Molecular Biochemistry and Physiology of Postharvest Chilling Injury in Fruits: Mechanisms and Mitigation
Abstract
1. Introduction
2. Physiology of PCI in Fruits
2.1. Structural and Membrane Integrity Loss
2.2. PCI-Induced Metabolic Activities
2.3. Cell Wall Metabolism and Softening Under PCI
3. Biochemical and Molecular Mechanisms of PCI
3.1. Oxidative Stress and Antioxidant Defense
3.2. Hormonal Interplay
4. Omics Technologies in PCI Mitigation
4.1. Transcriptomics: Gene Expression Changes in PCI Response
4.2. Proteomics: Cold-Stress-Responsive Proteins
4.3. Metabolomics: Metabolic Shifts in Response to PCI
4.3.1. Lipidomics
4.3.2. Volatilomics
4.4. Epigenomics
5. Emerging Strategies for PCI Mitigation in Fruits
5.1. Physical Treatments
5.1.1. Hot Water Treatment (HWT)
5.1.2. Low Temperature Conditioning
5.1.3. Ultraviolet (UV) Treatment
5.1.4. Intermittent Warming (IW)
5.1.5. Cold Shock Treatment (CST)
5.1.6. Gaseous Modifications
5.2. Chemical Treatments and Their Molecular Impact
5.2.1. Melatonin (MT)
5.2.2. Salicylic Acid (SA)
5.2.3. Oxalic Acid (OA)
5.2.4. Methyl Jasmonate (MeJA)
5.2.5. Abscisic Acid (ABA)
5.2.6. Polyamines
5.2.7. Calcium Chloride (CaCl2)
5.2.8. Nitric Oxide (NO)
5.3. Biotechnological Approaches
5.3.1. CRISPR/Cas9 Gene Editing for PCI Mitigation in Fruits
5.3.2. Gene Silencing
5.4. Practical Decision Making: Guidelines for Choosing Appropriate PCI Mitigation
6. Concluding Remarks and Perspective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACC 1 | Aminocyclopropane-1-Carboxylate |
| ACO 1 | Aminocyclopropane-1-Carboxylate Oxidase |
| ACS 1 | Aminocyclopropane-1-Carboxylate Synthase |
| ACPs | Acyl Carrier Proteins |
| AOX | Alternative Oxidase |
| APX | Ascorbate Peroxidase |
| AsA-GSH | Ascorbate-Glutathione Cycle |
| ATP | Adenosine Triphosphate |
| b* | Yellowness |
| bZIP | Basic Leucine Zipper Protein |
| BL | Brassinolide |
| C4H | Cinnamate 4-Hydroxylase |
| CA | Controlled Atmosphere |
| Ca | Calcium |
| Ca2+ | Calcium Ion |
| Ca-ATPase | Calcium-Transporting ATPase |
| CaCl2 | Calcium Chloride |
| CAT | Catalase |
| CBF | C-repeat Binding Factor |
| CHS | Chalcone Synthase |
| CK | Cytokinin |
| CmAPX | Cucumis melo Ascorbate Peroxidase |
| CmGR | Cucumis melo Glutathione Reductase |
| CmPOD | Cucumis melo Peroxidase |
| COR | Cold-Responsive |
| CNR | Colorless Nonripening |
| CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
| CST | Cold Shock Treatment |
| DGDG | Digalactosyldiacylglycerol |
| DGAT | Diacylglycerol Acyltransferase |
| DGK | Diacylglycerol Kinase |
| DHAR | Dehydroascorbate Reductase |
| DNA | Deoxyribonucleic Acid |
| DPPH | 2,2-Diphenyl-1-Picrylhydrazyl |
| DREB | Dehydration-Responsive Element-Binding Protein |
| EBR | 24-Epibrassinolide |
| EGase | Endo-1,4-Glucanase |
| EL | Electrolyte Leakage |
| EIN | Ethylene-Insensitive Protein |
| ERF | Ethylene Response Factor |
| ETR | Ethylene Receptor |
| FADs | Fatty Acid Desaturases |
| GABA | γ-Aminobutyric Acid |
| GA | Gibberellic Acid |
| GGGT | Galactolipid Galactosyltransferase |
| GR | Glutathione Reductase |
| GRAS | Generally recognized as safe |
| HSP | Heat Shock Proteins |
| HWFC | Hot Water Forced Convection |
| HWD | Hot Water Dipping |
| HWT | Hot Water Treatment |
| ICE | Inducer of CBF Expression |
| ICES | Inducers of CBF Expression and Signaling |
| IP3 | Inositol Trisphosphate |
| IW | Intermittent Warming |
| JA | Jasmonic Acid |
| L* | Lightness |
| LDPE | Low-Density Polyethylene Packing |
| LOX | Lipoxygenase |
| LTC | Low-Temperature Conditioning |
| LTP | Lipid Transfer Protein |
| LTPs | Lipid Transfer Proteins |
| MAP | Modified Atmospheric Packaging |
| MDA | Malondialdehyde |
| MDHAR | Monodehydroascorbate Reductase |
| MG | Mature Green |
| MGDG | Monogalactosyldiacylglycerol |
| MR | Mature Red |
| MT | Melatonin |
| MYB | Myeloblastosis Transcription Factor |
| NAC | NAC Transcription Factor |
| NADPH | Nicotinamide Adenine Dinucleotide Phosphate |
| NO | Nitric Oxide |
| NOR | Nonripening |
| OAT | Ornithine Aminotransferase |
| P5CS | Δ1-Pyrroline-5-Carboxylate Synthase |
| P5CR | Pyrroline-5-Carboxylate Reductase |
| PA | Phosphatidic Acid |
| PAL | Phenylalanine Ammonia-Lyase |
| PCI | Postharvest Chilling Injury |
| PDH3 | Pyruvate Dehydrogenase 3 |
| PG | Polygalacturonase |
| POD | Peroxidase |
| PME | Pectin Methylesterase |
| PSY1 | Phytoene Synthase 1 |
| PTMs | Post-Translational Modifications |
| Put | Putrescine |
| RNA | Ribonucleic Acid |
| RNAi | RNA Interference |
| RNA-Seq | RNA Sequencing |
| RH | Relative Humidity |
| RIN | Ripening Inhibitor |
| ROS | Reactive Oxygen Species |
| SA | Salicylic Acid |
| SDH | Succinate Dehydrogenase |
| SFAs | Saturated Fatty Acids |
| SOD | Superoxide Dismutase |
| Spd | Spermidine |
| STTM | Short Tandem Target Mimic |
| TA | Titratable Acidity |
| TCA | Tricarboxylic Acid |
| TFC | Total Flavonoid Content |
| TPC | Total Phenolic Content |
| TSS | Total Soluble Solids |
| UFAs | Unsaturated Fatty Acids |
| UV | Ultraviolet Treatment |
| UV-C | Ultraviolet-C Radiation |
| VOCs | Volatile Organic Compounds |
| WRKY | WRKY Transcription Factor |
| XF | Xtend® Film |
References
- Heyes, J.A. Impact of chilling injury on global trade in tropical products. CABI Rev. 2023, 2023. [Google Scholar] [CrossRef]
- Sati, H.; Oberoi, H.S.; Pareek, S. Is ATP a signaling regulator for postharvest chilling tolerance in fruits? Hortic. Res. 2024, 11, uhae204. [Google Scholar] [CrossRef]
- Sati, H.; Kataria, P.; Chinchkar, A.V.; Pareek, S. Melatonin: A biomolecule for mitigating postharvest chilling injury in fruits and vegetables. Crop Sci. 2023, 63, 3175–3197. [Google Scholar] [CrossRef]
- Wu, J.; Tang, R.; Fan, K. Recent advances in postharvest technologies for reducing chilling injury symptoms of fruits and vegetables: A Review. Food Chem. X 2024, 21, 101080. [Google Scholar] [CrossRef]
- Shan, Y.; Zhang, D.; Luo, Z.; Li, T.; Qu, H.; Duan, X.; Jiang, Y. Advances in chilling injury of postharvest fruit and vegetable: Extracellular ATP aspects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4251–4273. [Google Scholar] [CrossRef]
- Phakawatmongkol, W.; Ketsa, S.; van Doorn, W.G. Variation in fruit chilling injury among mango cultivars. Postharvest Biol. Technol. 2004, 32, 115–118. [Google Scholar] [CrossRef]
- Chidtragool, S.; Ketsa, S.; Bowen, J.; Ferguson, I.B.; van Doorn, W.G. Chilling injury in mango fruit peel: Cultivar differences are related to the activity of phenylalanine ammonia lyase. Postharvest Biol. Technol. 2011, 62, 59–63. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Pareek, S.; Domínguez-Avila, J.A.; Gonzalez-Aguilar, G.A.; Valero, D.; Serrano, M. An exogenous pre-storage melatonin alleviates chilling injury in some mango fruit cultivars, by acting on the enzymatic and non-enzymatic antioxidant system. Antioxidants 2022, 11, 384. [Google Scholar] [CrossRef]
