Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,563)

Search Parameters:
Keywords = channelized rivers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3372 KB  
Article
Does Regional Integration Enhance Green Development Efficiency? Evidence from the Yangtze River Delta Region in China
by Guancen Wu, Zhicheng Zeng, Dongqin Yang, Hongqiang Wang and Xing Niu
Systems 2025, 13(10), 904; https://doi.org/10.3390/systems13100904 (registering DOI) - 14 Oct 2025
Abstract
As regional integration accelerates globally, green development has emerged as a pivotal imperative for reconciling economic growth with environmental sustainability. This study employs a Difference-in-Differences framework incorporating city and year fixed effects to examine the impact of regional integration on green development efficiency [...] Read more.
As regional integration accelerates globally, green development has emerged as a pivotal imperative for reconciling economic growth with environmental sustainability. This study employs a Difference-in-Differences framework incorporating city and year fixed effects to examine the impact of regional integration on green development efficiency in China’s Yangtze River Delta. The empirical findings reveal that regional integration significantly undermines green development efficiency, a conclusion corroborated by rigorous robustness checks including parallel trends and placebo tests. Mechanism analysis demonstrates that trade openness and digital economy development function as partial mediating channels that modestly attenuate the direct adverse effect of regional integration, whereas the decline in secondary industry agglomeration amplifies the negative impact. Notably, innovation capability has yet to fully unlock its potential for green transformation, it intensifies the negative effects of regional integration across all three mediating mechanisms. Building on these findings, this study proposes policy recommendations including strengthening multi-level green governance frameworks, integrating ecological compensation and carbon trading systems, advancing low-carbon trade structures, promoting the synergistic development of digitalization and green transformation, facilitating the green transition of secondary industries, and reinforcing green technology innovation. These insights provide empirical evidence and policy references for achieving coherence between regional integration and sustainable development objectives. Full article
Show Figures

Figure 1

16 pages, 4181 KB  
Article
Optimizing Pier Arrangement for Flood Hazard Mitigation: A Comparative Mobile-Bed and Fixed-Bed Experimental Study
by Minxia Hao, Guodong Li and Xinyu Sheng
Water 2025, 17(20), 2951; https://doi.org/10.3390/w17202951 - 14 Oct 2025
Abstract
River bridge engineering alters the hydraulic characteristics of rivers, impacting fluvial morphological stability. To investigate issues concerning flood conveyance capacity within the river reach hosting a new bridge and the safe operation of existing bridges, comparative physical model tests employing both mobile-bed and [...] Read more.
River bridge engineering alters the hydraulic characteristics of rivers, impacting fluvial morphological stability. To investigate issues concerning flood conveyance capacity within the river reach hosting a new bridge and the safe operation of existing bridges, comparative physical model tests employing both mobile-bed and fixed-bed configurations were conducted. A 1:60 scale model was used to test flood peak discharges corresponding to 30-year and 100-year return periods and investigate pier spacings of 30 m and 40 m. These tests evaluated the relative advantages and limitations of each model type in simulating flow patterns, sediment transport, and riverbed evolution. Specifically, mobile-bed models more effectively capture the interaction between water flow and sediment dynamics, while fixed-bed experiments enable more precise measurement of hydraulic parameters. Pier spacing is recognized as one of the most critical factors influencing river flow regimes. Larger pier spacing (40 m) was found to reduce upstream backwater and local scour depth compared to smaller spacing (30 m), particularly under the 30-year flood scenario. Consequently, this study investigated the effects of pier spacing on flow patterns, obtained flood conveyance characteristics under various flood frequencies, and analyzed the underlying mechanisms governing flow fields, velocity variations, and local scour around piers. The research outcomes not only elucidate multiscale coupling mechanisms between water flow and sediment but also quantify the relationship between the extent of pier-induced flow disturbance and subsequent channel morphological adjustments. This quantification provides a dynamic criterion for risk mitigation of river-crossing structures and establishes a hydrodynamic foundation for studying flood hazards in complex river reaches. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

