Advancements in Basalt Fiber-Reinforced Composites: A Critical Review
Abstract
1. Introduction
2. Properties of BF
2.1. Chemical Composition
2.2. Mechanical Properties
2.3. Thermal Properties
3. Effects in Composites
3.1. Traditional vs. Reinforced Composites
3.1.1. Mechanical Strength
- (1)
- In traditional epoxy coatings, the corrosion protection and mechanical strength are primarily dictated by the cured epoxy resin itself, which is often brittle and possesses limited intrinsic resistance to crack propagation.
- (2)
- In plain concrete, the tensile strength and crack resistance are inherently low, dependent almost exclusively on the properties of the cement paste and aggregate, leading to a quasi-brittle failure mode.
- (3)
- In unreinforced thermoplastics like polypropylene (PP), the thermal stability and flame retardancy are intrinsic to the polymer, which typically softens at relatively low temperatures and is highly flammable. In contrast, BF-reinforced composites introduce a high-performance reinforcing phase that actively enhances and transcends these inherent limitations.
3.1.2. Temperature Resistance
3.1.3. Flexibility and Crack Resistance
3.2. Integration with Composite Materials
4. Applications in Industries and Limitations
4.1. Applications in Industries
4.2. Limitation of Long-Term Durability
5. Modeling and Simulation Advances
6. Conclusions
- Long-term durability data under combined environmental stressors;
- International standardization beyond current regional standards;
- Predictive multi-scale modeling capabilities;
- Comprehensive sustainability assessments and recycling strategies.
- 5.
- Developing multi-functional hierarchical interfaces;
- 6.
- Establishing integrated computational materials engineering frameworks;
- 7.
- Qualifying materials for extreme environmental applications;
- 8.
- Implementing circular economy principles through recycling technologies and bio-based matrices.
7. Future Prospects
7.1. Ongoing Research and Innovations
7.2. Standardization Efforts
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deák, T.; Czigány, T. Chemical composition and mechanical properties of basalt and glass fibers: A Comparison. Text. Res. J. 2009, 79, 645–651. [Google Scholar] [CrossRef]
- Sarayu, K.; Gopinath, S.; Ramachandra, M.A.; Iyer, N.R. Structural stability of basalt fibers with varying biochemical conditions- A invitro and invivo study. J. Build. Eng. 2016, 7, 38–45. [Google Scholar] [CrossRef]
- Zhiming, Y.; Jinxu, L.; Xinya, F.; Shukui, L.; Yuxin, X.; Jie, R. Investigation on mechanical properties and failure mechanisms of basalt fiber reinforced aluminum matrix composites under different loading conditions. J. Compos. Mater. 2018, 52, 1907–1914. [Google Scholar] [CrossRef]
- Zhao, G.; Li, M.; Wang, S.; Peng, X.; Wang, L.; Li, X.; Zhao, Y.; Gao, Y.; Zhang, Y.; Zheng, J. Effect of interlaminar basalt fiber veil reinforcement on mode I fracture toughness of basalt fiber composites. Polym. Compos. 2024, 45, 4985–4993. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Xu, S.; Song, Q. Study of eco-friendly fabricated hydrophobic concrete containing basalt fiber with good durability. J. Build. Eng. 2023, 65, 105759. [Google Scholar] [CrossRef]
- Nasir, V.; Karimipour, H.; Taheri-Behrooz, F.; Shokrieh, M.M. Corrosion behaviour and crack formation mechanism of basalt fibre in sulphuric acid. Corros. Sci. 2012, 64, 1–7. [Google Scholar] [CrossRef]