- Xiao, L.; Jiang, X.; Deng, Y.; Xu, K.; Duan, X.; Wan, K.; Tang, X. Study on Characteristics and lignification mechanism of postharvest banana fruit during chilling injury. Foods 2023, 12, 1097. [Google Scholar] [CrossRef]
- Sivankalyani, V.; Feygenberg, O.; Maorer, D.; Zaaroor, M.; Fallik, E.; Alkan, N. Combined treatments reduce chilling injury and maintain fruit quality in avocado fruit during cold quarantine. PLoS ONE 2015, 10, e0140522. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.-G.; Yuan, M.-Q.; Zhang, W.-M.; Zhang, Z.-K. Effect of low temperatures on chilling injury in relation to energy status in papaya fruit during storage. Postharvest Biol. Technol. 2017, 125, 181–187. [Google Scholar] [CrossRef]
- Suo, J.; Li, H.; Ban, Q.; Han, Y.; Meng, K.; Jin, M.; Zhang, Z.; Rao, J. Characteristics of chilling injury-induced lignification in kiwifruit with different sensitivities to low temperatures. Postharvest Biol. Technol. 2018, 135, 8–18. [Google Scholar] [CrossRef]
- Ghafir, S.A.M. Physiological and anatomical comparison between four different apple cultivars under cold-storage conditions. Acta Biol. Szeged. 2009, 53, 21–26. [Google Scholar]
- Lafuente, M.T.; Zacarias, L.; Martínez-Téllez, M.A.; Sanchez-Ballesta, M.T.; Granell, A. Phenylalanine ammonia-lyase and ethylene in relation to chilling injury as affected by fruit age in citrus. Postharvest Biol. Technol. 2003, 29, 309–318. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, H.; Cao, J.; Jiang, W. Advances in biochemical mechanisms and control technologies to treat chilling injury in postharvest fruits and vegetables. Trends Food Sci. Technol. 2021, 113, 355–365. [Google Scholar] [CrossRef]
- Albornoz, K.; Zhou, J.; Yu, J.; Beckles, D.M. Dissecting postharvest chilling injury through biotechnology. Curr. Opin. Biotechnol. 2022, 78, 102790. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Sati, H.; Oberoi, H.S.; Pareek, S. The mechanisms of melatonin in low-emperature stress tolerance in postharvest fruits and vegetables. Future Postharvest Food 2024, 1, 180–197. [Google Scholar] [CrossRef]
- Sati, H.; Chinchkar, A.V.; Kataria, P.; Pareek, S. Melatonin: A potential abiotic stress regulator. Plant Stress 2023, 10, 100293. [Google Scholar] [CrossRef]
- Sati, H.; Pareek, S.; Brecht, J.K.; Yahia, E.M. Mechanisms of Chilling injury and technologies to mitigate it in mango fruit: A Review. Food Rev. Int. 2025, 1–26. [Google Scholar] [CrossRef]
- Song, C.; Wang, K.; Xiao, X.; Liu, Q.; Yang, M.; Li, X.; Feng, Y.; Li, S.; Shi, L.; Chen, W.; et al. Membrane lipid metabolism influences chilling injury during cold storage of peach fruit. Food Res. Int. 2022, 157, 111249. [Google Scholar] [CrossRef]
- Valenzuela, J.L.; Manzano, S.; Palma, F.; Carvajal, F.; Garrido, D.; Jamilena, M. Oxidative stress associated with chilling injury in immature fruit: Postharvest technological and biotechnological solutions. Int. J. Mol. Sci. 2017, 18, 1467. [Google Scholar] [CrossRef]
- Sati, H.; Khandelwal, A.; Pareek, S. Effect of exogenous melatonin in fruit postharvest, crosstalk with hormones, and defense mechanism for oxidative stress management. Food Front. 2023, 4, 233–261. [Google Scholar] [CrossRef]
- Pott, D.M.; Vallarino, J.G.; Osorio, S. Metabolite changes during postharvest storage: Effects on fruit quality Traits. Metabolites 2020, 10, 187. [Google Scholar] [CrossRef]
- Cai, C.; Xu, C.; Shan, L.; Li, X.; Zhou, C.; Zhang, W.; Ferguson, I.; Chen, K. Low temperature conditioning reduces postharvest chilling injury in loquat fruit. Postharvest Biol. Technol. 2006, 41, 252–259. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Liang, H.; Yi, J.; Zhang, J.; Lin, L.; Wu, Y.; Feng, X.; Cao, J.; Jiang, W. Reduced chilling injury in mango fruit by 2,4-dichlorophenoxyacetic acid and the antioxidant response. Postharvest Biol. Technol. 2008, 48, 172–181. [Google Scholar] [CrossRef]
- Rodrigues, C.; Gaspar, P.D.; Simões, M.P.; Silva, P.D.; Andrade, L.P. Review on techniques and treatments toward the mitigation of the chilling injury of peaches. J. Food Process. Preserv. 2022, 46, e14358. [Google Scholar] [CrossRef]
- Goswami, A.K.; Maurya, N.K.; Goswami, S.; Bardhan, K.; Singh, S.K.; Prakash, J.; Pradhan, S.; Kumar, A.; Chinnusamy, V.; Kumar, P.; et al. Physio-biochemical and molecular stress regulators and their crosstalk for low-temperature stress responses in fruit crops: A review. Front. Plant Sci. 2022, 13, 1022167. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, Z.; Xu, X.; Wang, Q.; Qin, G.; Tian, S. Crucial roles of membrane stability and its related proteins in the tolerance of peach fruit to chilling injury. Amino Acids 2010, 39, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Maghoumi, M.; Amodio, M.L.; Cisneros-Zevallos, L.; Colelli, G. Prevention of chilling injury in pomegranates revisited: Pre- and post-harvest factors, mode of actions, and technologies involved. Foods 2023, 12, 1462. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Kuang, J.; Ji, S.; Chen, Q.; Deng, W.; Min, T.; Shan, W.; Chen, J.; Lu, W. The membrane lipid metabolism in horticultural products suffering chilling injury. Food Qual. Saf. 2020, 4, 9–14. [Google Scholar] [CrossRef]
- Chen, M.; Thelen, J.J. ACYL-LIPID DESATURASE2 is required for chilling and freezing tolerance in Arabidopsis. Plant Cell 2013, 25, 1430–1444. [Google Scholar] [CrossRef] [PubMed]
- Arisz, S.A.; van Wijk, R.; Roels, W.; Zhu, J.-K.; Haring, M.A.; Munnik, T. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. Front. Plant Sci. 2013, 4, 1. [Google Scholar] [CrossRef]
- Champa, W.A.H.; Gill, M.I.S.; Mahajan, B.V.C.; Arora, N.K. Postharvest treatment of polyamines maintains quality and extends shelf-life of table grapes (Vitis vinifera L.) cv. flame seedless. Postharvest Biol. Technol. 2014, 91, 57–63. [Google Scholar] [CrossRef]
- Maul, P.; McCollum, G.T.; Popp, M.; Guy, C.L.; Porat, R. Transcriptome profiling of grapefruit flavedo following exposure to low temperature and conditioning treatments uncovers principal molecular components involved in chilling tolerance and susceptibility. Plant Cell Environ. 2008, 31, 752–768. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Bai, Z.; Liang, Q.; Liu, Q.; Zhang, L.; Pan, Y.; Liu, G.; Jiang, B.; Zhang, F.; Jia, Y. Transcriptome analysis of chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress. BMC Genom. 2018, 19, 319. [Google Scholar] [CrossRef]