22 pages, 12659 KB  
Article
Spatiotemporal Dynamics and Land Cover Drivers of Herbaceous Aboveground Biomass in the Yellow River Delta from 2001 to 2022
by Shuo Zhang, Wanjuan Song, Ni Huang, Feng Tang, Yuelin Zhang, Chang Liu, Yibo Liu and Li Wang
Remote Sens. 2025, 17(20), 3418; https://doi.org/10.3390/rs17203418 - 12 Oct 2025
Viewed by 216
Abstract
Frequent channel migrations of the Yellow River, coupled with increasing human disturbances, have driven significant land cover changes in the Yellow River Delta (YRD) over time. Accurate estimation of aboveground biomass (AGB) and clarification of the impact of land cover changes on AGB [...] Read more.
Frequent channel migrations of the Yellow River, coupled with increasing human disturbances, have driven significant land cover changes in the Yellow River Delta (YRD) over time. Accurate estimation of aboveground biomass (AGB) and clarification of the impact of land cover changes on AGB are crucial for monitoring vegetation dynamics and supporting ecological management. However, field-based biomass samples are often time-consuming and labor-intensive, and the quantity and quality of such samples greatly affect the accuracy of AGB estimation. This study developed a robust AGB estimation framework for the YRD by synthesizing 4717 field-measured samples from the published scientific literature and integrating two critical ecological indicators: leaf area index (LAI) and length of growing season (LGS). A random forest (RF) model was employed to estimate AGB for the YRD from 2001 to 2022, achieving high accuracy (R2 = 0.74). The results revealed a continuous spatial expansion of AGB over the past two decades, with higher biomass consistently observed in western cropland and along the Yellow River, whereas lower biomass levels were concentrated in areas south of the Yellow River. AGB followed a fluctuating upward trend, reaching a minimum of 204.07 g/m2 in 2007, peaking at 230.79 g/m2 in 2016, and stabilizing thereafter. Spatially, western areas showed positive trends, with an average annual increase of approximately 10 g/m2, whereas central and coastal zones exhibited localized declines of around 5 g/m2. Among the changes in land cover, cropland and wetland changes were the main contributors to AGB increases, accounting for 54.2% and 52.67%, respectively. In contrast, grassland change exhibited limited or even suppressive effects, contributing −6.87% to the AGB change. Wetland showed the greatest volatility in the interaction between area change and biomass density change, which is the most uncertain factor in the dynamic change in AGB. Full article
Show Figures

Figure 1

21 pages, 8224 KB  
Article
Hypothesis-Driven Conceptual Model for Groundwater–Surface Water Interaction at Aguieira Dam Reservoir (Central Portugal) Based on Principal Component Analysis and Hierarchical Clustering
by Gustavo Luís, Alcides Pereira and Luís Neves
Water 2025, 17(20), 2933; https://doi.org/10.3390/w17202933 - 11 Oct 2025
Viewed by 129
Abstract
The interaction between groundwater and surface water can be significant in lakes or irrigation channels, as well as in large dam reservoirs or along portions of them. To evaluate this interaction at a sampling location directly controlled by a large dam equipped with [...] Read more.
The interaction between groundwater and surface water can be significant in lakes or irrigation channels, as well as in large dam reservoirs or along portions of them. To evaluate this interaction at a sampling location directly controlled by a large dam equipped with reversible pump-turbines, data from Rn-222 and physicochemical parameters at specific depths and times were obtained and studied using Principal Component Analysis and Hierarchical Clustering. Dimension 1 explains 45.3% of the total variability in the original data, which can be interpreted as the result of external factors related to seasonal variability (e.g., temperature, turbulent flow, and precipitation), while Dimension 2 explains up to 31.2% and can be interpreted as the variability related to groundwater inputs. Five hierarchical clusters based on these dimensions were considered and were related to the temporal variability observed in the water column throughout the year, as well as the depth relationships observed between successive surveys. A hypothesis-driven conceptual piston-like effect model is proposed for groundwater–surface water interactions, considering the identified relationships between variables, including higher Rn-222 concentrations in surface water after heavy rain. According to this simplified conceptual model, water infiltrates in a weathered granitic recharging area; during heavy rain, it is forced through the fracture systems of a lesser-weathered granite. Thus, an overall increase in pressure over the hydrological system forces the older radon-enriched water to discharge into the Mondego River. This work highlights the importance of exploratory techniques such as PCA and Hierarchical Clustering, in addition to underlying knowledge of the geological setting, for the proposal of simplified conceptual models that help in the management of important reservoirs. This work also demonstrates the utility of Rn-222 as a simple tracer of groundwater discharge into surface water. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 9503 KB  
Article
Analysis of Annual Maximum Ice-Influenced and Open-Water Levels at Select Hydrometric Stations on Canadian Rivers
by Yonas Dibike, Laurent de Rham, Spyros Beltaos, Daniel L. Peters and Barrie Bonsal
Water 2025, 17(20), 2930; https://doi.org/10.3390/w17202930 - 10 Oct 2025
Viewed by 217
Abstract
River ice is a common feature in most Canadian rivers and streams during the cold season. River channel hydraulics under ice conditions may cause higher water levels at a relatively lower discharge compared to the open-water flood events. Elevated water levels resulting from [...] Read more.
River ice is a common feature in most Canadian rivers and streams during the cold season. River channel hydraulics under ice conditions may cause higher water levels at a relatively lower discharge compared to the open-water flood events. Elevated water levels resulting from river ice processes throughout fall freeze-over, mid-winter, and spring break-up are important hydrologic events with diverse morphological, ecological, and socio-economic impacts. This study analyzes the timing of maximum water levels (occurring during freeze-over, spring break-up, and open-water periods) and the typology of maximum ice-related events (at freeze-over, mid-winter, and spring break-up) using data from the Canadian River Ice Database. The study also compares annual maximum water levels during the river ice and open-water periods at selected hydrometric stations from 1966 to 2015, divided into two 25-year windows: 1966–1990 and 1991–2015. A return period classification method was applied to define ice-influenced, open-water, and mixed-regime conditions. The results indicate that the majority of ice-influenced maximum water levels occurred during spring break-up (~79% in 1966–1990 and ~69% in 1991–2015), followed by fall freeze-up (~13% and ~23%) and mid-winter break-up (~8% and ~7%) for the two periods, respectively. Among 15 stations analyzed for 1966–1990 and 42 stations for 1991–2015, the proportion of annual maximum water levels dominated by open-water conditions increased from 47% to 55%, while ice-dominated events decreased from 13% to 12%, and mixed-regime events dropped from 40% to 33%. However, a focused comparison of eight common stations revealed minimal change in the distribution of water level-generating events between the two periods. The findings offer valuable insights into the spatial distribution of maximum water level-generating mechanisms across Canada. Full article
(This article belongs to the Special Issue Hydroclimatic Changes in the Cold Regions)
Show Figures

