Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (275)

Search Parameters:
Keywords = char formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10502 KiB  
Article
Strengthening Mechanism of Char in Thermal Reduction Process of Silicon Dioxide
by Xiuli Xu, Peng Yu, Jinxiao Dou and Jianglong Yu
Materials 2025, 18(15), 3651; https://doi.org/10.3390/ma18153651 - 3 Aug 2025
Viewed by 194
Abstract
This study investigates the strengthening mechanisms of char in silicon dioxide thermal reduction through systematic high-temperature experiments using three char types (YQ1, CW1, HY1) characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. HY1 char demonstrated superior reactivity due [...] Read more.
This study investigates the strengthening mechanisms of char in silicon dioxide thermal reduction through systematic high-temperature experiments using three char types (YQ1, CW1, HY1) characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. HY1 char demonstrated superior reactivity due to its highly ordered microcrystalline structure, characterized by the largest aromatic cluster size (La) and lowest defect ratio (ID/IG = 0.37), which directly correlated with enhanced reaction completeness. The carbon–silicon reaction reactivity increased progressively with temperature, achieving optimal performance at 1550 °C. Addition of Fe and Fe2O3 significantly accelerated the reduction process, with Fe2O3 exhibiting superior catalytic performance by reducing activation energy and optimizing reaction kinetics. The ferrosilicon formation mechanism proceeds through a two-stage pathway: initial char-SiO2 reaction producing SiC and CO, followed by SiC–iron interaction generating FeSi, which catalytically promotes further reduction. These findings establish critical structure–performance relationships for char selection in industrial silicon production, where microcrystalline ordering emerges as the primary performance determinant. The identification of optimal temperature and additive conditions provides practical pathways to enhance energy efficiency and product quality in silicon metallurgy, enabling informed raw material selection and process optimization to reduce energy consumption and improve operational stability. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

16 pages, 1504 KiB  
Article
Tuning the Activity of NbOPO4 with NiO for the Selective Conversion of Cyclohexanone as a Model Intermediate of Lignin Pyrolysis Bio-Oils
by Abarasi Hart and Jude A. Onwudili
Energies 2025, 18(15), 4106; https://doi.org/10.3390/en18154106 - 2 Aug 2025
Viewed by 143
Abstract
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds [...] Read more.
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds in the final upgraded liquid products. The present work involved a systematic study of solvent-free catalytic reactions of cyclohexanone in the presence of hydrogen gas at 160 °C for 3 h in a batch reactor. Cyclohexanone can be produced from biomass through the selective hydrogenation of lignin-derived phenolics. Three types of catalysts comprising undoped NbOPO4, 10 wt% NiO/NbOPO4, and 30 wt% NiO/NbOPO4 were studied. Undoped NbOPO4 promoted both aldol condensation and the dehydration of cyclohexanol, producing fused ring aromatic hydrocarbons and hard char. With 30 wt% NiO/NbOPO4, extensive competitive hydrogenation of cyclohexanone to cyclohexanol was observed, along with the formation of C6 cyclic hydrocarbons. When compared to NbOPO4 and 30 wt% NiO/NbOPO4, the use of 10 wt% NiO/NbOPO4 produced superior selectivity towards bi-cycloalkanones (i.e., C12) at cyclohexanone conversion of 66.8 ± 1.82%. Overall, the 10 wt% NiO/NbOPO4 catalyst exhibited the best performance towards the production of precursor compounds that can be further hydrodeoxygenated into energy-dense aviation fuel hydrocarbons. Hence, the presence and loading of NiO was able to tune the activity and selectivity of NbOPO4, thereby influencing the final products obtained from the same cyclohexanone feedstock. This study underscores the potential of lignin-derived pyrolysis oils as important renewable feedstocks for producing replacement hydrocarbon solvents or feedstocks and high-density sustainable liquid hydrocarbon fuels via sequential and selective catalytic upgrading. Full article
Show Figures