- Ögüt, R.; Demir, A. The Effect of the Basalt Fiber on Mechanical Properties and Corrosion Durability in Concrete. Arab. J. Sci. Eng. 2023, 48, 5097–5114. [Google Scholar] [CrossRef]
- Rybin, V.A.; Utkin, A.V.; Baklanova, N.I. Corrosion of uncoated and oxide-coated basalt fibre in different alkaline media. Corros. Sci. 2016, 102, 503–509. [Google Scholar] [CrossRef]
- Li, X.; Du, S.; Ma, C.; Shi, T.; Qi, W.; Yang, H. Nano-SiO2 based anti-corrosion superhydrophobic coating on Al alloy with mechanical stability, anti-pollution and self-cleaning properties. Ceram. Int. 2024, 50, 9469–9478. [Google Scholar] [CrossRef]
- Ma, W.; Xu, X.; Xie, Y.; Bei, Z.; Yuan, Y.; Yu, H.; Sun, D. Microstructural evolution and anti-corrosion properties of laser cladded Ti based coating on Q235 steel. Surf. Coat. Technol. 2024, 477, 130383. [Google Scholar] [CrossRef]
- Wang, A.; De Silva, K.; Jones, M.; Gao, W. Cr-Free Anticorrosive Primers for Marine Propeller Applications. Polymers 2024, 16, 408. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Sun, Y.; Zhao, W.; Wang, L. 2D Nanomaterials Reinforced Organic Coatings for Marine Corrosion Protection: State of the Art, Challenges, and Future Prospectives. Adv. Mater. 2024, 36, 2312460. [Google Scholar] [CrossRef]
- Decky, M.; Hodasova, K.; Papanova, Z.; Remisova, E. Sustainable Adaptive Cycle Pavements Using Composite Foam Concrete at High Altitudes in Central Europe. Sustainability 2022, 14, 9034. [Google Scholar] [CrossRef]
- Le Gué, L.; Davies, P.; Arhant, M.; Vincent, B.; Verbouwe, W. Basalt fibre degradation in seawater and consequences for long term composite reinforcement. Compos. Part A Appl. Sci. Manuf. 2024, 179, 108027. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, H.; Zeng, L.; Yuan, Z.; Li, T.; Tao, L.; Yang, C.; Li, H.; Liu, C. The Effect of Heat Treatment Methods on the Structural Characteristics of Basalt Glass. Silicon 2024, 16, 2853–2863. [Google Scholar] [CrossRef]
- Yang, L.; Xie, H.; Zhang, D.; Zhang, F.; Lin, C.; Fang, S. Acoustic emission characteristics and crack resistance of basalt fiber reinforced concrete under tensile load. Constr. Build. Mater. 2021, 312, 125442. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Li, Y.; Li, M.; Sun, Z. Chemical Durability and Mechanical Properties of Alkali-proof Basalt Fiber and its Reinforced Epoxy Composites. J. Reinf. Plast. Compos. 2008, 27, 393–407. [Google Scholar] [CrossRef]
- Wang, S.; Zhong, J.; Gu, Y.; Li, G.; Cui, J. Mechanical properties, flame retardancy, and thermal stability of basalt fiber reinforced polypropylene composites. Polym. Compos. 2020, 41, 4181–4191. [Google Scholar] [CrossRef]
- Chen, S.; Guan, J.-W.; Chen, H.-M.; Liu, Y.-T. Study on Durability and Compression Behaviors of BFRP Bars under Seawater Deterioration and Constraint Condition. J. Mater. Civ. Eng. 2024, 36, 04023619. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Ding, L.; Niu, F.; Jiang, K.; Wang, H.; Wu, Z. Effects of basalt fiber reinforced polymer minibars on the flexural behavior of pre-cracked UHPC after chloride induced corrosion. J. Build. Eng. 2024, 82, 108382. [Google Scholar] [CrossRef]
- Fu, H.; Xu, Y.; Li, W.; Lu, Z.; Liang, J.; Xie, J. Durability of carbon/basalt hybrid fiber reinforced polymer bars immersed in alkaline solution. Polym. Compos. 2024, 45, 4743–4759. [Google Scholar] [CrossRef]
