Insights into the Mechanisms and Functional Effects of Insoluble Dietary Fiber Modification: A Review
Abstract
1. Introduction
2. Definition and Classification of Dietary Fiber
2.1. Health-Promoting Effects of Soluble Dietary Fiber (SDF)
2.2. Health-Promoting Effects of Insoluble Dietary Fiber (IDF)
2.3. Synergistic Effects & Modification Goals
3. Overview of Dietary Fiber Modification Technology
3.1. Physical Modification Technology
3.1.1. Heat Treatment
3.1.2. Microwave Radiation
3.1.3. Ultrasonic Treatment
3.1.4. High-Pressure Homogenization Modification
3.1.5. High Hydrostatic Pressure
3.1.6. Micronization Technology
3.2. Chemical Modification Technology
3.2.1. Esterification Modification
3.2.2. Oxidation Modification
3.3. Biological Modification Technology
3.3.1. Enzymatic Modification
3.3.2. Microbial Fermentation Modification
| Microorganism Type | Main Enzyme System | Functional Improvement Effect | Typical Structural Change | Reference |
|---|---|---|---|---|
| Lactic acid bacteria | Cellulase, hemicellulase | The proportion of soluble dietary fiber (SDF) increased to 6.17%, and the water-holding capacity/swelling capacity improved by 1.5–1.7 times. | Porous wrinkled structure and decreased crystallinity. | [43] |
| Lactobacillus plantarum | Cellulase, hemicellulase | Water-holding capacity (WHC)/oil-holding capacity (OHC)/swelling capacity (SC) improved by 18–24%, and the phenolic content increased. | Surface porosification and decreased crystallinity. | [40] |
| Kluyveromyces marxianus | Cellulase, β-glucosidase | Enhanced prebiotic activity promotes the proliferation of Bifidobacterium/Lactobacillus. | Honeycomb-like network structure and decreased particle size. | [42] |
3.4. Composite Modification Technology
3.4.1. Physical Methods Combined with Physical Methods
3.4.2. Combining Physical Methods with Chemical Methods
3.4.3. Combination of Physical Methods and Biological Methods
3.4.4. Bio-Biological Combined Modification
3.5. Comparative Analysis of Multi-Scale Structural Remodeling of Dietary Fiber Modification
4. Applied Prospects of Modified Insoluble Dietary Fiber
4.1. Food Industry
4.1.1. Application of Modified Dietary Fiber in Functional Foods
4.1.2. Applications in Baking and Snacking
4.2. Medical Field
4.2.1. Application of Insoluble Dietary Fiber in Drug Delivery Systems
4.2.2. Potential of Modified Dietary Fiber in the Treatment of Intestinal Diseases Such as Constipation
4.2.3. Research on Modified Dietary Fiber in Improving Gut Microbiota
5. Challenges and Prospects of Insoluble Dietary Fiber Modification Technology
5.1. Technical Bottlenecks and Optimization of Modification Effects
5.2. Market Prospects and Development Trends of Modified Dietary Fiber
6. Economic Feasibility Analysis of Dietary Fiber Modification: Market Expansion and Cost Optimization Driven by Technological Breakthroughs
6.1. Modified Technologies Reduce Production Costs and Improve Raw Material Utilization Rate
6.2. Modified Products Achieve Market Premium and Expand High-Value-Added Fields
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DF | Dietary Fiber |
| IDF | Insoluble Dietary Fiber |
| SDF | Soluble Dietary Fiber |
| UD | Uniform design |
| HPH | High-pressure homogenization |
| HHP | High hydrostatic pressure |
| DS | Degree of substitution |
| AHP | Alkaline hydrogen peroxide |