- Song, C.; Yang, Y.; Yang, T.; Ba, L.; Zhang, H.; Han, Y.; Xiao, Y.; Shan, W.; Kuang, J.; Chen, J.; et al. MaMYB4 recruits histone deacetylase MaHDA2 and modulates the expression of ω-3 fatty acid desaturase genes during cold stress response in banana fruit. Plant Cell Physiol. 2019, 60, 2410–2422. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, Y.; Xiao, J.; Bao, F. Effects of chilling on the structure, function and development of chloroplasts. Front. Plant Sci. 2018, 9, 1715. [Google Scholar] [CrossRef] [PubMed]
- Rastegar, S.; Khedr, E.H. GABA in relation to cold and chilling stress. In GABA in Plants; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2025; pp. 243–262. ISBN 978-1-394-21778-6. [Google Scholar]
- Aghdam, M.S.; Jannatizadeh, A.; Luo, Z.; Paliyath, G. Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life. Trends Food Sci. Technol. 2018, 76, 67–81. [Google Scholar] [CrossRef]
- Meitha, K.; Pramesti, Y.; Suhandono, S. Reactive Oxygen species and antioxidants in postharvest vegetables and fruits. Int. J. Food Sci. 2020, 2020, 8817778. [Google Scholar] [CrossRef]
- Wang, K.; Shao, X.; Gong, Y.; Zhu, Y.; Wang, H.; Zhang, X.; Yu, D.; Yu, F.; Qiu, Z.; Lu, H. The metabolism of soluble carbohydrates related to chilling injury in peach fruit exposed to cold stress. Postharvest Biol. Technol. 2013, 86, 53–61. [Google Scholar] [CrossRef]
- Wang, H.; Gong, M.; Xin, H.; Tang, L.; Dai, D.; Gao, Y.; Liu, C. Effects of chilling stress on the accumulation of soluble sugars and their key enzymes in Jatropha curcas seedlings. Physiol. Mol. Biol. Plants 2018, 24, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cao, S.; Fang, X.; Mu, H.; Yang, H.; Wang, X.; Xu, Q.; Gao, H. Changes in fruit firmness, cell wall composition and cell wall degrading enzymes in postharvest blueberries during storage. Sci. Hortic. 2015, 188, 44–48. [Google Scholar] [CrossRef]
- Liu, H.; Qian, M.; Song, C.; Li, J.; Zhao, C.; Li, G.; Wang, A.; Han, M. Down-regulation of PpBGAL10 and PpBGAL16 delays fruit softening in peach by reducing polygalacturonase and pectin methylesterase activity. Front. Plant Sci. 2018, 9, 1015. [Google Scholar] [CrossRef]
- Wongs-Aree, C.; Aschariyaphotha, W.; Palapol, Y.; Bodhipadma, K.; Noichinda, S.; Wongs-Aree, C.; Aschariyaphotha, W.; Palapol, Y.; Bodhipadma, K.; Noichinda, S. Structural membrane alterations in tropical horticultural crops under postharvest chilling stress. Veg. Res. 2024, 4, e016. [Google Scholar] [CrossRef]
- Carvajal, F.; Palma, F.; Jamilena, M.; Garrido, D. Cell wall metabolism and chilling injury during postharvest cold storage in zucchini fruit. Postharvest Biol. Technol. 2015, 108, 68–77. [Google Scholar] [CrossRef]
- Njie, A.; Dong, X.; Liu, Q.; Lu, C.; Pan, X.; Zhang, W. Melatonin treatment inhibits mango fruit (cv. ‘Guiqi’) softening by maintaining cell wall and reactive oxygen metabolisms during cold storage. Postharvest Biol. Technol. 2023, 205, 112500. [Google Scholar] [CrossRef]
- Zheng, X.; Du, X.; Wang, Y.; Wang, L.; Dai, B.; Zhou, L.; Mao, J.; Huan, C. 1-methylcyclopropene treatment improves chilling tolerance by regulating iaa biosynthesis, auxin signaling transduction and cell wall degradation in peach fruit. Sci. Hortic. 2023, 321, 112265. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, H.; Chen, Y.; Wang, H.; Ritenour, M.A.; Lin, Y. Hydrogen peroxide-induced changes in activities of membrane lipids-degrading enzymes and contents of membrane lipids composition in relation to pulp breakdown of longan fruit during storage. Food Chem. 2019, 297, 124955. [Google Scholar] [CrossRef]
- Maalekuu, K.; Elkind, Y.; Leikin-Frenkel, A.; Lurie, S.; Fallik, E. The relationship between water loss, lipid content, membrane integrity and LOX activity in ripe pepper fruit after storage. Postharvest Biol. Technol. 2006, 42, 248–255. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Polyamines and abiotic stress tolerance in plants. Plant Signal. Behav. 2010, 5, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef]
- Raja, V.; Majeed, U.; Kang, H.; Andrabi, K.I.; John, R. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ. Exp. Bot. 2017, 137, 142–157. [Google Scholar] [CrossRef]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef]
- Palma, F.R.; He, C.; Danes, J.M.; Paviani, V.; Coelho, D.R.; Gantner, B.N.; Bonini, M.G. Mitochondrial superoxide dismutase: What the established, the intriguing, and the novel reveal about a key cellular redox switch. Antioxid. Redox Signal. 2020, 32, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Coniglio, S.; Shumskaya, M.; Vassiliou, E. Unsaturated fatty acids and their immunomodulatory properties. Biology 2023, 12, 279. [Google Scholar] [CrossRef]
- Ali, S.; Anjum, M.A.; Ejaz, S.; Hussain, S.; Ercisli, S.; Saleem, M.S.; Sardar, H. Carboxymethyl cellulose coating delays chilling injury development and maintains eating quality of ‘Kinnow’ mandarin fruits during low temperature storage. Int. J. Biol. Macromol. 2021, 168, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Sala, J.M.; Lafuente, M.T. Catalase enzyme activity is related to tolerance of mandarin fruits to chilling. Postharvest Biol. Technol. 2000, 20, 81–89. [Google Scholar] [CrossRef]
- Yang, Q.; Rao, J.; Yi, S.; Meng, K.; Wu, J.; Hou, Y. Antioxidant enzyme activity and chilling injury during low-temperature storage of kiwifruit cv. Hongyang exposed to gradual postharvest cooling. Hortic. Environ. Biotechnol. 2012, 53, 505–512. [Google Scholar] [CrossRef]
- Corpas, F.J.; Freschi, L.; Palma, J.M. ROS metabolism and ripening of fleshy fruits. In Advances in Botanical Research; Mittler, R., Breusegem, F.V., Eds.; Oxidative Stress Response in Plants; Academic Press: Cambridge, MA, USA, 2023; Volume 105, pp. 205–238. [Google Scholar]
- del Río, L.A.; López-Huertas, E. ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol. 2016, 57, 1364–1376. [Google Scholar] [CrossRef]
- Sati, H.; Chinchkar, A.V.; Kataria, P.; Pareek, S. The role of phytomelatonin in plant homeostasis, signaling, and crosstalk in abiotic stress mitigation. Physiol. Plant. 2024, 176, e14413. [Google Scholar] [CrossRef]
- He, Z.; Zhou, M.; Feng, X.; Di, Q.; Meng, D.; Yu, X.; Yan, Y.; Sun, M.; Li, Y. The role of brassinosteroids in plant cold stress response. Life 2024, 14, 1015. [Google Scholar] [CrossRef]
- Li, J.; Yang, P.; Kang, J.; Gan, Y.; Yu, J.; Calderón-Urrea, A.; Lyu, J.; Zhang, G.; Feng, Z.; Xie, J. Transcriptome analysis of pepper (Capsicum annuum) revealed a role of 24-epibrassinolide in response to chilling. Front. Plant Sci. 2016, 7, 1281. [Google Scholar] [CrossRef]
- Wei, L.; Deng, X.-G.; Zhu, T.; Zheng, T.; Li, P.-X.; Wu, J.-Q.; Zhang, D.-W.; Lin, H.-H. Ethylene Is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front. Plant Sci. 2015, 6, 982. [Google Scholar] [CrossRef]
- An, J.-P.; Liu, Z.-Y.; Zhang, X.-W.; Wang, D.-R.; Zeng, F.; You, C.-X.; Han, Y. Brassinosteroid signaling regulator BIM1 integrates brassinolide and jasmonic acid signaling during cold tolerance in apple. Plant Physiol. 2023, 193, 1652–1674. [Google Scholar] [CrossRef] [PubMed]