Figure 1

18 pages, 3967 KiB  
Article
A Thorough Investigation of the Mechanism of theAntagonistic Effect Between Phosphorus and Basic Oxide-Forming Minerals as Flame Retardants of PolymericComposite Coatings
by Evangelia Mitropoulou, Georgios N. Mathioudakis, Amaia Soto Beobide, Athanasios Porfyris, Vassilios Dracopoulos, Kerim Kılınç, Theodosios Chatzinikolaou, Deniz Savci, Cem Gunesoglu, Joannis Kallitsis and George A. Voyiatzis
Coatings 2025, 15(8), 886; https://doi.org/10.3390/coatings15080886 - 30 Jul 2025
Viewed by 252
Abstract
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising [...] Read more.
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising alternatives. Despite this, their combined use is neither straightforward nor guaranteed to be effective. This study scrutinizes the interactions between these two classes of flame retardants (FR) through a systematic analysis aimed at elucidating the antagonistic pathways that arise from their coexistence. Specifically, this study focuses on two inorganic fillers, mineral huntite and chemically precipitated magnesium hydroxide, both of which produce basic oxides upon thermal decomposition. These fillers were incorporated into a poly(butylene terephthalate) (PBT) matrix to be utilized as advanced-mattress FR coating fabric and were subjected to a series of flammability tests. The pyrolysis products of the prepared polymeric composite compounds were isolated and thoroughly characterized using a combination of analytical techniques. Thermogravimetric analysis (TGA) and differential thermogravimetric analysis (dTGA) were employed to monitor decomposition behavior, while the char residues collected at different pyrolysis stages were examined spectroscopically, using FTIR-ATR and Raman spectroscopy, to identify their structure and the chemical reactions that led to their formation. X-ray diffraction (XRD) experiments were also conducted to complement the spectroscopic findings in the chemical composition of the resulting char residues and to pinpoint the different species that constitute them. The morphological changes of the char’s structure were monitored by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). Finally, the Limited Oxygen Index (LOI) and UL94 (vertical sample mode) methods were used to assess the relative flammability of the samples, revealing a significant drop in flame retardancy when both types of flame retardants are present. This reduction is attributed to the neutralization of acidic phosphorus species by the basic oxides generated during the decomposition of the basic inorganic fillers, as confirmed by the characterization techniques employed. These findings underscore the challenge of combining organophosphorus with popular flame-retardant classes such as mineral or basic metal flame retardants, offering insight into a key difficulty in formulating next-generation halogen-free flame-retardant composite coatings. Full article
(This article belongs to the Special Issue Innovative Flame-Retardant Coatings for High-Performance Materials)
Show Figures

Figure 1

16 pages, 3436 KiB  
Article
Synthesis and Characterization of Polymethylhydrosiloxane-Modified Phenol–Formaldehyde Resin
by Luong Nhu Hai, Nguyen Van Thao, Pham The Long, Nguyen Xuan Anh, Le Tran Tiep, Hoang Quoc Nam, Nguyen Minh Viet, Tran The Dinh, Le Duy Binh, Ta Kim Thanh Hien and Cong Tien Dung
Chemistry 2025, 7(4), 112; https://doi.org/10.3390/chemistry7040112 - 7 Jul 2025
Viewed by 483
Abstract
Resol phenol–formaldehyde (PF) resin was modified with 2.5 and 5.0 wt% polymethylhydrosiloxane (PMHS). This study characterizes the modified resin and its subsequently fabricated glass fiber (GF)-reinforced composites (30–60 wt% GF). Formation of an organic–inorganic hybrid network, via reaction between Si-H groups of PMHS [...] Read more.
Resol phenol–formaldehyde (PF) resin was modified with 2.5 and 5.0 wt% polymethylhydrosiloxane (PMHS). This study characterizes the modified resin and its subsequently fabricated glass fiber (GF)-reinforced composites (30–60 wt% GF). Formation of an organic–inorganic hybrid network, via reaction between Si-H groups of PMHS and hydroxyl (-OH) groups of the resol resin, was confirmed by FTIR and 1H NMR. DSC and TGA/DTG revealed enhanced thermal stability for PMHS-modified resin: the decomposition temperature of Resol–PMHS 5.0% increased to 483 °C (neat resin: 438 °C), and char yield at 800 °C rose to 57% (neat resin: 38%). The 60 wt% GF-reinforced Resol–PMHS 5.0% composite exhibited tensile, flexural, and impact strengths of 145 ± 7 MPa, 160 ± 7 MPa, and 71 ± 5 kJ/m2, respectively, superior to the unmodified resin composite (136 ± 6 MPa, 112 ± 6 MPa, and 51 ± 5 kJ/m2). SEM observations indicated improved fiber–matrix interfacial adhesion and reduced delamination. These results demonstrate that PMHS modification effectively enhances the thermo-mechanical properties of the PF resin and its composites, highlighting potential for industrial applications. Full article
(This article belongs to the Section Supramolecular Chemistry)
Show Figures