- Olhan, S.; Behera, B.K. Development of GNP nanofiller based textile structural composites for enhanced mechanical, thermal, and viscoelastic properties for automotive components. Adv. Compos. Hybrid Mater. 2024, 7, 25. [Google Scholar] [CrossRef]
- Song, S.; Wang, Q.; Ji, D.; Li, L.; Tan, J.; Wu, Q.; Lyu, Y.; Zhang, M. Nacre-Inspired Aramid Nanofibers/Basalt Fibers Composite Paper with Excellent Flame Retardance and Thermal Stability by Constructing an Organic–Inorganic Fiber Alternating Layered Structure. ACS Appl. Mater. Interfaces 2024, 16, 4045–4055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Huang, M.; Xing, Y.; Tian, J.; Liang, M.; Zhou, S.; Zou, H. Improving the ablative performance of epoxy-modified vinyl silicone rubber composites by incorporating different types of reinforcing fibers. Polym. Compos. 2024, 45, 4725–4742. [Google Scholar] [CrossRef]
- Wang, D.; Wang, H.; Larsson, S.; Benzerzour, M.; Maherzi, W.; Amar, M. Effect of basalt fiber inclusion on the mechanical properties and microstructure of cement-solidified kaolinite. Constr. Build. Mater. 2020, 241, 118085. [Google Scholar] [CrossRef]
- Farouk, M.; Soltan, A.; Schlüter, S.; Hamzawy, E.; Farrag, A.; El-Kammar, A.; Yahya, A.; Pollmann, H. Optimization of microstructure of basalt-based fibers intended for improved thermal and acoustic insulations. J. Build. Eng. 2021, 34, 101904. [Google Scholar] [CrossRef]
- Demina, N.M.; Tikhomirov, P.L. Comparative Study of the Impregnability of High-Strength Glass and Basalt Fibers. Glass Ceram. 2016, 73, 183–186. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Wang, Y.; Hu, J.; Lin, B.; Zhang, H.; Khalaf, A.H.; Tang, J. Investigation of optimal mechanical and anticorrosive properties of silane coupling agents modified chopped basalt fiber reinforced waterborne epoxy coatings. Surf. Coat. Technol. 2024, 487, 131023. [Google Scholar] [CrossRef]
- Rybin, V.A.; Utkin, A.V.; Baklanova, N.I. Alkali resistance, microstructural and mechanical performance of zirconia-coated basalt fibers. Cem. Concr. Res. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Min, Y.; Fang, Y.; Huang, X.; Zhu, Y.; Li, W.; Yuan, J.; Tan, L.; Wang, S.; Wu, Z. Surface modification of basalt with silane coupling agent on asphalt mixture moisture damage. Appl. Surf. Sci. 2015, 346, 497–502. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Z.; Tong, X.; Guo, L.; Miao, S.; Jiang, L.; Li, Y.; Li, H.; Liu, C. Effects of raw material homogenization on the structure of basalt melt and performance of fibers. Ceram. Int. 2022, 48, 11998–12005. [Google Scholar] [CrossRef]
- Davies, P.; Verbouwe, W. Evaluation of Basalt Fibre Composites for Marine Applications. Appl. Compos. Mater. 2018, 25, 299–308. [Google Scholar] [CrossRef]
- Monaldo, E.; Nerilli, F.; Vairo, G. Basalt-based fiber-reinforced materials and structural applications in civil engineering. Compos. Struct. 2019, 214, 246–263. [Google Scholar] [CrossRef]
- Shoaib, M.; Jamshaid, H.; Alshareef, M.; Alharthi, F.A.; Ali, M.; Waqas, M. Exploring the Potential of Alternate Inorganic Fibers for Automotive Composites. Polymers 2022, 14, 4946. [Google Scholar] [CrossRef]
- Fiore, V.; Di Bella, G.; Valenza, A. Glass–basalt/epoxy hybrid composites for marine applications. Mater. Des. 2011, 32, 2091–2099. [Google Scholar] [CrossRef]