| FTIR | Fourier transform infrared spectroscopy |
| SEM | Scanning electron microscopy |
| WHC | Water holding capacity |
| OHC | Oil holding capacity |
| SC | Swelling capacity |
| GAC | Glucose adsorption capacity |
| CAC | Cholesterol adsorption capacity |
| NIAC | Nitrite ion adsorption capacity |
| SCFAs | Short-chain fatty acids |
References
- Rasul, S.; Asiz, A.T.A.; Rahmadewi, Y.M.; Faiz, M.; Tarique, M.; Alam, M.Z.; Chiang, J.H.; Yuliarti, O. Unveiling the Potential of Insoluble Dietary Fiber from By-Products in Structural Advancements of Plant-Based Meat Analogues. Future Foods 2025, 12, 100839. [Google Scholar] [CrossRef]
- He, Q.; Li, X.; Liu, C.; Liu, Z.; Zhou, S.; Li, Y.; Ma, T. Application and research progress of dietary fiber-based fat substitutes in food systems. Food Res. Int. 2025, 223, 117876. [Google Scholar] [CrossRef]
- Ma, M.; Waliullah, M.H.; Sun, H.; Mu, T. Chemical components, structural, physicochemical and functional properties of potato (Solanum tuberosum) dietary fiber modified by high hydrostatic pressure and cellulase. Int. J. Biol. Macromol. 2025, 335, 149343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, Y.; Liu, J.; Zheng, T.; Li, Y.; He, S.; Jiang, M.; Wu, L.; Wang, S. Extraction methods of dietary fiber and effect on bioactivity: A review. Process Biochem. 2024, 146, 451–461. [Google Scholar] [CrossRef]
- Zou, X.; Xu, X.; Chao, Z.; Jiang, X.; Zheng, L.; Jiang, B. Properties of plant-derived soluble dietary fibers for fiber-enriched foods: A comparative evaluation. Int. J. Biol. Macromol. 2022, 223, 1196–1207. [Google Scholar] [CrossRef] [PubMed]
- Bocker, R.; Silva, E.K. Myrciaria jaboticaba Bagasse, Peel, and Seed Bioactive-Rich Flours: A Source of Dietary Fibers and Lignocellulosic Biomass for Functional and Technological Food Applications. J. Agric. Food Chem. 2025, 73, 15610–15623. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Shrotri, A.; Fukuoka, A. Soluble cello-oligosaccharides produced by carbon-catalyzed hydrolysis of cellulose. ChemSusChem 2019, 12, 2576–2580. [Google Scholar] [CrossRef]
- Jiang, C.; Zeng, X.; Wei, X.; Liu, X.; Wang, J.; Zheng, X. Improvement of the functional properties of insoluble dietary fiber from corn bran by ultrasonic-microwave synergistic modification. Ultrason. Sonochem. 2024, 104, 106817. [Google Scholar] [CrossRef]
- Kwon, Y.-J.; Lee, H.S.; Park, G.E.; Lee, J.-W. Association between dietary fiber intake and all-cause and cardiovascular mortality in middle aged and elderly adults with chronic kidney disease. Front. Nutr. 2022, 9, 863391. [Google Scholar] [CrossRef]
- Guan, Z.-W.; Yu, E.-Z.; Feng, Q. Soluble dietary fiber, one of the most important nutrients for the gut microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef]
- Dong, J.-L.; Yang, M.; Shen, R.-L.; Zhai, Y.-F.; Yu, X.; Wang, Z. Effects of thermal processing on the structural and functional properties of soluble dietary fiber from whole grain oats. Food Sci. Technol. Int. 2019, 25, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Guo, Q.; Zhao, Y.; Xu, J. Thermal processing improved dietary fiber quality of whole grain highland barley: Studies on structural, physiochemical and functional properties. J. Cereal Sci. 2025, 121, 104087. [Google Scholar] [CrossRef]