Graphical abstract

30 pages, 4865 KiB  
Article
Thermal Behavior and Smoke Suppression of Polyamide 6,6 Fabric Treated with ALD-ZnO and DOPO-Based Silane
by Wael Ali, Raphael Otto, Ana Raquel Lema Jimenez, Sebastian Lehmann, Eui-Young Shin, Ying Feng, Milijana Jovic, Sabyasachi Gaan, Jochen S. Gutmann, Kornelius Nielsch, Amin Bahrami and Thomas Mayer-Gall
Materials 2025, 18(13), 3195; https://doi.org/10.3390/ma18133195 - 7 Jul 2025
Viewed by 645
Abstract
Polyamide 6,6 (PA6,6) fabrics are widely used in textiles due to their high mechanical strength and chemical stability. However, their inherent flammability and melting behavior under fire pose significant safety challenges. In this study, a dual-layer flame-retardant system was developed by integrating atomic [...] Read more.
Polyamide 6,6 (PA6,6) fabrics are widely used in textiles due to their high mechanical strength and chemical stability. However, their inherent flammability and melting behavior under fire pose significant safety challenges. In this study, a dual-layer flame-retardant system was developed by integrating atomic layer deposition (ALD) of ZnO with a phosphorus–silane-based flame retardant (DOPO-ETES). ALD allowed precise control of ZnO layer thickness (50, 84, and 199 nm), ensuring uniform coating. Thermal analysis (TGA) and microscale combustion calorimetry (MCC) revealed that ZnO altered the degradation pathway of PA6,6 through catalytic effects, promoting char formation and reducing heat release. The combination of ZnO and DOPO-ETES resulted in further reductions in heat release rates. However, direct flame tests showed that self-extinguishing behavior was not achieved, emphasizing the limitations related to the melting of PA6,6. TG-IR and cone calorimetry confirmed that ZnO coatings suppressed the release of smoke-related volatiles and incomplete combustion products. These findings highlight the potential of combining metal-based catalytic flame retardants like ZnO with phosphorus-based coatings to improve flame retardancy while addressing the specific challenges of polyamide textiles. This approach may also be adapted to other fabric types and integrated with additional flame retardants, broadening its relevance for textile applications. Full article
Show Figures