- Newcomb, B.A. Processing, structure, and properties of carbon fibers. Compos. Part A Appl. Sci. Manuf. 2016, 91, 262–282. [Google Scholar] [CrossRef]
- Ertekin, M. 7—Aramid fibers. In Fiber Technology for Fiber-Reinforced Composites; Seydibeyoğlu, M.Ö., Mohanty, A.K., Misra, M., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 153–167. [Google Scholar] [CrossRef]
- Kizilkanat, A.B.; Kabay, N.; Akyüncü, V.; Chowdhury, S.; Akça, A.H. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Constr. Build. Mater. 2015, 100, 218–224. [Google Scholar] [CrossRef]
- Liu, J.; Chen, M.; Yang, J.; Wu, Z. Study on Mechanical Properties of Basalt Fibers Superior to E-glass Fibers. J. Nat. Fibers 2022, 19, 882–894. [Google Scholar] [CrossRef]
- Mhaske, P.B.; Rathi, D.V.R. Performance of glass fiber, basalt fiber: Subjected to fire. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 1329–1335. [Google Scholar] [CrossRef]
- Liu, H.; Xie, K.; Yang, Z.; Dai, H. The advantages of basalt glass flake coating for marine anticorrosion. Adv. Mater. Res. 2011, 332–334, 1619–1622. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R.; Militky, J. Thermal and mechanical characterization of novel basalt woven hybrid structures. J. Text. Inst. 2016, 107, 462–471. [Google Scholar] [CrossRef]
- Sha, J.J.; Dai, J.X.; Li, J.; Wei, Z.Q.; Hausherr, J.M.; Krenkel, W. Influence of thermal treatment on thermo-mechanical stability and surface composition of carbon fiber. Appl. Surf. Sci. 2013, 274, 89–94. [Google Scholar] [CrossRef]
- Lopresto, V.; Leone, C.; De Iorio, I. Mechanical characterisation of basalt fibre reinforced plastic. Compos. Part B Eng. 2011, 42, 717–723. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Rangappa, S.M.; Siengchin, S. Basalt fibers: An environmentally acceptable and sustainable green material for polymer composites. Constr. Build. Mater. 2024, 436, 136834. [Google Scholar] [CrossRef]
- Zuccarello, B.; Bongiorno, F.; Militello, C. Basalt Fiber Hybridization Effects on High-Performance Sisal-Reinforced Biocomposites. Polymers 2022, 14, 1457. [Google Scholar] [CrossRef]
- Zhou, A.; Qin, R.; Chow, C.L.; Lau, D. Bond integrity of aramid, basalt and carbon fiber reinforced polymer bonded wood composites at elevated temperature. Compos. Struct. 2020, 245, 112342. [Google Scholar] [CrossRef]
- Poornima, C.; Uthamballi Shivanna, M.; Sathyanarayana, S. Influence of basalt fiber and maleic anhydride on the mechanical and thermal properties of polypropylene. Polym. Compos. 2023, 44, 57–68. [Google Scholar] [CrossRef]
- Liu, J.; Yang, J.; Chen, M.; Lei, L.; Wu, Z. Effect of SiO2, Al2O3 on heat resistance of basalt fiber. Thermochim. Acta 2018, 660, 56–60. [Google Scholar] [CrossRef]
- Zheng, W.J.; Cui, X.F.; Zou, W.; Chen, Q.; Zhang, H.B.; Yang, H.; Yan, J. Basalt/Polyacrylamide-Ammonium Polyphosphate Hydrogel Composites for Fire-Resistant Materials. Macromol. Mater. Eng. 2021, 306, 2000582. [Google Scholar] [CrossRef]
- Bhat, T.; Kandare, E.; Gibson, A.G.; Di Modica, P.; Mouritz, A.P. Compressive softening and failure of basalt fibre composites in fire: Modelling and experimentation. Compos. Struct. 2017, 165, 15–24. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, H.; Jia, T. Improving mechanical properties of wood composites using basalt glass powder and basalt fiber. Adv. Mater. Res. 2014, 1048, 400–403. [Google Scholar] [CrossRef]
