrospinning, and emulsification. The evidence reviewed indicates that modified tuber starches exhibit reduced retrogradation, higher thermal resistance, improved solubility, and better digestibility, facilitating their application as protective agents. The main challenges for their industrial implementation are identified and analyzed, including the standardization of processes, scalability, and the ambiguous regulatory framework. In the future, research in this area should be directed toward the optimization of “clean-label” methodologies and the valorization of non-conventional tuber sources, thereby consolidating the development of safer, more effective, and more sustainable encapsulation systems for the food industry. Full article
(This article belongs to the Special Issue Advanced Polymer Materials in Food Science)
Show Figures

Figure 1

34 pages, 2228 KB  
Systematic Review
Biochar for the Removal of Microplastics from Water: A Comprehensive Scoping Review
by Abas Mohsenzadeh, Maria Persson, Anita Pettersson and Flemming Jappe Frandsen
Microplastics 2025, 4(4), 99; https://doi.org/10.3390/microplastics4040099 - 3 Dec 2025
Viewed by 670
Abstract
Microplastics (MPs) and nanoplastics (NPs) are emerging aquatic contaminants that pose environmental and public health risks due to their persistence, ubiquity, and ability to adsorb co-contaminants. This scoping review synthesises findings from 57 experimental studies and five review studies published between 2019 and [...] Read more.
Microplastics (MPs) and nanoplastics (NPs) are emerging aquatic contaminants that pose environmental and public health risks due to their persistence, ubiquity, and ability to adsorb co-contaminants. This scoping review synthesises findings from 57 experimental studies and five review studies published between 2019 and 2025 on the use of biochar-based materials for the removal of microplastics from water and wastewater. Guided by the hypothesis that surface-modified biochars, such as magnetised, surfactant-coated, or chemically activated forms, achieve high removal efficiencies through multimodal mechanisms (e.g., electrostatic attraction, hydrophobic interactions, π–π stacking, and physical entrapment), this review applies PRISMA-based protocols to systematically evaluate biochar feedstocks, pyrolysis conditions, surface modifications, polymer types, removal mechanisms, and regeneration approaches. Scopus, Web of Science, and PubMed were searched until 30 May 2025 (English-only), and 62 studies were included. The review was not registered, and no protocol was prepared. The results confirm a high removal efficiency (>90%) in most experimental studies, particularly under controlled laboratory conditions and using pristine polystyrene. However, the performance declines significantly in complex matrices (e.g., wastewater and surface water) owing to dissolved organic matter, ionic competition, and particle heterogeneity, thus supporting the guiding hypothesis. This review also identifies critical methodological gaps, including narrow plastic typologies, a lack of standardised testing protocols, and limited field-scale validation. Addressing these gaps through environmentally realistic testing, regeneration optimisation, and harmonised methods is essential for transitioning biochar from a promising sorbent to a practical water treatment solution. Full article
Show Figures

Graphical abstract

19 pages, 1534 KB  
Review
An Analytical Review of Humidity-Regulating Materials: Performance Optimization and Applications in Hot and Humid Regions
by Dongliang Zhang, Tingyu Wang, Bo Zhou, Pengfei Zhang and Jiankun Yang
Buildings 2025, 15(23), 4376; https://doi.org/10.3390/buildings15234376 - 2 Dec 2025
Viewed by 433
Abstract
Humidity-regulating materials (HRMs) represent a promising class of passive, energy-efficient materials capable of autonomously modulating indoor environmental conditions, particularly in hot and humid regions where conventional HVAC systems account for up to 50% of building energy consumption. While prior reviews have focused on [...] Read more.
Humidity-regulating materials (HRMs) represent a promising class of passive, energy-efficient materials capable of autonomously modulating indoor environmental conditions, particularly in hot and humid regions where conventional HVAC systems account for up to 50% of building energy consumption. While prior reviews have focused on material classification and performance metrics, a systematic synthesis of performance optimization strategies and quantitative application outcomes remains lacking. This review addresses this gap by consolidating advances in HRM enhancement through material compounding, physical modification, and chemical functionalization, resulting in performance improvements such as a 70% increase in moisture absorption with 3% fiber addition, a 1.2-fold enhancement in adsorption capacity via pore optimization, and up to 50% energy savings in building applications. Furthermore, the integration of HRMs into radiant cooling systems elevates the dew point temperature difference by 181%, effectively mitigating condensation risks. Simulation tools—ranging from 1D to 3D multiphysics models—have advanced predictive accuracy for coupled heat and moisture transfer, supporting optimized material design and system integration. By systematically summarizing performance metrics, enhancement mechanisms, and real-world applications, this work provides a quantitative and structured reference for the development and deployment of next-generation HRMs in sustainable building systems. Full article
(This article belongs to the Special Issue Enhancing Building Resilience Under Climate Change)
Show Figures