- Romero-Zúñiga, G.; González-Morones, P.; Sánchez-Valdés, S.; Yáñez-Macías, R.; Sifuentes-Nieves, I.; García-Hernández, Z.; Hernández-Hernández, E. Microwave radiation as alternative to modify natural fibers: Recent trends and opportunities–A review. J. Nat. Fibers 2022, 19, 7594–7610. [Google Scholar] [CrossRef]
- Kapusniak, K.; Lubas, K.; Wojcik, M.; Rosicka-Kaczmarek, J.; Pavlyuk, V.; Kluziak, K.; Gonçalves, I.; Lopes, J.; Coimbra, M.A.; Kapusniak, J. Effect of continuous and discontinuous microwave-assisted heating on starch-derived dietary fiber production. Molecules 2021, 26, 5619. [Google Scholar] [CrossRef]
- Cantu-Jungles, T.M.; Zhang, X.; Kazem, A.E.; Iacomini, M.; Hamaker, B.R.; Cordeiro, L.M. Microwave treatment enhances human gut microbiota fermentability of isolated insoluble dietary fibers. Food Res. Int. 2021, 143, 110293. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, Y.; Guan, T.; Liu, M.; Li, Z.; Liu, J.; Zhao, J.; Liu, T. Modification of black soybean (Glycine max (L.) merr.) residue insoluble dietary fiber with ultrasonic, microwave, high temperature and high-pressure, and extrusion. Food Chem. 2025, 473, 143020. [Google Scholar] [CrossRef]
- Tang, L.; Hu, M.; Bai, S.; Wang, B.; Fan, B.; Zhang, L.; Wang, F. Extraction of insoluble soybean fiber by alternating ultrasonic/alkali and its improved superior physicochemical and functional properties. Int. J. Biol. Macromol. 2024, 263, 130505. [Google Scholar] [CrossRef]
- Huang, L.; Ding, X.; Zhao, Y.; Li, Y.; Ma, H. Modification of insoluble dietary fiber from garlic straw with ultrasonic treatment. J. Food Process. Preserv. 2018, 42, e13399. [Google Scholar] [CrossRef]
- Kalla-Bertholdt, A.-M.; Baier, A.K.; Rauh, C. Potential of modification of techno-functional properties and structural characteristics of citrus, apple, oat, and pea dietary fiber by high-intensity ultrasound. Foods 2023, 12, 3663. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; He, Y.; Qian, B.; Zou, Y.; Liu, Z. Modification of insoluble dietary fiber in okara by high pressure homogenization and high hydrostatic pressure and functional properties of the modified product. Food Sci. 2015, 36, 81–85. [Google Scholar]
- Geng, N.; Song, J.; Zhang, K.; Dai, Z.; Li, D. Effect of dynamic high-pressure microfluidization on the physicochemical and structural properties of insoluble dietary fiber from fresh corn bract. J. Food Process. Preserv. 2021, 45, e15710. [Google Scholar] [CrossRef]
- Yang, X.; Mao, K.; Sang, Y.; Tian, G.; Liu, X.; Mao, N.; Huo, M.; Yan, S. Citrus derived Pickering emulsion stabilized by insoluble citrus dietary fiber modified by ultra-high pressure. LWT 2023, 184, 115112. [Google Scholar] [CrossRef]
- Wang, D.; Liu, X.; Wang, K.; Zhao, L.; Wang, Y.; Zhang, X.; Hu, Z. Impact of non-thermal modifications on the physicochemical properties and functionality of litchi pomace dietary fibre. LWT 2023, 182, 114878. [Google Scholar] [CrossRef]
- Gu, Y.; Niu, L.; Song, J.; Liu, C.; Zhang, Z.; Liu, C.; Li, D.; Xiao, L. Effect of pretreatment and high hydrostatic pressure on soluble dietary fiber in lotus root residues. J. Food Qual. 2022, 2022, 5565538. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, J.; Liu, J.; Wu, J.; Wang, Z.; Sun, Z. Improving the function of pickle insoluble dietary fiber by coupling enzymatic hydrolysis with HHP treatment. J. Food Sci. Technol. 2022, 59, 4634–4643. [Google Scholar] [CrossRef]