- Kim, S.-H.; Lee, J.-H.; Kim, J.-W.; Lee, S.-Y.; Park, S.-J. Interfacial Behaviors of Basalt Fiber-Reinforced Polymeric Composites: A Short Review. Adv. Fiber Mater. 2022, 4, 1414–1433. [Google Scholar] [CrossRef]
- Huang, Y.; Cai, M.; He, C.; Si, C.; Li, L.; Fan, X.; Zhu, M. Basalt fiber as a skeleton to enhance the multi-conditional tribological properties of epoxy coating. Tribol. Int. 2023, 183, 108390. [Google Scholar] [CrossRef]
- Wei, B.; Song, S.; Cao, H. Strengthening of basalt fibers with nano-SiO2–epoxy composite coating. Mater. Des. 2011, 32, 4180–4186. [Google Scholar] [CrossRef]
- Pang, Y.; Zhong, Z.; Liu, H.; Rao, L. Research on fire-resistant fabric properties of basalt fiber. Appl. Mech. Mater. 2012, 217–219, 1151–1154. [Google Scholar] [CrossRef]
- Mittal, G.; Rhee, K.Y.; Mišković-Stanković, V.; Hui, D. Reinforcements in multi-scale polymer composites: Processing, properties, and applications. Compos. Part B Eng. 2018, 138, 122–139. [Google Scholar] [CrossRef]
- Kim, M.; Lee, T.-W.; Park, S.-M.; Jeong, Y.G. Structures, electrical and mechanical properties of epoxy composites reinforced with MWCNT-coated basalt fibers. Compos. Part A Appl. Sci. Manuf. 2019, 123, 123–131. [Google Scholar] [CrossRef]
- Zhu, Z.; Xiao, P.; Kang, A.; Kou, C.; Wu, B.; Ren, Z. Innovative design of self-adhesive basalt fiber mesh geotextiles for enhanced pavement crack resistance. Geotext. Geomembr. 2024, 52, 368–382. [Google Scholar] [CrossRef]
- Zhang, G.-Z.; Liu, C.; Cheng, P.-F.; Li, Z.; Han, Y.; Wang, X.-Y. Enhancing the interfacial compatibility and self-healing performance of microbial mortars by nano-SiO2-modified basalt fibers. Cem. Concr. Compos. 2024, 152, 105650. [Google Scholar] [CrossRef]
- Kim, C.-Y.; Xu, L.; Lee, E.-H.; Choa, Y.-H. Magnetic Silicone Composites with Uniform Nanoparticle Dispersion as a Biomedical Stent Coating for Hyperthermia. Adv. Polym. Technol. 2013, 32, E714–E723. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, H.; Feng, Q.; Zheng, Y. Improvement of basalt fiber dispersion and its effect on mechanical characteristics of oil well cement. J. Build. Eng. 2023, 76, 107244. [Google Scholar] [CrossRef]
- Ulus, H.; Kaybal, H.B.; Eskizeybek, V.; Avcı, A. Enhanced Salty Water Durability of Halloysite Nanotube Reinforced Epoxy/Basalt Fiber Hybrid Composites. Fibers Polym. 2019, 20, 2184–2199. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, N.; He, J.; Du, R.; Liu, Y.; Zhao, G. Mechanical and anticorrosion properties of furan/epoxy-based basalt fiber-reinforced composites. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, T.; Xu, Q.; Su, Z.; Jiang, M.; Liu, P. The effects of chemical grafting 1,6-hexanediol diglycidyl ether on the interfacial adhesion between continuous basalt fibers and epoxy resin as well as the tensile strength of composites. Constr. Build. Mater. 2022, 323, 126563. [Google Scholar] [CrossRef]
- ISO 5659-2:2017; Plastics—Smoke Generation—Part 2: Determination of Optical Density by a Single-Chamber Test. ISO: Geneva, Switzerland, 2017.
- ISO 1182; Reaction to Fire Tests for Products, Non-Combustibility Test. ISO: Geneva, Switzerland, 2020.
- ISO 9705-1; Reaction to Fire Tests, Room Corner Test for Wall and Ceiling Lining Products, Part 1: Test Method for a Small Room Configuration. ISO: Geneva, Switzerland, 2016.