Figure 1

46 pages, 6335 KB  
Review
Advances in Titanium-Based Biomaterial for Human Bone Scaffolds: Narrative Review on Design, Fabrication, Surface Engineering, Implantation, and Biological Evaluation
by Sichale W. Fita, Mirosław Bonek, Anna Woźniak and Sebastian Sławski
Materials 2025, 18(23), 5421; https://doi.org/10.3390/ma18235421 - 1 Dec 2025
Viewed by 599
Abstract
The growing demand for reliable orthopedic implants has driven extensive research into biomaterials and metal alloys for the development of bone scaffolds. This review summarizes current progress in improving scaffold performance by optimizing mechanical strength, biocompatibility, and bone integration. Key studies on material [...] Read more.
The growing demand for reliable orthopedic implants has driven extensive research into biomaterials and metal alloys for the development of bone scaffolds. This review summarizes current progress in improving scaffold performance by optimizing mechanical strength, biocompatibility, and bone integration. Key studies on material choice, modeling methods, manufacturing techniques, and surface treatments are discussed, with a special focus on titanium-based alloys due to their favorable mechanical and biological properties. Computational tools, particularly finite element modeling, are increasingly used alongside experimental findings to illustrate mechanical behavior and to guide design of structures that more closely resemble natural bone. Both additive and traditional manufacturing routes are considered, emphasizing how porosity, geometry, and fabrication parameters affect mechanical stability and tissue response. Surface modification approaches, both physical and chemical can enhance cell attachment and antimicrobial function. Overall, this paper shows how combining materials science, mechanical analysis, and biological testing helps develop bone scaffolds that offer durable mechanical support and clinical outcomes. Full article
(This article belongs to the Special Issue Materials for Dentistry: Experiments and Practice)
Show Figures

Graphical abstract

49 pages, 4988 KB  
Review
Advances in Drug Delivery Science for Diacerein: Strategies to Enhance Solubility, Bioavailability, and Pharmacokinetic Performance
by Maryam Naseri, Sajjad Ghobakhlou, Niloofar Heidarizade, Mohammad Emad Akbari, Alireza Lotfabadi, Soroor Sadegh Malvajerd, Zhila Izadi and Hassan Maleki
Pharmaceutics 2025, 17(12), 1539; https://doi.org/10.3390/pharmaceutics17121539 - 29 Nov 2025
Viewed by 500
Abstract
Diacerein is known as a disease-modifying anti-inflammatory drug, primarily used for the treatment of osteoarthritis. Despite its therapeutic potential, the clinical use of diacerein is hindered by poor aqueous solubility, low bioavailability, liver issues, and gastrointestinal side effects, particularly diarrhea. To address these [...] Read more.
Diacerein is known as a disease-modifying anti-inflammatory drug, primarily used for the treatment of osteoarthritis. Despite its therapeutic potential, the clinical use of diacerein is hindered by poor aqueous solubility, low bioavailability, liver issues, and gastrointestinal side effects, particularly diarrhea. To address these limitations, various innovative pharmaceutical formulation approaches have been explored, including physical modifications, chemical complexation, nanotechnology-based drug delivery systems, and synergistic combination therapies. This review highlights progress in formulation approaches aimed at enhancing the solubility and therapeutic profile of diacerein. Special emphasis is placed on lipid-based carriers, vesicular systems, pH-responsive hydrogels, and dissolving microneedles. Together, these strategies provide a comprehensive platform for the rational design of diacerein formulations, offering promising avenues to overcome its clinical limitations and improve patient outcomes. The insights presented here may also guide the development of more effective delivery systems for other poorly soluble anti-inflammatory agents. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