- Heidari, P.; Entazari, M.; Ebrahimi, A.; Ahmadizadeh, M.; Vannozzi, A.; Palumbo, F.; Barcaccia, G. Exogenous EBR ameliorates endogenous hormone contents in tomato species under low-temperature stress. Horticulturae 2021, 7, 84. [Google Scholar] [CrossRef]
- Chang, J.; Guo, Y.; Zhang, Z.; Wei, C.; Zhang, Y.; Ma, J.; Yang, J.; Zhang, X.; Li, H. CBF-responsive pathway and phytohormones are involved in melatonin-improved photosynthesis and redox homeostasis under aerial cold stress in watermelon. Acta Physiol. Plant 2020, 42, 159. [Google Scholar] [CrossRef]
- Cruz-Mendívil, A.; López-Valenzuela, J.A.; Calderón-Vázquez, C.L.; Vega-García, M.O.; Reyes-Moreno, C.; Valdez-Ortiz, A. Transcriptional changes associated with chilling tolerance and susceptibility in ‘Micro-Tom’ tomato fruit using RNA-seq. Postharvest Biol. Technol. 2015, 99, 141–151. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Q.; Hu, M.; Gao, Z.; An, F.; Li, M.; Jiang, Y. Low-temperature conditioning induces chilling tolerance in stored mango fruit. Food Chem. 2017, 219, 76–84. [Google Scholar] [CrossRef]
- Yu, W.; Sheng, J.; Zhao, R.; Wang, Q.; Ma, P.; Shen, L. Ethylene biosynthesis is involved in regulating chilling tolerance and SlCBF1 gene expression in tomato fruit. Postharvest Biol. Technol. 2019, 149, 139–147. [Google Scholar] [CrossRef]
- Ritonga, F.N.; Ngatia, J.N.; Wang, Y.; Khoso, M.A.; Farooq, U.; Chen, S. AP2/ERF, an Important cold stress-related transcription factor family in plants: A review. Physiol. Mol. Biol. Plants 2021, 27, 1953–1968. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Quan, P.; Liu, H.; Li, L.; Qi, S.; Zhang, M.; Zhang, B.; Li, H.; Zhao, Y.; Ma, B.; et al. Transcriptomic and metabolic analyses provide new insights into the apple fruit quality decline during long-term cold storage. J. Agric. Food Chem. 2020, 68, 4699–4716. [Google Scholar] [CrossRef]
- Li, Y.; Tian, Q.; Wang, Z.; Li, J.; Liu, S.; Chang, R.; Chen, H.; Liu, G. Integrated analysis of transcriptomics and metabolomics of peach under cold stress. Front. Plant Sci. 2023, 14, 1153902. [Google Scholar] [CrossRef]
- Azuma, A.; Yakushiji, H.; Koshita, Y.; Kobayashi, S. Flavonoid Biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 2012, 236, 1067–1080. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Shao, X.; Yu, L.; Xu, F.; Wang, H. Proteomic analysis of postharvest peach fruit subjected to chilling stress or non-chilling stress temperatures during storage. Sci. Hortic. 2015, 197, 72–89. [Google Scholar] [CrossRef]
- Li, T.; Yun, Z.; Zhang, D.; Yang, C.; Zhu, H.; Jiang, Y.; Duan, X. Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit. Front. Plant Sci. 2015, 6, 845. [Google Scholar] [CrossRef]
- Zhan, W.; Wang, Y.; Duan, W.; Li, A.; Miao, Y.; Wang, H.; Meng, J.; Liu, H.; Niu, L.; Pan, L.; et al. Preliminary analysis, combined with omics of chilling injury mechanism of peach fruits with different cold sensitivities during postharvest cold storage. Horticulturae 2024, 10, 46. [Google Scholar] [CrossRef]
- Wang, B.; Shen, F.; Zhu, S. Proteomic analysis of differentially accumulated proteins in cucumber (Cucumis sativus) fruit peel in response to pre-storage cold acclimation. Front. Plant Sci. 2018, 8, 2167. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, C.; Yang, P.; Wang, Y.; Zhang, L.; Yang, X. Chilling injury mechanism of hardy kiwifruit (Actinidia arguta) was revealed by proteome of label-free techniques. J. Food Biochem. 2021, 45, e13897. [Google Scholar] [CrossRef]
- Xu, R.; Wang, L.; Li, K.; Cao, J.; Zhao, Z. Integrative transcriptomic and metabolomic alterations unravel the effect of melatonin on mitigating postharvest chilling injury upon plum (cv. Friar) fruit. Postharvest Biol. Technol. 2022, 186, 111819. [Google Scholar] [CrossRef]
- Tao, S.; Zhu, Y.; Pan, Y.; Zhang, Z.; Huang, L. Enhancement of respiratory metabolism of the pentose phosphate pathway (PPP) strengthens the chilling tolerance of postharvest papaya fruit stored at 1 °C. Postharvest Biol. Technol. 2022, 191, 111988. [Google Scholar] [CrossRef]
- Choi, H.R.; Baek, M.W.; Tilahun, S.; Jeong, C.S. Long-term cold storage affects metabolites, antioxidant activities, and ripening and stress-related genes of kiwifruit cultivars. Postharvest Biol. Technol. 2022, 189, 111912. [Google Scholar] [CrossRef]
- Bhattacharya, A. Lipid metabolism in plants under low-temperature stress: A review. In Physiological Processes in Plants Under Low Temperature Stress; Bhattacharya, A., Ed.; Springer: Singapore, 2022; pp. 409–516. ISBN 9789811690372. [Google Scholar]
- Li, Q.; Lin, H.; Lin, H.; Lin, M.; Wang, H.; Wei, W.; Chen, J.; Lu, W.; Shao, X.; Fan, Z. The metabolism of membrane lipid participates in the occurrence of chilling injury in cold-stored banana fruit. Food Res. Int. 2023, 173, 113415. [Google Scholar] [CrossRef]
- Liu, J.; Li, Q.; Chen, J.; Jiang, Y. Revealing further insights on chilling injury of postharvest bananas by untargeted lipidomics. Foods 2020, 9, 894. [Google Scholar] [CrossRef]
- Xu, P.; Huber, D.J.; Gong, D.; Yun, Z.; Pan, Y.; Jiang, Y.; Zhang, Z. Amelioration of chilling injury in ‘Guifei’ mango fruit by melatonin is associated with regulation of lipid metabolic enzymes and remodeling of lipidome. Postharvest Biol. Technol. 2023, 198, 112233. [Google Scholar] [CrossRef]
- Sirangelo, T.M.; Rogers, H.J.; Spadafora, N.D. Molecular investigations of peach post-harvest ripening processes and VOC biosynthesis pathways: A review focused on integrated genomic, transcriptomic, and metabolomic approaches. Chem. Proc. 2022, 10, 8. [Google Scholar] [CrossRef]
- Farcuh, M.; Hopfer, H. Aroma volatiles as predictors of chilling injury development during peach (Prunus persica (L.) Batsch) cold storage and subsequent shelf-life. Postharvest Biol. Technol. 2023, 195, 112137. [Google Scholar] [CrossRef]
- Palumbo, M.; Cefola, M.; Pace, B.; Ricci, I.; Siano, F.; Amato, G.; Stocchero, M.; Cozzolino, R. Volatile metabolites to assess the onset of chilling injury in fresh-cut nectarines. Foods 2024, 13, 1047. [Google Scholar] [CrossRef]
- Talarico, E.; Zambelli, A.; Araniti, F.; Greco, E.; Chiappetta, A.; Bruno, L. Unravelling the epigenetic code: DNA methylation in plants and its role in stress response. Epigenomes 2024, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, K.; Wu, C.; Hao, Y.; Zhang, B.; Grierson, D.; Chen, K.; Xu, C. DNA hypermethylation associated with the development of temperature-dependent postharvest chilling injury in peach fruit. Postharvest Biol. Technol. 2021, 181, 111645. [Google Scholar] [CrossRef]