Graphical abstract

15 pages, 4061 KiB  
Article
Influence of Metal Compounds on Structural and Electrochemical Characteristics of Chars from PVC Pyrolysis
by Jiayou Sun, Tianyang Ding, Xue Zhao, Guorong Xu, Chang Wen and Jie Yu
Catalysts 2025, 15(7), 660; https://doi.org/10.3390/catal15070660 - 6 Jul 2025
Viewed by 445
Abstract
This study aims to investigate the influence of various metal compounds (ZnO, ZnCl2, Zn(OH)2, MgO, MgCl2, and Mg(OH)2) on the structural and electrochemical properties of chars derived from the pyrolysis of polyvinyl chloride (PVC). Raw [...] Read more.
This study aims to investigate the influence of various metal compounds (ZnO, ZnCl2, Zn(OH)2, MgO, MgCl2, and Mg(OH)2) on the structural and electrochemical properties of chars derived from the pyrolysis of polyvinyl chloride (PVC). Raw PVC samples mixed with different metal compounds were firstly pyrolyzed at 500 °C in a fixed-bed reactor. The produced chars were further pyrolyzed at 800 °C. The objective was to evaluate the impact of these metal compounds on the char structure through comparative analysis. The pyrolytic chars were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, and Brunauer–Emmett–Teller (BET) analysis. Zinc-based additives notably increased carbon yield to 32–34 wt.%, attributed to ZnCl2-induced cross-linking. Specifically, ZnO facilitated porous architectures and aromatic structures with six or more rings. Mg-based compounds induce the formation of a highly stacked carbon structure primarily composed of crosslinked cyclic alkenes, rather than large polyaromatic domains. Upon further thermal treatment, these aliphatic-rich stacked structures can be progressively transformed into aromatic frameworks through dehydrogenation reactions at elevated temperatures. A high-surface-area porous carbon material (PVC/ZnO-800, SSA = 609.382 m2 g−1) was synthesized, demonstrating a specific capacitance of 306 F g−1 at 1 A g−1 current density. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

19 pages, 3827 KiB  
Article
Pyrolysis Kinetics and Gas Evolution of Flame-Retardant PVC and PE: A TG-FTIR-GC/MS Study
by Wen-Wei Su, Yang Li, Peng-Rui Man, Ya-Wen Sheng and Jian Wang
Fire 2025, 8(7), 262; https://doi.org/10.3390/fire8070262 - 30 Jun 2025
Viewed by 472
Abstract
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene [...] Read more.
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene (PE) insulation materials using advanced TG-FTIR-GC/MS techniques. Distinct pyrolysis stages were identified through thermogravimetric analysis (TGA) at heating rates of 10–40 K/min, while the KAS model-free method and Málek fitting function quantified activation energies and reaction mechanisms. Results revealed that flame-retardant PVC undergoes two major stages: (1) dehydrochlorination, characterized by the rapid release of HCl and low activation energy, and (2) main-chain scission, producing aromatic compounds that contribute to fire toxicity. In contrast, flame-retardant PE demonstrates a more stable pyrolysis process dominated by random chain scission and the formation of a dense char layer, significantly enhancing its flame-retardant performance. FTIR and GC/MS analyses further highlighted distinct gas evolution behaviors: PVC primarily generates HCl and aromatic hydrocarbons, whereas PE releases olefins and alkanes with significantly lower toxicity. Additionally, the application of a classification and regression tree (CART) model accurately predicted mass loss behavior under various heating rates, achieving exceptional fitting accuracy (R2 > 0.98). This study provides critical insights into the pyrolysis mechanisms of flame-retardant cable insulation and offers a robust data framework for optimizing fire modeling and improving material design. Full article
Show Figures

Figure 1

50 pages, 8944 KiB  
Review
Fire-Resistant Coatings: Advances in Flame-Retardant Technologies, Sustainable Approaches, and Industrial Implementation
by Rutu Patel, Mayankkumar L. Chaudhary, Yashkumar N. Patel, Kinal Chaudhari and Ram K. Gupta
Polymers 2025, 17(13), 1814; https://doi.org/10.3390/polym17131814 - 29 Jun 2025
Viewed by 1502
Abstract
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of [...] Read more.
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of traditional halogenated and non-halogenated flame retardants (FRs), this article progresses to cover nitrogen-, phosphorus-, and hybrid-based systems. The synthesis methods, structure–property relationships, and fire suppression mechanisms are critically discussed. A particular focus is placed on bio-based and waterborne formulations that align with green chemistry principles, such as tannic acid (TA), phytic acid (PA), lignin, and deep eutectic solvents (DESs). Furthermore, the integration of nanomaterials and smart functionalities into fire-resistant coatings has demonstrated promising improvements in thermal stability, char formation, and smoke suppression. Applications in real-world contexts, ranging from wood and textiles to electronics and automotive interiors, highlight the commercial relevance of these developments. This review also addresses current challenges such as long-term durability, environmental impacts, and the standardization of performance testing. Ultimately, this article offers a roadmap for developing safer, sustainable, and multifunctional fire-resistant coatings for future materials engineering. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Figure 1