24 pages, 3268 KB  
Review
Study on the Mechanism and Modification of Carbon-Based Materials for Pollutant Treatment
by Lingyi Meng, Zitong Shao, Wenqi Li, Jianxiong Wang, Changqing Hu, Guangqing Yang and Yan Shi
Materials 2025, 18(23), 5345; https://doi.org/10.3390/ma18235345 - 27 Nov 2025
Viewed by 429
Abstract
The implementation of ultra-low emission standards in the steel industry imposes higher demands on flue gas purification. Carbon-based materials, leveraging their porous structure and surface activity, demonstrate high adsorption potential for treating heavy metal ions, sulfur- and nitrogen-containing compounds, and volatile organic pollutants. [...] Read more.
The implementation of ultra-low emission standards in the steel industry imposes higher demands on flue gas purification. Carbon-based materials, leveraging their porous structure and surface activity, demonstrate high adsorption potential for treating heavy metal ions, sulfur- and nitrogen-containing compounds, and volatile organic pollutants. However, their application is constrained by a limited selective adsorption capacity. This paper systematically analyzes the mechanisms by which carbon-based materials treat water, air, and soil pollutants; investigates their physical and chemical degradation patterns; and summarizes practical physicochemical modification pathways. Research indicates that modification techniques can effectively overcome performance limitations of carbon-based materials, enhance pollutant adsorption efficiency, and provide new insights for the engineering application of multi-media pollution synergistic control and environmental remediation technologies. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Graphical abstract

38 pages, 3252 KB  
Review
Hemp Fibre Treatments in Bio-Composites: A Review for Sustainable and Resilient Structures
by Mariana Costa Laktim and Antonio Formisano
Buildings 2025, 15(23), 4238; https://doi.org/10.3390/buildings15234238 - 24 Nov 2025
Viewed by 851
Abstract
The growing demand for sustainable, high-performance, and structurally reliable construction materials has intensified research on natural fibre-reinforced composites (NFCs). Among these, hemp stands out due to its high cellulose content, low density, excellent tensile strength, and renewability, making it a promising reinforcement for [...] Read more.
The growing demand for sustainable, high-performance, and structurally reliable construction materials has intensified research on natural fibre-reinforced composites (NFCs). Among these, hemp stands out due to its high cellulose content, low density, excellent tensile strength, and renewability, making it a promising reinforcement for cementitious and other inorganic matrices, including lime- and geopolymer-based systems. This review focuses exclusively on structural and civil engineering applications, while polymer-based composites are mentioned only for comparative context regarding adhesion and durability. A comprehensive bibliometric and technical analysis was conducted to evaluate the effectiveness of hemp fibre treatment methods in improving fibre–matrix adhesion, mechanical performance, and long-term durability. A systematic search covering major scientific databases from 2014 to 2024 identified global research trends, key treatment techniques, and their performance outcomes. Both chemical (alkaline, silane, acetylation, alkyl ketene dimer—AKD) and physical (plasma, ozone) modification strategies were critically assessed for adhesion, mechanical strength, hydrophobicity, and resistance to environmental cycling. Quantitative results indicate that combined alkaline–AKD treatments produce the most consistent improvement, increasing compressive strength by approximately 30% and flexural strength by up to 25% compared with untreated composites. Physical surface treatments were also found to enhance roughness and interfacial bonding without degrading fibre integrity. Unlike previous reviews that address natural fibres in general, this article specifically targets hemp fibre treatments for inorganic matrices, correlating modification mechanisms with the structural performance indicators relevant to civil engineering. By integrating bibliometric mapping of research evolution, keyword networks, and technological gaps, this review provides a quantitative and engineering-oriented synthesis that highlights its original contribution to sustainable and resilient construction materials. The findings emphasise the need for standardised testing protocols and performance-based evaluations to enable the broader structural application of hemp-based composites in modern construction. Full article
Show Figures

Figure 1

Back to TopTop