- Rothkegel, K.; Espinoza, A.; Sanhueza, D.; Lillo-Carmona, V.; Riveros, A.; Campos-Vargas, R.; Meneses, C. Identification of DNA methylation and transcriptomic profiles associated with fruit mealiness in Prunus persica (L.) Batsch. Front. Plant Sci. 2021, 12, 684130. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Yang, C.; Cao, X.; Wei, C.; Chen, K.; Li, X.; Zhang, B. Chilling-induced peach flavor loss is associated with expression and DNA methylation of functional genes. J. Adv. Res. 2023, 53, 17–31. [Google Scholar] [CrossRef]
- Zhang, B.; Tieman, D.M.; Jiao, C.; Xu, Y.; Chen, K.; Fei, Z.; Giovannoni, J.J.; Klee, H.J. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proc. Natl. Acad. Sci. USA 2016, 113, 12580–12585. [Google Scholar] [CrossRef]
- Sicilia, A.; Scialò, E.; Puglisi, I.; Lo Piero, A.R. Anthocyanin biosynthesis and DNA methylation dynamics in sweet orange fruit [Citrus sinensis L. (Osbeck)] under cold stress. J. Agric. Food Chem. 2020, 68, 7024–7031. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kang, H. Recent insights into the physio-biochemical and molecular mechanisms of low temperature stress in tomato. Plants 2024, 13, 2715. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.; Han, X.; Ma, Q.; Zhou, W.; Guo, H.; Li, D.; Luo, Z. Azacytidine shows potential in controlling the chilling injury of banana peel during cold storage. Food Control 2024, 159, 110283. [Google Scholar] [CrossRef]
- Lin, X.; Shi, Y.; Liu, S.; Liu, X.; Zhang, M.; Zhang, B.; Li, S.; Chen, K. Genome-wide identification of the histone acetyltransferase gene family in Citrus Clementina and its potential roles in citrate metabolism. Food Qual. Saf. 2024, 8, fyad052. [Google Scholar] [CrossRef]
- Guo, M.; Wang, S.; Liu, H.; Yao, S.; Yan, J.; Wang, C.; Miao, B.; Guo, J.; Ma, F.; Guan, Q.; et al. Histone deacetylase MdHDA6 is an antagonist in regulation of transcription factor MdTCP15 to promote cold tolerance in apple. Plant Biotechnol. J. 2023, 21, 2254–2272. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Sasaki, T.; Ueda, M.; Sako, K.; Seki, M. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front. Plant Sci. 2015, 6, 114. [Google Scholar] [CrossRef]
- Wielogórska, M.; Rucińska, A.; Kloc, Y.; Boczkowska, M. Long non-coding RNAs in the cold-stress response of horticultural plants: Molecular mechanisms and potential applications. Int. J. Mol. Sci. 2025, 26, 10464. [Google Scholar] [CrossRef]
- Xia, S.-W.; Song, C.-J.; Zheng, X.-F.; Zhang, Y.; Anwar, W.; Dissanayaka, D.D.N.V.; Zhu, P.-Z.; Liu, J.-L.; Lai, Y.-S. Identification and characterization of long non-coding RNA (lncRNA) in wild and semi-wild cucumbers. BMC Plant Biol. 2025, 25, 748. [Google Scholar] [CrossRef]
- Lai, R.; Wu, X.; Feng, X.; Gao, M.; Long, Y.; Wu, R.; Cheng, C.; Chen, Y. Identification and characterization of long non-coding RNAs: Implicating insights into their regulatory role in kiwifruit ripening and softening during low-temperature storage. Plants 2023, 12, 1070. [Google Scholar] [CrossRef]
- Moh, N.M.M.; Zhang, P.; Chen, Y.; Chen, M. Computational identification of miRNAs and temperature-responsive lncRNAs from mango (Mangifera indica L.). Front. Genet. 2021, 12, 607248. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, L.; Zhu, B.; Zhu, H.; Luo, Y.; Wang, Q.; Zuo, J. Integrative analysis of long non-coding RNA acting as ceRNAs involved in chilling injury in tomato fruit. Gene 2018, 667, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, W.; Li, C.; Shao, T.; Jiang, X.; Zhao, H.; Ai, W. Postharvest hot water dipping and hot water forced convection treatments alleviate chilling injury for zucchini fruit during cold storage. Sci. Hortic. 2019, 249, 219–227. [Google Scholar] [CrossRef]
- Si, J.; Fan, Y.; Liu, Z.; Wei, W.; Xiao, X.; Yang, Y.; Shan, W.; Kuang, J.; Lu, W.; Fan, Z.; et al. Comparative transcriptomic analysis reveals the potential mechanism of hot water treatment alleviated-chilling injury in banana fruit. Food Res. Int. 2022, 157, 111296. [Google Scholar] [CrossRef]
- Endo, H.; Miyazaki, K.; Ose, K.; Imahori, Y. Hot water treatment to alleviate chilling injury and enhance ascorbate-glutathione cycle in sweet pepper fruit during postharvest cold storage. Sci. Hortic. 2019, 257, 108715. [Google Scholar] [CrossRef]
- Yang, J.; Fu, M.; Zhao, Y.; Mao, L. Reduction of chilling injury and ultrastructural damage in cherry tomato fruits after hot water treatment. Agric. Sci. China 2009, 8, 304–310. [Google Scholar] [CrossRef]
- González-Aguilar, G.A.; Gayosso, L.; Cruz, R.; Fortiz, J.; Báez, R.; Wang, C.Y. Polyamines induced by hot water treatments reduce chilling injury and decay in pepper fruit. Postharvest Biol. Technol. 2000, 18, 19–26. [Google Scholar] [CrossRef]
- Woolf, A.B.; Cox, K.A.; White, A.; Ferguson, I.B. Low temperature conditioning treatments reduce external chilling injury of ‘Hass’ avocados. Postharvest Biol. Technol. 2003, 28, 113–122. [Google Scholar] [CrossRef]
- Chaudhary, P.R.; Jayaprakasha, G.K.; Porat, R.; Patil, B.S. Low temperature conditioning reduces chilling injury while maintaining quality and certain bioactive compounds of ‘Star Ruby’ grapefruit. Food Chem. 2014, 153, 243–249. [Google Scholar] [CrossRef]
- Vicente, A.R.; Pineda, C.; Lemoine, L.; Civello, P.M.; Martinez, G.A.; Chaves, A.R. UV-C treatments reduce decay, retain quality and alleviate chilling injury in pepper. Postharvest Biol. Technol. 2005, 35, 69–78. [Google Scholar] [CrossRef]
- Liu, C.; Jahangir, M.M.; Ying, T. Alleviation of chilling injury in postharvest tomato fruit by preconditioning with ultraviolet irradiation. J. Sci. Food Agric. 2012, 92, 3016–3022. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, S.; Xu, R.; Tu, S.; Tu, K. Interactions among chilling tolerance, sucrose degradation and organic acid metabolism in UV-C-irradiated peach fruit during postharvest cold storage. Acta Physiol. Plant. 2019, 41, 79. [Google Scholar] [CrossRef]
- Liu, L.; Wei, Y.; Shi, F.; Liu, C.; Liu, X.; Ji, S. Intermittent warming improves postharvest quality of bell peppers and reduces chilling injury. Postharvest Biol. Technol. 2015, 101, 18–25. [Google Scholar] [CrossRef]
- Biswas, P.; East, A.R.; Brecht, J.K.; Hewett, E.W.; Heyes, J.A. Intermittent warming during low temperature storage reduces tomato chilling injury. Postharvest Biol. Technol. 2012, 74, 71–78. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, W.; Cao, J.; Ma, L. A combination of 1-methylcyclopropene treatment and intermittent warming alleviates chilling injury and affects phenolics and antioxidant activity of peach fruit during storage. Sci. Hortic. 2018, 229, 175–181. [Google Scholar] [CrossRef]
- Taghipour, L.; Rahemi, M.; Assar, P.; Ramezanian, A.; Mirdehghan, S.H. Alleviating chilling injury in stored pomegranate using a single intermittent warming cycle: Fatty acid and polyamine modifications. Int. J. Food Sci. 2021, 2021, 2931353. [Google Scholar] [CrossRef]