34 pages, 8870 KiB  
Review
Advances in Graphene-Based Flame-Retardant for Polystyrene Applications: Synthesis, Mechanisms, and Future Perspectives
by Mutawakkil Isah, Farrukh Shehzad and Mamdouh A. Al-Harthi
Polymers 2025, 17(13), 1811; https://doi.org/10.3390/polym17131811 - 29 Jun 2025
Viewed by 663
Abstract
The growing demand for fire-safe, sustainable materials has driven extensive research into advanced flame retardants particularly polystyrene (PS), a widely utilized yet inherently flammable polymer. Graphene-derived materials are considered effective flame retardants owing to their higher thermal stability, char-formation, and gas barrier properties. [...] Read more.
The growing demand for fire-safe, sustainable materials has driven extensive research into advanced flame retardants particularly polystyrene (PS), a widely utilized yet inherently flammable polymer. Graphene-derived materials are considered effective flame retardants owing to their higher thermal stability, char-formation, and gas barrier properties. However, despite these advantages, challenges such as agglomeration, high thermal conductivity, poor interfacial compatibility, and processing limitations hinder their full-scale adoption in building insulation and other applications. This review presents an in-depth analysis of recent progress in graphene-enhanced flame-retardant systems for polystyrene applications, focusing on synthesis methods, flame-retardant mechanisms, and material performance. It also discusses strategies to address these challenges, such as surface functionalization, hybrid flame-retardant formulations, optimized graphene loading, and improved dispersion techniques. Furthermore, future research directions are proposed to enhance the effectiveness and commercial viability of graphene-based flame-retardant polystyrene composites. Overcoming these challenges is essential for high-performance, eco-friendly, flame-retardant materials on a larger scale. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 4962 KiB  
Article
Durability Assessment of Eco-Friendly Intumescent Coatings Based on Cork and Waste Glass Fillers for Naval Fire Safety
by Elpida Piperopoulos, Giuseppe Scionti, Mario Atria, Luigi Calabrese, Antonino Valenza and Edoardo Proverbio
Polymers 2025, 17(12), 1659; https://doi.org/10.3390/polym17121659 - 15 Jun 2025
Viewed by 476
Abstract
This research assessed novel, eco-friendly intumescent coatings utilizing cork and recycled glass as sustainable alternatives to synthetic fire retardants, aiming to reduce environmental impact while maintaining robust fire performance. Coatings underwent up to 600 h of UV light exposure for durability assessment, followed [...] Read more.
This research assessed novel, eco-friendly intumescent coatings utilizing cork and recycled glass as sustainable alternatives to synthetic fire retardants, aiming to reduce environmental impact while maintaining robust fire performance. Coatings underwent up to 600 h of UV light exposure for durability assessment, followed by chemo-physical characterization. Fire exposure tests evaluated in-situ char formation and foaming. All functionalized coatings exhibited suitable intumescent behavior, forming protective char layers even after extensive UV aging. Microscopic analysis showed good additive integration, while FTIR spectroscopy revealed UV-induced chemical changes. Fire resistance tests confirmed the superior performance of functionalized coatings over the commercial reference. The AP-IC system demonstrated the best intumescence, achieving significantly lower maximum temperatures (e.g., 167.3 °C for AP-IC-600) and heating rates. Crucially, the sustainable RG-IC and CK-IC batches showed promising intumescent properties, even improving with UV exposure. Notably, the foamed cross-sectional area of the aged RG-IC samples doubled compared to their unaged counterparts, reaching a maximum temperature of 166.9 °C. These findings highlight the potential of eco-friendly hybrid coatings to enhance fire safety, particularly in critical sectors like naval engineering, aligning with circular economy principles and the growing demand for sustainable, high-performance materials. Full article
(This article belongs to the Special Issue Recent Advances in Flame-Retardant Polymeric Materials)
Show Figures