- Du, B.; Meenu, M.; Xu, B. Insights into improvement of physiochemical and biological properties of dietary fibers from different sources via micron technology. Food Rev. Int. 2020, 36, 367–383. [Google Scholar] [CrossRef]
- Ragavan, K.V.; Hernandez-Hernandez, O.; Martinez, M.M.; Gutiérrez, T. Organocatalytic esterification of polysaccharides for food applications: A review. Trends Food Sci. Technol. 2022, 119, 45–56. [Google Scholar] [CrossRef]
- Zhang, J.-G.; Yang, G.; Zhang, W.-W.; Thakur, K.; Hu, F.; Khan, M.R.; Ni, Z.-J.; Wei, Z.-J. Physicochemical and functional properties of carboxymethylated insoluble dietary fiber of Lycium barbarum seed dreg. Food Chem. X 2024, 22, 101270. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.; Wang, X.; Wang, A.; Zhuang, M.; Zhou, Z. Study of the acetylation-induced changes in the physicochemical and functional characteristics of insoluble dietary fiber from wheat bran. J. Sci. Food Agric. 2024, 104, 32–41. [Google Scholar] [CrossRef]
- Gan, J.; Xie, L.; Peng, G.; Xie, J.; Chen, Y.; Yu, Q. Systematic review on modification methods of dietary fiber. Food Hydrocoll. 2021, 119, 106872. [Google Scholar] [CrossRef]
- Meng, X.; Liu, F.; Xiao, Y.; Cao, J.; Wang, M.; Duan, X. Alterations in physicochemical and functional properties of buckwheat straw insoluble dietary fiber by alkaline hydrogen peroxide treatment. Food Chem. X 2019, 3, 100029. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wang, C.; Wang, C.; Xie, C.; Hang, F.; Li, K.; Shi, C. Effect of alkaline hydrogen peroxide assisted with two modification methods on the physicochemical, structural and functional properties of bagasse insoluble dietary fiber. Front. Nutr. 2023, 9, 1110706. [Google Scholar] [CrossRef]
- Aider, M.; Zaddem, M.; Karim, A. Digital monitoring and response surface methodology optimization of wheat bran bleaching by hydrogen peroxide and its incorporation into wheat flour. Future Foods 2024, 9, 100327. [Google Scholar] [CrossRef]
- Grzelczyk, J.; Drożdżyński, P.; Budryn, G.; Czarnecki, A.; Paprocka, Z.; Gałązka-Czarnecka, I. High-fiber cookies with bamboo flour and edible flowers: Evaluation of structural properties, phenolic content, antioxidant activity and nutritional value. LWT 2025, 216, 117321. [Google Scholar] [CrossRef]
- Stryjecka, M.; Kiełtyka-Dadasiewicz, A.; Michalak, M. Physico-Chemical Characteristics of Rosa canina L. Seeds and Determining Their Potential Use. Appl. Sci. 2024, 15, 168. [Google Scholar] [CrossRef]
- Yang, R.; Li, X.; Wang, C.; Sun, B.; Li, J. Enzymatic Modification of Sea Buckthorn Dietary Fiber by Xylanase from Streptomyces rameus L2001: Characterization of its Physicochemical Properties and Physiological Effects on Bifidobacterium. Jordan J. Biol. Sci. 2012, 5, 151. [Google Scholar]
- Combo, A.M.M.; Aguedo, M.; Goffin, D.; Wathelet, B.; Paquot, M. Enzymatic production of pectic oligosaccharides from polygalacturonic acid with commercial pectinase preparations. Food Bioprod. Process. 2012, 90, 588–596. [Google Scholar] [CrossRef]
- Jiang, G.; Ramachandraiah, K.; Tan, C.; Cai, N.; Ameer, K.; Feng, X. Modification of ginseng insoluble dietary fiber by enzymatic method: Structural, rheological, thermal and functional properties. Foods 2023, 12, 2809. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Yi, C.; Quan, K.; Lin, B. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chem. 2021, 342, 128352. [Google Scholar] [CrossRef]