- Nian, Y.; Wang, N.; Li, R.; Shao, Y.; Li, W. Cold shock treatment alleviates chilling injury in papaya fruit during storage by improving antioxidant capacity and related gene expression. Sci. Hortic. 2022, 294, 110784. [Google Scholar] [CrossRef]
- Zhao, Z.; Jiang, W.; Cao, J.; Zhao, Y.; Gu, Y. Effect of cold-shock treatment on chilling injury in mango (Mangifera indica L. Cv. ‘Wacheng’) fruit. J. Sci. Food Agric. 2006, 86, 2458–2462. [Google Scholar] [CrossRef]
- Zhang, Y. Post-harvest cold shock treatment enhanced antioxidant capacity to reduce chilling injury and improves the shelf life of guava (Psidium guajava L.). Front. Sustain. Food Syst. 2024, 8, 1297056. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, S.; Chen, G.; Zheng, Y.; Jin, P. Cold shock treatment alleviates chilling injury in peach fruit by regulating antioxidant capacity and membrane lipid metabolism. Food Qual. Saf. 2022, 6, fyab026. [Google Scholar] [CrossRef]
- Pesis, E.; Aharoni, D.; Aharon, Z.; Ben-Arie, R.; Aharoni, N.; Fuchs, Y. Modified atmosphere and modified humidity packaging alleviates chilling injury symptoms in mango fruit. Postharvest Biol. Technol. 2000, 19, 93–101. [Google Scholar] [CrossRef]
- Flores, F.B.; Martínez-Madrid, M.C.; Ben Amor, M.; Pech, J.C.; Latché, A.; Romojaro, F. Modified atmosphere packaging confers additional chilling tolerance on ethylene-inhibited Cantaloupe Charentais melon fruit. Eur. Food Res. Technol. 2004, 219, 614–619. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, Z. Controlled and modified atmospheres influence chilling injury, fruit quality and antioxidative system of Japanese plums (Runus salicina Lindell). Int. J. Food Sci. Technol. 2013, 48, 363–374. [Google Scholar] [CrossRef]
- Song, L.; Zhang, W.; Li, Q.; Jiang, Z.; Wang, Y.; Xuan, S.; Zhao, J.; Luo, S.; Shen, S.; Chen, X. Melatonin alleviates chilling injury and maintains postharvest quality by enhancing antioxidant capacity and inhibiting cell wall degradation in cold-stored eggplant fruit. Postharvest Biol. Technol. 2022, 194, 112092. [Google Scholar] [CrossRef]
- Jannatizadeh, A.; Aghdam, M.S.; Luo, Z.; Razavi, F. Impact of exogenous melatonin application on chilling injury in tomato fruits during cold storage. Food Bioprocess Technol. 2019, 12, 741–750. [Google Scholar] [CrossRef]
- Kebbeh, M.; Dong, J.; Huan, C.; Liu, Y.; Zheng, X. Melatonin treatment alleviates chilling injury in mango fruit ‘keitt’ by modulating proline metabolism under chilling stress. J. Integr. Agric. 2023, 22, 935–944. [Google Scholar] [CrossRef]
- Wu, Y.; Bai, L.; Dai, X.; Ba, L.; Wan, J.; Liang, W.; Lin, H.; Fan, Z. Comparative transcriptomic analysis reveals the reactive oxygen species metabolism involving in melatonin-alleviated chilling injury in postharvest banana fruit. Plant Physiol. Biochem. 2025, 222, 109693. [Google Scholar] [CrossRef]
- Niu, Y.; Ye, L.; Wang, Y.; Shi, Y.; Liu, Y.; Luo, A. Transcriptome analysis reveals salicylic acid treatment mitigates chilling injury in kiwifruit by enhancing phenolic synthesis and regulating phytohormone signaling pathways. Postharvest Biol. Technol. 2023, 205, 112483. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, C.; Brummell, D.A.; Qi, S.; Lin, Q.; Bi, J.; Duan, Y. Salicylic acid treatment mitigates chilling injury in peach fruit by regulation of sucrose metabolism and soluble sugar content. Food Chem. 2021, 358, 129867. [Google Scholar] [CrossRef]
- Sang, Y.; Liu, Y.; Tang, Y.; Yang, W.; Guo, M.; Chen, G. Transcriptome sequencing reveals mechanism of improved antioxidant capacity and maintained postharvest quality of winter jujube during cold storage after salicylic acid treatment. Postharvest Biol. Technol. 2022, 189, 111929. [Google Scholar] [CrossRef]
- Li, P.; Yin, F.; Song, L.; Zheng, X. Alleviation of chilling injury in tomato fruit by exogenous application of oxalic acid. Food Chem. 2016, 202, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mao, L.; Li, X.; Lv, Z.; Liu, C.; Huang, Y.; Li, D. Oxalic acid pretreatment reduces chilling injury in Hami melons (Cucumis melo Var. Reticulatus Naud.) by regulating enzymes involved in antioxidative pathways. Sci. Hortic. 2018, 241, 201–208. [Google Scholar] [CrossRef]
- Duan, W.; Yang, C.; Cao, X.; Zhang, C.; Liu, H.; Chen, K.; Li, X.; Zhang, B. Transcriptome and DNA methylome analysis reveal new insights into methyl jasmonate-alleviated chilling injury of peach fruit after cold storage. Postharvest Biol. Technol. 2022, 189, 111915. [Google Scholar] [CrossRef]
- Niu, Y.; Ye, L.; Wang, Y.; Shi, Y.; Luo, A. Role of methyl jasmonate in alleviating chilling injury in “Xuxiang” kiwifruit: Insights from transcriptomic evidence. Postharvest Biol. Technol. 2024, 216, 113065. [Google Scholar] [CrossRef]
- Zhou, J.; Min, D.; Li, Z.; Fu, X.; Zhao, X.; Wang, J.; Zhang, X.; Li, F.; Li, X. Effects of chilling acclimation and methyl jasmonate on sugar metabolism in tomato fruits during cold storage. Sci. Hortic. 2021, 289, 110495. [Google Scholar] [CrossRef]
- Tang, J.; Zhao, Y.; Qi, S.; Dai, Q.; Lin, Q.; Duan, Y. Abscisic acid alleviates chilling injury in cold-stored peach fruit by regulating ethylene and hydrogen peroxide metabolism. Front. Plant Sci. 2022, 13, 987573. [Google Scholar] [CrossRef] [PubMed]
- Koushesh, M.; Arzani, K.; Barzegar, M. Postharvest polyamine application alleviates chilling injury and affects apricot storage ability. J. Agric. Food Chem. 2012, 60, 8947–8953. [Google Scholar] [CrossRef]
- Sati, H.; Pareek, S.; Rishi, V.; Badgujar, P.C. Synergistic effects of melatonin and calcium in reducing postharvest chilling injury, maintaining quality and regulating gene expression in mangoes. Postharvest Biol. Technol. 2025, 230, 113795. [Google Scholar] [CrossRef]
- Sun, S.; Fang, J.; Lin, M.; Hu, C.; Qi, X.; Chen, J.; Zhong, Y.; Muhammad, A.; Li, Z.; Li, Y. Comparative metabolomic and transcriptomic studies reveal key metabolism pathways contributing to freezing tolerance under cold stress in kiwifruit. Front. Plant Sci. 2021, 12, 628969. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Z.; Ban, Z.; Li, L.; Chen, C.; Kowaleguet, M.G.G.M.; Chen, F.; Fei, L.; Wang, L. Exogenous polyamines alleviate chilling injury of jujube fruit (Zizyphus jujuba Mill). J. Food Process. Preserv. 2020, 44, e14746. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, Y.; Zhao, L.; Zhao, Y.; Wu, Z.; Zheng, Y.; Jin, P. EjCML19 and EjWRKY7 Synergistically function in calcium chloride-alleviated chilling injury of loquat fruit. Postharvest Biol. Technol. 2023, 203, 112417. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Q.; Tian, C.; Liu, G.; Pan, Y.; Xu, X.; Shi, X.; Zhang, Z.; Meng, L. Physiological and transcriptome analyses of CaCl2 treatment to alleviate chilling injury in pineapple. Plants 2022, 11, 2215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Che, F.; Zhang, H.; Pan, Y.; Xu, M.; Ban, Q.; Han, Y.; Rao, J. Effect of nitric oxide treatment on chilling injury, antioxidant enzymes and expression of the CmCBF1 and CmCBF3 genes in cold-stored Hami melon (Cucumis melo L.) fruit. Postharvest Biol. Technol. 2017, 127, 88–98. [Google Scholar] [CrossRef]