- Li, Z.; Wu, S.; Zhao, Z.; Xu, L. Influence of surface properties on the interfacial adhesion in carbon fiber/epoxy composites. Surf. Interface Anal. 2014, 46, 16–23. [Google Scholar] [CrossRef]
- Kim, M.H.; Rhee, K.Y.; Park, S.J. Plasma treatment and its effects on the tribological behaviour of basalt/epoxy woven composites in a marine environment. Polym. Polym. Compos. 2011, 19, 29–34. [Google Scholar] [CrossRef]
- Yasir, M.; Amir, N.; Ahmad, F.; Ullah, S.; Jimenez, M. Effect of basalt fibers dispersion on steel fire protection performance of epoxy-based intumescent coatings. Prog. Org. Coat. 2018, 122, 229–238. [Google Scholar] [CrossRef]
- Miao, Y.; Chen, H.; Cui, G.; Qi, Y. Preparation of new conductive organic coating for the fiber reinforced polymer composite oil pipe. Surf. Coat. Technol. 2021, 412, 127017. [Google Scholar] [CrossRef]
- Barczewski, M.; Aniśko, J.; Piasecki, A.; Biedrzycka, K.; Moraczewski, K.; Stepczyńska, M.; Kloziński, A.; Szostak, M.; Hahn, J. The accelerated aging impact on polyurea spray-coated composites filled with basalt fibers, basalt powder, and halloysite nanoclay. Compos. Part B Eng. 2021, 225, 109286. [Google Scholar] [CrossRef]
- Xie, D.; Hu, Z.; Wang, B.; Zhao, K.; Zhou, J. Effect of PVA fiber and basalt fiber on residual mechanical and permeability properties of ECC after elevated temperatures. Constr. Build. Mater. 2024, 433, 136610. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Ding, L.; Jiang, K.; Liu, X.; Liu, J.; Wu, Z. Spalling resistance and mechanical properties of ultra-high performance concrete reinforced with multi-scale basalt fibers and hybrid fibers under elevated temperature. J. Build. Eng. 2023, 77, 107435. [Google Scholar] [CrossRef]
- Hashim, U.R.; Jumahat, A.; Jawaid, M.; Dungani, R.; Alamery, S. Effects of Accelerated Weathering on Degradation Behavior of Basalt Fiber Reinforced Polymer Nanocomposites. Polymers 2020, 12, 2621. [Google Scholar] [CrossRef]
- Yi, Y.; Zhu, D.; Rahman, M.Z.; Shuaicheng, G.; Li, S.; Liu, Z.; Shi, C. Tensile properties deterioration of BFRP bars in simulated pore solution and real seawater sea sand concrete environment with varying alkalinities. Compos. Part B Eng. 2022, 243, 110115. [Google Scholar] [CrossRef]
- Agwu, N.; Ozoegwu, C.G. Critical investigation on the effect of fiber geometry and orientation on the effective mechanical properties of fiber-reinforced polymer composites. Mech. Adv. Mater. Struct. 2023, 30, 3051–3060. [Google Scholar] [CrossRef]
- Elkazaz, E.; Crosby, W.A.; Ollick, A.M.; Elhadary, M. Effect of fiber volume fraction on the mechanical properties of randomly oriented glass fiber reinforced polyurethane elastomer with crosshead speeds. Alex. Eng. J. 2020, 59, 209–216. [Google Scholar] [CrossRef]
- Chen, D.; Sun, G.; Meng, M.; Jin, X.; Li, Q. Flexural performance and cost efficiency of carbon/basalt/glass hybrid FRP composite laminates. Thin-Walled Struct. 2019, 142, 516–531. [Google Scholar] [CrossRef]
- Christensen, R.M. Failure criteria for fiber composite materials, the astonishing sixty year search, definitive usable results. Compos. Sci. Technol. 2019, 182, 107718. [Google Scholar] [CrossRef]
- Abushanab, A.; Alnahhal, W.; Farraj, M. Structural performance and moment redistribution of basalt FRC continuous beams reinforced with basalt FRP bars. Eng. Struct. 2021, 240, 112390. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, L.; Wang, C.; Cui, Z. Effect of Polyurethane Treatment on the Interfacial and Mechanical Properties of Basalt Fiber-Reinforced Polymer Composite. Fibers Polym. 2024, 25, 607–617. [Google Scholar] [CrossRef]
- GB/T 25045-2010; Basalt Fiber Roving. Federation, C.B.M.: Beijing, China, 2010.
- GB/T 38111-2019; Classification, Gradation and Designation of Basalt Fiber. Federation, C.B.M.: Beijing, China, 2019.
- HG/T 6135-2022; Non-Metallic Chemical Equipment-Basalt Fiber Reinforced Plastics Pipe and Fittings. China Plastic and Rubber Products Industry Association: Shanghai, China, 2022.
- HG/T 6136-2022; Non-Metallic Chemical Equipment-Basalt Fiber Reinforced Plastics Tank. China Plastic and Rubber Products Industry Association: Shanghai, China, 2022.