- Liao, A.-M.; Zhang, J.; Yang, Z.-L.; Huang, J.-H.; Pan, L.; Hou, Y.-C.; Li, X.-X.; Zhao, P.-H.; Dong, Y.-Q.; Hu, Z.-Y. Structural, physicochemical, and functional properties of wheat bran insoluble dietary fiber modified with probiotic fermentation. Front. Nutr. 2022, 9, 803440. [Google Scholar] [CrossRef]
- Bao, Y.; Xue, H.; Yue, Y.; Wang, X.; Yu, H.; Piao, C. Preparation and characterization of Pickering emulsions with modified okara insoluble dietary fiber. Foods 2021, 10, 2982. [Google Scholar] [CrossRef]
- Yue, Y.; Li, Y.; Li, P.; Xiao, Y.; Piao, C.; Wang, X. Comparison of physicochemical and functional characteristics of insoluble dietary fibre from okara by separate and co-fermentation with lactic acid bacteria and Kluyveromyces marxianus. Int. J. Food Sci. Technol. 2023, 58, 4992–5000. [Google Scholar]
- Du-qin, Z.; Zhu-jiang, S.; Bin, T. Effect of Solid-state Fermentation on the Physico-chemical Properties of Wheat Bran. Sci. Technol. Cereals 2024, 32, 44. [Google Scholar]
- Ullah, I.; Yin, T.; Xiong, S.; Huang, Q.; Zhang, J.; Javaid, A.B. Effects of thermal pre-treatment on physicochemical properties of nano-sized okara (soybean residue) insoluble dietary fiber prepared by wet media milling. J. Food Eng. 2018, 237, 18–26. [Google Scholar]
- Qi, J.; Li, Y.; Masamba, K.G.; Shoemaker, C.F.; Zhong, F.; Majeed, H.; Ma, J. The effect of chemical treatment on the in vitro hypoglycemic properties of rice bran insoluble dietary fiber. Food Hydrocoll. 2016, 52, 699–706. [Google Scholar] [CrossRef]
- Song, Y.; Su, W.; Mu, Y.C. Modification of bamboo shoot dietary fiber by extrusion-cellulase technology and its properties. Int. J. Food Prop. 2018, 21, 1219–1232. [Google Scholar] [CrossRef]
- He, Y.; Li, W.; Zhang, X.; Li, T.; Ren, D.; Lu, J. Physicochemical, functional, and microstructural properties of modified insoluble dietary fiber extracted from rose pomace. J. Food Sci. Technol. 2020, 57, 1421–1429. [Google Scholar]
- Ain, H.B.U.; Saeed, F.; Sultan, M.T.; Afzaal, M.; Imran, A.; DeFeo, V.; Cobelschi, C. Effect of thermally treated barley dietary fiber against hypercholesterolemia. Food Sci. Nutr. 2020, 8, 5259–5266. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, J.; Liu, S.; Liu, X.; Tang, X.; Lv, X. Characterisation of alkaline and enzymatic modified insoluble dietary fibre from Undaria pinnatifida. Int. J. Food Sci. Technol. 2020, 55, 3533–3541. [Google Scholar] [CrossRef]
- Kanwar, P.; Yadav, R.B.; Yadav, B.S. Influence of chemical modification approaches on physicochemical and structural properties of dietary fiber from oat. J. Cereal Sci. 2023, 111, 103688. [Google Scholar] [CrossRef]
- Wei, X.; Jiang, C.; Liu, X.; Liu, H.; Wang, J.; Zheng, X.; Zhang, Z.; Hu, H. Effect of γ-irradiation combined with enzymatic modification on the physicochemical properties of defatted rice bran dietary fiber. Food Chem. X 2024, 24, 101975. [Google Scholar] [CrossRef]
- Yang, R.; Ye, Y.; Liu, W.; Liang, B.; He, H.; Li, X.; Ji, C.; Sun, C. Modification of pea dietary fibre by superfine grinding assisted enzymatic modification: Structural, physicochemical, and functional properties. Int. J. Biol. Macromol. 2024, 267, 131408. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.T.; Vasanthan, T. Modification of rice bran dietary fiber concentrates using enzyme and extrusion cooking. Food Hydrocoll. 2019, 89, 773–782. [Google Scholar] [CrossRef]