- Zhao, R.; Sheng, J.; Lv, S.; Zheng, Y.; Zhang, J.; Yu, M.; Shen, L. Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biol. Technol. 2011, 62, 121–126. [Google Scholar] [CrossRef]
- Wu, B.; Guo, Q.; Li, Q.; Ha, Y.; Li, X.; Chen, W. Impact of postharvest nitric oxide treatment on antioxidant enzymes and related genes in banana fruit in response to chilling tolerance. Postharvest Biol. Technol. 2014, 92, 157–163. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, J.; Song, C.; Qi, S.; Lin, Q.; Cui, Y.; Ling, J.; Duan, Y. Nitric oxide alleviates chilling injury by regulating the metabolism of lipid and cell wall in cold-storage peach fruit. Plant Physiol. Biochem. 2021, 169, 63–69. [Google Scholar] [CrossRef]
- Li, R.; Zhang, L.; Wang, L.; Chen, L.; Zhao, R.; Sheng, J.; Shen, L. Reduction of tomato-plant chilling tolerance by CRISPR–Cas9-mediated SlCBF1 mutagenesis. J. Agric. Food Chem. 2018, 66, 9042–9051. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Fan, S.; Zhang, T.; Sun, H.; Zhu, Y.; Gong, H.; Guo, J. SlHY5 is a necessary regulator of the cold acclimation response in tomato. Plant Growth Regul. 2020, 91, 1–12. [Google Scholar] [CrossRef]
- Vega-Alvarez, M.; Salazar-Salas, N.Y.; López-Angulo, G.; Pineda-Hidalgo, K.V.; López-López, M.E.; Vega-García, M.O.; Delgado-Vargas, F.; López-Valenzuela, J.A. Metabolomic changes in mango fruit peel associated with chilling injury tolerance induced by quarantine hot water treatment. Postharvest Biol. Technol. 2020, 169, 111299. [Google Scholar] [CrossRef]
- Niaz, N.; Hu, W.; Pan, S.; Ali, K.; Niaz, S. Heat shock combined with chemical treatment partially recovered chilling injury and improved antioxidant capacity in banana. Postharvest Biol. Technol. 2024, 216, 113077. [Google Scholar] [CrossRef]
- Tadesse, T.N.; Abtew, W.G. Effect of hot water treatment on reduction of chilling injury and keeping quality in tomato (Solanum lycopersicum L.) fruits. J. Stored Prod. Postharvest Res. 2016, 7, 61–68. [Google Scholar] [CrossRef]
- Li, J.; Azam, M.; Noreen, A.; Umer, M.A.; Ilahy, R.; Akram, M.T.; Qadri, R.; Khan, M.A.; Rehman, S.; Hussain, I.; et al. Application of methyl jasmonate to papaya fruit stored at lower temperature attenuates chilling injury and enhances the antioxidant system to maintain quality. Foods 2023, 12, 2743. [Google Scholar] [CrossRef] [PubMed]
- Magri, A.; Cice, D.; Capriolo, G.; Petriccione, M. Effects of ascorbic acid and melatonin treatments on antioxidant system in fresh-cut avocado fruits during cold storage. Food Bioprocess Technol. 2022, 15, 2468–2482. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Asghari, M.; Khorsandi, O.; Mohayeji, M. Alleviation of postharvest chilling injury of tomato fruit by salicylic acid treatment. J. Food Sci. Technol. 2014, 51, 2815–2820. [Google Scholar] [CrossRef]
- Hao, J.; Li, X.; Xu, G.; Huo, Y.; Yang, H. Exogenous progesterone treatment alleviates chilling injury in postharvest banana fruit associated with induction of alternative oxidase and antioxidant defense. Food Chem. 2019, 286, 329–337. [Google Scholar] [CrossRef]
- Liu, J.; Li, F.; Li, T.; Yun, Z.; Duan, X.; Jiang, Y. Fibroin treatment inhibits chilling injury of banana fruit via energy regulation. Sci. Hortic. 2019, 248, 8–13. [Google Scholar] [CrossRef]
- Garcia, F.; Davidov-Pardo, G. Recent advances in the use of edible coatings for preservation of avocados: A review. J. Food Sci. 2021, 86, 6–15. [Google Scholar] [CrossRef]
- Serry, N. Some Modified atmosphere packaging treatments reduce chilling injury and maintain postharvest quality of Washington Navel orange. J. Hortic. Sci. Ornam. Plants 2011, 2, 108–113. [Google Scholar]
- Li, X.; Tian, J.; Ritenour, M.A.; Li, J.; Song, S.; Ma, H. Quality and physiological responses of fuji apple to modified atmosphere packaging during cold storage. J. Appl. Hortic. 2010, 12, 135–139. [Google Scholar] [CrossRef]
- Mditshwa, A.; Bower, J.P.; Bertling, I.; Mathaba, N.; Tesfay, S.Z. The potential of postharvest silicon dips to regulate phenolics in citrus peel as a method to mitigate chilling injury in lemons. Afr. J. Biotechnol. 2013, 12, 1482–1489. [Google Scholar]
- Antunes, M.D.C.; Dandlen, S.; Cavaco, A.M.; Miguel, G. Effects of Postharvest Application of 1-MCP and postcutting dip treatment on the quality and nutritional properties of fresh-cut kiwifruit. J. Agric. Food Chem. 2010, 58, 6173–6181. [Google Scholar] [CrossRef] [PubMed]
- Ngcobo, M.E.K.; Delele, M.A.; Chen, L.; Opara, U.L. Investigating the potential of a humidification system to control moisture loss and quality of ‘Crimson Seedless’ table grapes during cold storage. Postharvest Biol. Technol. 2013, 86, 201–211. [Google Scholar] [CrossRef]
- Lorente-Mento, J.M.; Guillén, F.; Valverde, J.M.; Valero, D.; Badiche, F.; Robles, A.; Díaz-Mula, H.M.; Serrano, M.; Martínez-Romero, D. Chilling injury control in pomegranate fruit with compostable stretchable skin film. Sci. Hortic. 2024, 323, 112480. [Google Scholar] [CrossRef]
- Meng, X.; Li, B.; Liu, J.; Tian, S. Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chem. 2008, 106, 501–508. [Google Scholar] [CrossRef]
- López-López, M.E.; López-Valenzuela, J.Á.; Delgado-Vargas, F.; López-Angulo, G.; Carrillo-López, A.; Ayón-Reyna, L.E.; Vega-García, M.O. A treatment combining hot water with calcium lactate improves the chilling injury tolerance of mango fruit. HortScience 2018, 53, 217–223. [Google Scholar] [CrossRef]
- Peterson, E.; Grant, J.; Roberts, D.; Karov, V. Evaluating the trade restrictiveness of phytosanitary measures on U.S. fresh fruit and vegetable imports. Am. J. Agric. Econ. 2013, 95, 842–858. [Google Scholar] [CrossRef]


| Treatment | Fruit | Treatment Conditions | Molecular/Physiological Effects | PCI Mitigation Mechanism | References |
|---|---|---|---|---|---|
| Hot Water Treatment (HWT) | Zucchini | HWFC (40 °C, 2 m/s, 20 min) & HWD (40 °C, 25 min) | EL ↓, MDA ↓, weight loss ↓, firmness ↑, TSS ↑, ascorbic acid ↑ | Heat diffusion enhances stress tolerance, reduces lipid peroxidation | [107] |
| Banana | 52 °C for 3 min, 7 °C storage | ROS ↓, lipid peroxidation ↓, EL ↓, proline ↑, HSPs ↑ | Activates stress-response genes, maintains cell structure | [108] | |
| Sweet Pepper | 45 °C for 15 min, 6 °C storage | APX ↑, GR ↑, DHAR ↑, MDHAR ↑, ROS ↓ | Enhances antioxidant defenses, reduces oxidative stress | [109] | |