Figure 1

23 pages, 10568 KiB  
Article
Bio-Based Flame-Retardant Systems for Polymers Obtained via Michael 1,4-Addition
by Kamila Salasinska, Mateusz Barczewski, Mikelis Kirpluks, Ralfs Pomilovskis, Paweł Sulima, Sławomir Michałowski, Patryk Mietliński, Jerzy Andrzej Przyborowski and Anna Boczkowska
Molecules 2025, 30(12), 2556; https://doi.org/10.3390/molecules30122556 - 11 Jun 2025
Viewed by 689
Abstract
Phosphorus flame retardants react with cellulose hydroxyl groups via esterification, enhancing the effectiveness of char formation, which is beneficial in terms of the search for bio-sourced flame retardants. The current work assessed the flammability of a new polymer synthesized by Michael 1,4-addition (rP) [...] Read more.
Phosphorus flame retardants react with cellulose hydroxyl groups via esterification, enhancing the effectiveness of char formation, which is beneficial in terms of the search for bio-sourced flame retardants. The current work assessed the flammability of a new polymer synthesized by Michael 1,4-addition (rP) and modified with developed intumescent flame retardant systems (FRs), in which lignocellulose components, such as sunflower husk (SH) and peanut shells (PS), replaced a part of the synthetic ones. The thermal and thermomechanical properties of the rP, with 20 wt.% each from six FRs, were determined by thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Moreover, the flammability and evolved gas were studied with pyrolysis combustion flow calorimetry (PCFC) and thermogravimetric analysis connected with Fourier transform infrared spectroscopy tests (TGA/FT-IR). The effects were compared to those achieved for unmodified rP and a polymer with a commercially available intumescent flame retardant (IFR). The notable improvement, especially in terms of the heat release rate and heat release capacity, indicates that the system with melamine phosphate (MP) and peanut shells (PS) can be used to decrease the flammability of new polymers. An extensive analysis of the composition and geometry of the ground shells and husk particles preceded the research. Full article
Show Figures