- Liu, X.; Wang, B.; Tang, S.; Yue, Y.; Xi, W.; Tan, X.; Li, G.; Bai, J.; Huang, L. Modification, biological activity, applications, and future trends of citrus fiber as a functional component: A comprehensive review. Int. J. Biol. Macromol. 2024, 269, 131798. [Google Scholar] [CrossRef] [PubMed]
- Zurbau, A.; Khan, T.A.; Wolever, T.M.; Sievenpiper, J.L. Unveiling the optimal soluble dietary fiber for type 2 diabetes: Galactomannans take the lead? Am. J. Clin. Nutr. 2023, 118, 834–836. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, Y.; Chen, S.; Gu, J.; Ni, Y. Insoluble and soluble dietary fibers from kiwifruit (Actinidia deliciosa) modify gut microbiota to alleviate high-fat diet and streptozotocin-induced TYPE 2 diabetes in rats. Nutrients 2022, 14, 3369. [Google Scholar] [CrossRef]
- Xie, L.; Lu, L.; Zhao, L.; Peng, J.; Zhou, W. Improvement of okara noodle quality by modifying the soluble/insoluble dietary fibre ratio. Food Chem. 2025, 464, 141566. [Google Scholar] [CrossRef]
- Duan, H.M.; Liu, L.L.; Xia, L.L.; Yuan, J.L.; Cheng, L.X.; Chen, A.R. Screening of Low Glycemic Potato Varieties. Sci. Agric. Sin. 2024, 57, 2295–2308. [Google Scholar]
- Guan, Y.; Xie, C.; Zhang, R.; Zhang, Z.; Tian, Z.; Feng, J.; Shen, X.; Li, H.; Chang, S.; Zhao, C.; et al. Characterization and the cholesterol-lowering effect of dietary fiber from fermented black rice (Oryza sativa L.). Food Funct. 2023, 14, 6128–6141. [Google Scholar] [CrossRef]
- Ma, W.; Huang, H.; Zheng, B.; Xie, J.; Chen, Y.; Xie, J.; Dong, R.; Hu, X.; Yu, Q. Effect of modified grapefruit peel dietary fiber on bread: Baking quality, flavor characteristics, and starch digestive properties. Food Hydrocoll. 2025, 162, 110964. [Google Scholar] [CrossRef]
- Prasadi, V.N.; Joye, I.J. Effect of soluble dietary fibre from barley on the rheology, water mobility and baking quality of wheat flour dough. J. Cereal Sci. 2023, 112, 103715. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, S.; Sun, X. Improvement in the rheological properties and gas phase of dough, and overall quality of dietary fibre enriched products: Enzymatic modification on the composition and structure of dietary fibre. Food Hydrocoll. 2025, 160, 110742. [Google Scholar] [CrossRef]
- Wang, C.; Lin, M.; Li, Y.; Zhuang, W.; Guo, Z. Effect of steam explosion modified soluble dietary fiber from Tremella fuciformis stem on the quality and digestibility of biscuits. Int. J. Biol. Macromol. 2024, 265, 130905. [Google Scholar] [CrossRef]
- Mendes, B.d.A.B.; Almeida, M.F.; Silva, G.L.; Amparo dos Anjos, D.; Fontan, G.C.R.; Rebouças São José, A.; Veloso, C.M. Physical, textural, and sensory characteristics of gluten-free cupcakes developed with native and modified by hydrothermal treatment green plantain flours. J. Food Sci. 2024, 89, 7437–7451. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Wei, A.; Peng, K.; Huang, R.; Wang, Z.; Ma, X.; Tian, Q.; Chen, Y. Polyelectrolyte composite hydrogels based on a derivative of functional dietary fiber for long-term gastric retention and drug delivery. Compos. Part B Eng. 2024, 272, 111194. [Google Scholar] [CrossRef]