| Cherry Tomato | 40 °C for 15 min, 5 °C storage | Chloroplast-to-chromoplast transition ↑, mitochondrial integrity ↑ | Protects cellular structures, minimizes oxidative damage | [110] | |
| Bell Pepper | 53 °C for 4 min, 8 °C storage | PCI symptoms ↓, polyamines ↑ | Polyamines stabilize membranes | [111] | |
| Low-Temperature Conditioning (LTC) | Loquat | 5 °C for 6 d, then 0 °C for 54 d | Internal browning ↓, juice content ↑ | Regulates lignin biosynthesis, oxidative stress | [24] |
| Avocado | 6–8 °C for 3–5 d, then 0 °C for 3–4 weeks | Skin pitting ↓, discoloration ↓ | Enhances membrane stability, stress-response genes | [112] | |
| Mango | 12 °C for 24 h, then 5 °C for 25 d | Soluble solids ↑, proline ↑, ROS ↓, EL ↓ | Upregulates MiCBF1, activates cold-response genes | [70] | |
| Grapefruit | 16 °C for 7 d, then 2 °C storage | Ascorbic acid ↑, flavonoids ↑, carotenoids ↑ | Enhances nutritional and sensory quality | [113] | |
| UV Treatment (UV-C/UV-B) | Bell Pepper | UV-C (7 kJ/m2), 10 °C for 18 d | Firmness ↑, decay ↓, EL ↓ | Induces ROS, boosts antioxidant defenses | [114] |
| Tomato | UV-C/UV-B, 2 °C for 20 d, then 10 d at 20 °C | Ethylene ↓, firmness ↑, TSS ↑ | Activates HSPs, antioxidant enzymes | [115] | |
| Peach | UV-C (1.5 kJ/m2), 1 °C for 35 d | Sugar ↓, acid ↓, fruit quality ↑ | Regulates sugar and acid metabolism | [116] | |
| Intermittent Warming (IW) | Bell Pepper | 4 °C storage, IW at 20 °C | Firmness ↑, membrane integrity ↑, UFAs ↑ | Delays lipid peroxidation, stabilizes membranes | [117] |
| Tomato | 2.5 °C or 6 °C storage, IW at 20 °C | PCI symptoms ↓, deterioration ↓ | Enhances antioxidants, ethylene pathway | [118] | |
| Peach | IW at 2 °C | ACO ↑, ACS ↑, woolliness ↓ | Activates ethylene, cell-wall enzymes | [119] | |
| Pomegranate | 2 °C storage, IW at 20 °C | UFAs/SFAs ↑, polyamines ↑ | Stabilizes membranes, reduces stress | [120] |
| Treatment | Fruit | Gene Expression/Enzymatic Activity | Result | Reference |
|---|---|---|---|---|
| Melatonin | Plum | ↓ ETR, EBF, ERF, EIN | ↓ Ethylene production, ↓ Ripening rate | [81] |
| Eggplant | ↑ SOD, CAT1/2, ↓ PME, PG | ↑ Antioxidant activity, ↓ Senescence | [128] | |
| Tomato | ↑ H-ATPase, Ca-ATPase ↓ PLD, LOX | ↑ Chilling tolerance, ↓ Membrane damage | [129] | |
| Mango | ↑ P5CS, P5CR, OAT; ↓ PDH3 | ↑ Proline accumulation, ↑ Stress resistance | [130] | |
| Banana | ↑ MaSOD, MaCAT ↓ MaRBOH | ↑ Antioxidant defense, ↓ ROS damage | [131] | |
| Salicylic acid | Kiwifruit | ↑ PAL, C4H, 4CL, DREB | ↑ Aroma biosynthesis | [132] |
| Peach | ↑ DREB | ↑ Sugar accumulation, ↑ Cold tolerance | [133] | |
| Winter jujube | ↑ SOD1/3 | ↑ Antioxidant response, ↑ Fruit firmness | [134] | |
| Oxalic acid | Tomato | ↑ SDH, Ca2+-ATPase, H+-ATPase | ↑ Chilling resistance, ↑ Carotenoid biosynthesis | [135] |
| Hami melon | ↑ CmGR, CmAPX, CmPOD | ↑ Antioxidant enzyme activity, ↓ Senescence | [136] | |
| Methyl jasmonate | Peach | ↑ PpNAC1 ↓ PpACS1, PpExp1 | ↓ Softening, ↓ Ethylene biosynthesis | [137] |
| Kiwifruit | ↓ LOX, ACC, ACS ↑ MYB, WRKY, bZIP | ↓ Ripening rate, ↑ Storage quality | [138] | |
| Tomato | ↑ Starch breakdown, ↑ Sucrose accumulation; ↓ Glucose, Fructose | ↑ Sugar metabolism, ↑ Taste retention | [139] | |
| Abscisic acid | Peach | ↑ AsA-GSH cycle; ↓ PpACO1, PpEIN2 | ↑ Antioxidant activity, ↓ Ethylene response | [140] |
| Polyamines | Apricot | ↑ POX, CAT, SOD | ↑ Postharvest storage, ↓ Decay | [141] |
| PCI Susceptibility Category | Recommended Mitigation Strategy | Underlying Mechanistic Rationale | Ideal Application Scenario | Implementation Considerations | Reference |
|---|---|---|---|---|---|
| High PCI sensitivity | Physical | Stabilizes membrane phase transitions; reduces sudden ROS bursts | Long-distance export; fruits requiring prolonged cold storage | Low cost; no chemical residues; requires temperature-controlled facilities | [112,121,153,154,155] |
| Chemical | Enhances antioxidant capacity; stabilizes membrane lipids | When rapid deployment is needed; domestic markets | Generally low cost; regulatory approval required for some compounds | [3,156,157,158,159] | |
| Edible coatings | Reduces moisture loss; modulates internal atmosphere; delays chilling-triggered senescence | Retail markets; fruits needing appearance retention | GRAS; consumer-friendly; moderate material cost | [19,160,161] | |
| Moderate PCI sensitivity | MAP | Limits oxygen stress; slows metabolic rate and ROS formation | Export shipments; extended storage duration | Requires packaging infrastructure; low per-unit cost | [162,163] |
| CA storage | Reduces chilling-related lipid oxidation and respiration | Industrial-scale storage | High infrastructure cost; suitable for large-scale operations | ||
| GRAS chemical dips | Enhances cell wall stability; lowers membrane leakage | Domestic transport; medium storage periods | Relatively low cost; safe; minimal regulatory issues | [164,165] | |
| Low to moderate PCI sensitivity | Physical cooling + humidity control | Minimizes desiccation-related membrane stress | Short supply chains; local markets | Very low cost; easy adoption | [166] |
| Biological coatings/films (aloe/chitosan categories) | Maintains firmness; delays oxidative stress progression | Markets requiring clean-label or organic preference | Consumer-preferred; biodegradable; moderate cost | [167,168] | |
| Fruits requiring long-term export storage | Combination strategies (Physical + Chemical) | Multi-target control on ROS, membranes & metabolism | When a single treatment is insufficient; quality must be export-grade | Requires integration of treatments; moderate cost | [169] |
| Fruits with regulatory restrictions on chemicals | Physical treatments + Coatings | Avoids restricted chemical inputs | Export to strict regulatory markets | Fully compliant; safe; scalable | [170] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sati, H.; Kataria, P.; Pareek, S.; Neuwald, D.A. Molecular Biochemistry and Physiology of Postharvest Chilling Injury in Fruits: Mechanisms and Mitigation. Agronomy 2025, 15, 2914. https://doi.org/10.3390/agronomy15122914
Sati H, Kataria P, Pareek S, Neuwald DA. Molecular Biochemistry and Physiology of Postharvest Chilling Injury in Fruits: Mechanisms and Mitigation. Agronomy. 2025; 15(12):2914. https://doi.org/10.3390/agronomy15122914
Chicago/Turabian StyleSati, Hansika, Priyanka Kataria, Sunil Pareek, and Daniel Alexandre Neuwald. 2025. "Molecular Biochemistry and Physiology of Postharvest Chilling Injury in Fruits: Mechanisms and Mitigation" Agronomy 15, no. 12: 2914. https://doi.org/10.3390/agronomy15122914
APA StyleSati, H., Kataria, P., Pareek, S., & Neuwald, D. A. (2025). Molecular Biochemistry and Physiology of Postharvest Chilling Injury in Fruits: Mechanisms and Mitigation. Agronomy, 15(12), 2914. https://doi.org/10.3390/agronomy15122914