Graphical abstract

18 pages, 4956 KiB  
Article
Construction of Fire-Retardant PEO Composite Based on Calcium Sulfate Whiskers Fabricated from Phosphogypsum and DOPO Derivatives
by Jie Zhang, Wei Yan, Weijiang Huang, Kui Wang, Qin Tian, Chunyun Tu, Xingyu Guan, Shaoyuan Wu, Xuan Ba, Chunle Wei, Tong Ye, Jingyu Chen and Yi Zhang
Polymers 2025, 17(12), 1588; https://doi.org/10.3390/polym17121588 - 6 Jun 2025
Viewed by 533
Abstract
Incorporating a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-based derivative (1,4-bis(diphenoxyphosphoryl)piperazine, DIDOPO) in combination with modified calcium sulfate whiskers (MCSWs) improved the flame retardancy, thermal stability, and rheological properties of a polyethylene oxide (PEO) composite. The synergistic flame-retardant effect of DIDOPO and MCSW on the PEO system was investigated. [...] Read more.
Incorporating a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-based derivative (1,4-bis(diphenoxyphosphoryl)piperazine, DIDOPO) in combination with modified calcium sulfate whiskers (MCSWs) improved the flame retardancy, thermal stability, and rheological properties of a polyethylene oxide (PEO) composite. The synergistic flame-retardant effect of DIDOPO and MCSW on the PEO system was investigated. After introducing 5 wt.% MCSW and 10 wt.% DIDOPO into PEO, the UL-94 rating of the composite reached V-0, and the limiting oxygen index was increased to 26.5%. Additionally, the peak and average heat release rates and total heat release of the PEO/10% DIDOPO/5% MCSW composite decreased by 38.9%, 22%, and 20.07%, respectively. The results of a thermogravimetric analysis (TGA) revealed that PEO/10% DIDOPO/5% MCSW displayed an improved initial thermal stability and rate of char formation compared to those of the PEO matrix. The results of TGA/Fourier transform infrared analysis indicated that the composites exhibited phosphorus-containing groups during thermal degradation, based on the characteristic absorption peaks, and increased amounts of gas-phase volatiles. The morphologies and structures of the residues indicated that the PEO/10% DIDOPO/5% MCSW blend was less stable than PEO during combustion. The MCSW mixture formed a denser, more continuous carbon layer on the composite surface during combustion. The rheological behavior indicated that the high complex viscosity and moduli of PEO/10% DIDOPO/5% MCSW promoted the cross-linking network structure of the condensed phase during combustion. MCSW exhibited an excellent flame retardancy and improved thermal stability, which are potentially promising for use in fire safety applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 2036 KiB  
Article
Oxidative Decomposition of Poly(phenylene sulfide) Composites Under Fast Elevation of Temperature
by Aurélie Bourdet, Yann Carpier, Eric Dargent, Benoit Vieille and Nicolas Delpouve
Polymers 2025, 17(11), 1560; https://doi.org/10.3390/polym17111560 - 3 Jun 2025
Viewed by 736
Abstract
The thermal resistance of carbon fiber–reinforced poly(phenylene sulfide) to harsh oxidative conditions is investigated through thermogravimetric experiments performed in an oxygen atmosphere. While these materials usually show great resistance against thermal decomposition in a nitrogen atmosphere, the experiments in oxygen reveal the total [...] Read more.
The thermal resistance of carbon fiber–reinforced poly(phenylene sulfide) to harsh oxidative conditions is investigated through thermogravimetric experiments performed in an oxygen atmosphere. While these materials usually show great resistance against thermal decomposition in a nitrogen atmosphere, the experiments in oxygen reveal the total decomposition of both the matrix and the carbon fibers. The Gram–Schmidt signal, obtained by coupling thermogravimetric analysis in standard conditions with Fourier-transform infrared spectroscopy, exhibits multiple events, evidencing that the decomposition proceeds through distinct stages. The first step characterizes the char formation, while the second relates to its oxidative decomposition. A third step, only observed for composites, is interpreted as the signature of the oxidative decomposition of carbon fibers. To mimic the sudden elevation of temperature encountered during a fire, the analyses are performed at rates of up to 500 K min−1. These specific experimental conditions reveal a complex dependence of the thermogravimetric signature on the heating rate. Independent of the atmosphere, nitrogen or oxygen, the characteristic temperature of decomposition follows a bell-shape trend, resulting from the combination of lag effects and thermal-conductivity limitations. Additionally, the increase of the heating rate causes the Gram–Schmidt signal to evolve toward a broad peak with indistinct events. To investigate whether these changes affect the decomposition products, the infrared spectra, continuously recorded to probe the whole decomposition, are compared with those from the database. The char formation is characterized by the production of sulfur dioxide, while carbon dioxide is the main product emitted during both char and fiber oxidative decomposition. Owing to the merging of the decomposition stages, sulfur-dioxide detection is partly supplanted by that of carbon dioxide under fast elevations of temperature. Full article
Show Figures