- Bakr, A.F.; Farag, M.A. Soluble dietary fibers as antihyperlipidemic agents: A comprehensive review to maximize their health benefits. ACS Omega 2023, 8, 24680–24694. [Google Scholar] [CrossRef]
- Su, Q.; Zhao, X.; Zhang, X.; Wang, Y.; Zeng, Z.; Cui, H.; Wang, C. Nano functional food: Opportunities, development, and future perspectives. Int. J. Mol. Sci. 2022, 24, 234. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, B.; Liu, W.; Liu, X.; Zhang, C.; Hu, W.; Wu, W. Different efficacy of five soluble dietary fibers on alleviating loperamide-induced constipation in mice: Influences of different structural features. Int. J. Mol. Sci. 2025, 26, 1236. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Yan, M.; Feng, Y.; Yin, J.; Jiang, S.; Guan, Y.; Gao, B. Extraction of Soluble Dietary Fiber from Sunflower Receptacles (Helianthus annuus L.) and Its Alleviating Effect on Constipation in Mice. Nutrients 2024, 16, 3650. [Google Scholar] [CrossRef] [PubMed]
- Geng, N.; Li, Y.; Zhang, Y.; Wang, H.; Song, J.; Yu, L.; Wu, C. Effects of Modified Dietary Fiber from Fresh Corn Bracts on Obesity and Intestinal Microbiota in High-Fat-Diet Mice. Molecules 2023, 28, 4949. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, W.; Chen, Y.; Lei, L.; Li, F.; Zhao, J.; Zeng, K.; Ming, J. Dietary fiber of Tartary buckwheat bran modified by steam explosion alleviates hyperglycemia and modulates gut microbiota in db/db mice. Food Res. Int. 2022, 157, 111386. [Google Scholar] [CrossRef] [PubMed]
- Lamothe, L.M.; Cantu-Jungles, T.M.; Chen, T.; Green, S.; Naqib, A.; Srichuwong, S.; Hamaker, B.R. Boosting the value of insoluble dietary fiber to increase gut fermentability through food processing. Food Funct. 2021, 12, 10658–10666. [Google Scholar] [CrossRef]
- Ma, X.; Yang, M.; He, Y.; Zhai, C.; Li, C. A review on the production, structure, bioactivities and applications of Tremella polysaccharides. Int. J. Immunopathol. Pharmacol. 2021, 35, 20587384211000541. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Huang, S.; Deng, Y. Modified insoluble dietary fibers in okara affect body composition, serum metabolic properties, and fatty acid profiles in mice fed high-fat diets: An NMR investigation. Food Res. Int. 2019, 116, 1239–1246. [Google Scholar] [CrossRef] [PubMed]




| Modification Method | Molecular Structure | Crystal Structure | Pore Structure | Surface Properties | Intermolecular Interaction | Reference |
|---|---|---|---|---|---|---|
| Heat treatment | Molecular chain breaks, glycosidic bond breakdown, molecular weight ↓ | Crystallinity ↓, amorphous zone ↑ | Porosity ↑, Specific surface area ↑ | Roughness ↑, hydrophilicity ↑ | Hydrogen bonds break, van der Waals force ↓ | [48] |
| Alkaline treatment + enzymatic modification | hemicellulose is removed and cellulose is exposed; enzymatic digestion produces short chains | Crystallinity ↓, X-ray diffraction peaks weakened | Microporous/mesoporous ↑, porous network formation | Polar groups are exposed and zeta potentials are more negative | Hydrogen bonding reduced, hydrophobic interactions ↑ | [49] |
| Extrusion/Chemical Modification | Rearrangement of molecular chains, introduction of new bonds by cross-linking agents | Crystallinity ↓, crystal size decrease | Porosity ↑, pore size distribution shifted to large pores | Deepening of surface grooves, hydrophilicity ↑ | Alternating hydrogen bonding/hydrophobic interactions | [46] |