| Content/wt.% | Glass Fiber | Basalt Fiber |
|---|---|---|
| SiO2 | 58–60 | 47–55 |
| Al2O3 | 20–27 | 14–20 |
| MgO | 10–15 | 3.0–8.5 |
| CaO | - | 7–11 |
| TiO2 | 0.2–0.7 | 0.3–2.0 |
| Fe2O3/FeO | 0.1–0.6 | 7.0–13.5 |
| Properties | Glass Fiber | Basalt Fiber | Carbon Fiber | Aramid Fiber |
|---|---|---|---|---|
| Density/g/cm3 | 2.56 [35] | 2.8 [35] | 1.76 [36] | 1.44 [37] |
| Tensile strength/GPa | 2.3 [38,39] | 2.4–4.8 [38,39] | 3.53 [36] | 2.9–3 [37] |
| Elastic modulus/GPa | 72 [40] | 86–98 [40] | 230 [36] | 70–112 [37] |
| Heat conductivity/W/(m·K) | 0.712–1.34 [41] | 0.03 [41,42] | 10.5 [36] | |
| Melting point/°C | 1135 [40] | 1250 [31,40] | >1600 [43] | |
| Mass loss after 3 h boiling in 2 mol/L NaOH | 39% [41] | 1.6% [41] | ||
| Mass loss after 3 h boiling in 2 mol/L HCl | 6% [41] | 4.2% [41] |
| Application Area | Service Environment/Challenge | Key Required Properties | BF Impact/Role |
|---|---|---|---|
| Civil Engineering (Retrofitting) [33] | Concrete/masonry structures; seismic loads, aging | High tensile strength, stiffness, durability | Sheets/laminates for flexural/shear strengthening; non-corrosive alternative to steel |
| Marine and Offshore [53,69,70] | Saltwater corrosion, abrasion, biofouling, impact | Corrosion resistance, adhesion strength, durability | Protective coatings for hulls, platforms; composite parts resistant to seawater |
| Transportation (Auto, Aerospace, Rail) [49,50] | Impact (stone chips), vibration, weight reduction, fire safety | Impact resistance, lightweight, fire resistance, fatigue resistance | Composite panels, brake pads, fireproof fabrics; weight reduction and performance |
| Oil and Gas [71,72] | Corrosive fluids (internal/external), high pressure/temperature | Chemical resistance, mechanical durability, thermal stability | Pipeline wraps, tank linings, composite pipes for corrosion protection |
| Fire Protection [49,56] | High heat flux, open flame exposure | Fire resistance, thermal insulation, structural integrity at high T | Fireproof curtains, barriers, composites in buildings/ships (meeting standards like ISO 5659) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Lan, L.; Zhang, Y.; Pan, B.; Shi, W.; Gu, Z.; Zhang, Y.; Yan, Y.; Wang, J.; Zhou, J.; et al. Advancements in Basalt Fiber-Reinforced Composites: A Critical Review. Coatings 2025, 15, 1441. https://doi.org/10.3390/coatings15121441
Li J, Lan L, Zhang Y, Pan B, Shi W, Gu Z, Zhang Y, Yan Y, Wang J, Zhou J, et al. Advancements in Basalt Fiber-Reinforced Composites: A Critical Review. Coatings. 2025; 15(12):1441. https://doi.org/10.3390/coatings15121441
Chicago/Turabian StyleLi, Jiadong, Lin Lan, Yanliang Zhang, Baofeng Pan, Wei Shi, Zhanyu Gu, Yulong Zhang, Yongbo Yan, Jia Wang, Jianwei Zhou, and et al. 2025. "Advancements in Basalt Fiber-Reinforced Composites: A Critical Review" Coatings 15, no. 12: 1441. https://doi.org/10.3390/coatings15121441
APA StyleLi, J., Lan, L., Zhang, Y., Pan, B., Shi, W., Gu, Z., Zhang, Y., Yan, Y., Wang, J., Zhou, J., Wang, R., & Wang, C. (2025). Advancements in Basalt Fiber-Reinforced Composites: A Critical Review. Coatings, 15(12), 1441. https://doi.org/10.3390/coatings15121441