Figure 1

15 pages, 2849 KiB  
Article
Multifunctional Meta-Aramid Fabrics Enhanced with Inherent Flame-Retardant Polyurea Coatings: Integration of Mechanical Strength, Puncture Resistance, and Self-Healing Properties
by Kang Yang, Yuncheng Zhao, Ke Shang and Bin Zhao
Polymers 2025, 17(11), 1529; https://doi.org/10.3390/polym17111529 - 30 May 2025
Viewed by 625
Abstract
In this study, a solvent-free, slow-curing, inherently flame-retardant polyurea coating was successfully developed through an optimized formulation. The novel polyurea was synthesized using mixed Schiff base latent curing agents derived from terminal polyether amines with different-number average molecular weights (D2000 and D400), methyl [...] Read more.
In this study, a solvent-free, slow-curing, inherently flame-retardant polyurea coating was successfully developed through an optimized formulation. The novel polyurea was synthesized using mixed Schiff base latent curing agents derived from terminal polyether amines with different-number average molecular weights (D2000 and D400), methyl isobutyl ketone, and polyethyl phosphate glycol ester (OP550). Subsequently, polyurea/meta-aramid (PUA/AF) composite fabrics were fabricated via a scraping coating technique. Thermogravimetric analysis revealed enhanced char formation and reduced decomposition temperatures due to the incorporation of OP550. Comprehensive flame retardant performance was demonstrated through vertical flame testing, limiting oxygen index, and micro-scale combustion calorimetry, with results showing significantly reduced heat release rates, lower total heat release, and increased residual char. Mechanical evaluations indicated marked improvements in tearing, tensile, single-yarn tensile, and bursting forces, attributed to strong fiber–polyurea interfacial interactions, as confirmed by detailed SEM morphological analyses. Moreover, the PUA/AF composites exhibited excellent static puncture resistance and effective self-healing capability. Collectively, these advancements highlight the potential of PUA/AF composite fabrics as promising candidates for advanced protective textiles, integrating superior flame retardancy, mechanical strength, puncture resistance, and self-repairing functionality. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 2769 KiB  
Article
Converting Agroforestry Biowaste into Stable Near-Natural Chars via Hydrothermal Humification and Pyrolysis for Immobilizing Plasticizer
by Tao Xue, Yi Li, Zimo Chen, Chao Kong, Biyun Feng, Changyin Zhu, Yinlong Zhang, Jianming Xue and Hu Cheng
Agriculture 2025, 15(11), 1177; https://doi.org/10.3390/agriculture15111177 - 29 May 2025
Viewed by 326
Abstract
To ensure agricultural safety and ecological security, it is crucial to effectively immobilize emerging organic pollutants, such as plasticizers, to prevent their migration in various environmental matrices. However, the ideal immobilization agent with the advantages of being environmentally friendly is very rare. In [...] Read more.
To ensure agricultural safety and ecological security, it is crucial to effectively immobilize emerging organic pollutants, such as plasticizers, to prevent their migration in various environmental matrices. However, the ideal immobilization agent with the advantages of being environmentally friendly is very rare. In this study, low-cost and stable near-natural immobilization agents, char-derived artificial humic acids, CHAs, were proposed and prepared via hydrothermal humification (180 °C) and pyrolysis (300, 500, or 700 °C) of agroforestry biowaste. The resulting CHAs exhibit high purity (composed primarily of C (67.28–81.35%), O (6.65–21.64%), H (1.40–5.28%), and N (0.36–0.58%)) with remarkably low ash content (5.43–10.02%). Characterization revealed a compact structure with a limited porosity with small surface area (0.27–0.32 m2 g−1) and pore volume (2.99–3.43 × 10−4 cm3 g−1). Notably, high-temperature pyrolysis induced consumption of oxygen-containing functional groups while promoting aromatic structure formation. The sorption behavior of diethyl phthalate, a representative plasticizer, on CHAs was well described by both Langmuir isotherm and pseudo-second-order kinetic models. The CHAs exhibited remarkable sorption performance for diethyl phthalate, with a maximum sorption capacity reaching 3345 mg kg−1 as determined by the Langmuir model. The sorption of diethyl phthalate onto CHAs is mainly multi-layer sorption dominated by physical processes, mainly including pore filling, partitioning, hydrogen bonding, and π–π stacking. Mean sorption energies ranging from 2.56 to 4.99 × 10−3 kJ mol−1 indicate the predominance of physical sorption mechanisms. This study developed a method to convert the liquid by-product produced during hydrothermal humification of biowaste into stable near-natural and carbon-rich char materials, and the proposed materials show great promise in immobilizing pollutants from various environmental matrices. Full article
(This article belongs to the Special Issue Converting and Recycling of Agroforestry Residues)
Show Figures

Figure 1

Back to TopTop