| Chemical modification | Introduction of functional groups such as ester group/-COOH | Crystallization zone disrupted, amorphous structure ↑ | Cross-linking leads to ↓ porosity and structural densification | Polarity ↑ or hydrophobicity ↑ | New chemical bond (ester bond) formed, hydrogen bond ↓ | [50] |
| γ-irradiation + enzymatic modification | Free radical-induced glycosidic bond breaking, molecular weight ↓ | Crystallinity ↓, lattice distortion ↑ | Microporosity ↑, specific surface area ↑ (enzymatic digestion after irradiation) | Surface Polar Groups ↑ | Hydrogen bonds broken, hydrophobic interactions ↑ | [51] |
| Probiotic fermentation modification | Fiber decomposition to oligosaccharides, molecular weight ↓ | Crystallinity ↓, fermentation products cover surface | Porosity ↑, pore size distribution homogenization | Hydrophilicity ↑, negative surface charge ↑ | Hydrogen bonding is reduced and microbial metabolites are cross-linked | [40] |
| Ultrafine grinding + enzymatic modification | Shortening of molecular chains and exposure of cellulose microfilaments | Crystallinity ↓, crystal arrangement disordered | Nanoscale pore formation, specific surface area ↑ | Roughness ↑, Hydroxyl Exposure ↑ | Hydrogen bonding is reduced and mechanical stresses lead to structural relaxation | [52] |
| Non-thermal modification (ultrasonic/high-pressure treatment) | Molecular chain breaks, glycosidic bond rearrangements | Crystallinity ↓, amorphous structure ↑ | Porosity ↑, pore size distribution shifted towards mesopores | Hydrophilicity ↑, negative surface charge ↑ | Hydrogen bonds break and van der Waals forces rearrange themselves | [23] |
| chemical treatment | hemicellulose removal, cellulose purity ↑ | Crystallinity ↓, cellulose I → cellulose II transition | Porosity ↑, increased pore connectivity | Polar groups ↑, surface charge density ↑ | Hydrogen bonding reduced, hydrophobic interactions ↑ | [39] |
| Enzymatic + Extrusion Cooking | Molecular chain breakage, starch pasting | Crystallinity ↓, amorphous starch-coated fibers | Porosity ↑, porous sponge-like structure | Hydrophilicity ↑, starch coating increases adhesion | Hydrogen bonding reduced, starch-fiber interactions ↑ | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, J.; Lang, W.; Han, S.; Wu, X.; Hao, F.; Zhou, Y.; Du, R.; Song, C. Insights into the Mechanisms and Functional Effects of Insoluble Dietary Fiber Modification: A Review. Foods 2026, 15, 38. https://doi.org/10.3390/foods15010038
Li J, Lang W, Han S, Wu X, Hao F, Zhou Y, Du R, Song C. Insights into the Mechanisms and Functional Effects of Insoluble Dietary Fiber Modification: A Review. Foods. 2026; 15(1):38. https://doi.org/10.3390/foods15010038
Chicago/Turabian StyleLi, Jiayi, Wenjing Lang, Shuo Han, Xinyi Wu, Fuwei Hao, Yurong Zhou, Renpeng Du, and Chen Song. 2026. "Insights into the Mechanisms and Functional Effects of Insoluble Dietary Fiber Modification: A Review" Foods 15, no. 1: 38. https://doi.org/10.3390/foods15010038
APA StyleLi, J., Lang, W., Han, S., Wu, X., Hao, F., Zhou, Y., Du, R., & Song, C. (2026). Insights into the Mechanisms and Functional Effects of Insoluble Dietary Fiber Modification: A Review. Foods, 15(1), 38. https://doi.org/10.3390/foods15010038