Figure 1

26 pages, 6711 KB  
Article
Vegetation–Debris Synergy in Alternate Sandbar Morphodynamics: Flume Experiments on the Impacts of Density, Layout, and Debris Geometry
by Saqib Habib, Muhammad Rizwan and Norio Tanaka
Water 2025, 17(19), 2915; https://doi.org/10.3390/w17192915 - 9 Oct 2025
Viewed by 218
Abstract
Predicting how vegetation–debris interactions reshape alternate sandbars under a steady subcritical flow remains poorly understood in laboratory-to-field scaling. This study quantified how vegetation density and layout interact with debris geometry to control scouring and deposition and developed an empirical tool to predict normalized [...] Read more.
Predicting how vegetation–debris interactions reshape alternate sandbars under a steady subcritical flow remains poorly understood in laboratory-to-field scaling. This study quantified how vegetation density and layout interact with debris geometry to control scouring and deposition and developed an empirical tool to predict normalized bed-level changes. Flume experiments investigated how vegetation–debris interactions regulate the hydromorphodynamics of non-migrating alternate sandbars under a steady subcritical flow (Q = 0.003 m3/s; slope = 1/200). Vegetation patches were configured in two spatial layouts—upstream (apex) and river line (edge), at varying densities, with and without debris (I-type: wall-like; U-type: horseshoe-shaped). Results indicated that dense upstream vegetation combined with I-type debris produced the strongest morphodynamic response, generating maximum scour, corresponding to the maximum bed-elevation changes (Δz) normalized by water depth (h) (dimensionless Δz/h) values of −1.55 and 1.05, and sustaining more than 70% of the downstream morphodynamic amplitude. In contrast, U-type debris promoted distributed deposition with a milder scour, while sparse vegetation yielded weaker, more transient responses. Debris geometry-controlled flow partitioning: the I-type enhanced frontal acceleration, whereas the U-type facilitated partial penetration and redistribution. To integrate these findings into predictive frameworks, an empirical regression model was developed to estimate Δz/h from the vegetation density, distribution, and debris geometry, with an additional blockage index to capture synergistic effects. The model achieved 87.5% prediction within ±20% error, providing a practical tool for anticipating scour and deposition intensity across eco-hydraulic configurations. These insights advance intelligent water management by linking morphodynamic responses with predictive modeling, supporting flood-resilient river engineering, adaptive channel stability assessments, and nature-based solutions. Full article
Show Figures

Figure 1

21 pages, 3114 KB  
Article
Event-Driven Shoreline Dynamics of the Nile, Indus, and Yellow River Deltas: A 50-Year Analysis of Trends and Responses
by Muhammad Risha and Paul Liu
Earth 2025, 6(4), 120; https://doi.org/10.3390/earth6040120 - 9 Oct 2025
Viewed by 394
Abstract
The Nile, Indus, and Yellow River deltas are historically significant and have experienced extensive shoreline changes over the past 50 years, yet the roles of human interventions and natural events remain unclear. In this study, the Net Shoreline Movement and End Point Rate [...] Read more.
The Nile, Indus, and Yellow River deltas are historically significant and have experienced extensive shoreline changes over the past 50 years, yet the roles of human interventions and natural events remain unclear. In this study, the Net Shoreline Movement and End Point Rate (EPR) were calculated to quantify the erosion and accretion of the shoreline, respectively. Subsequently, linear trend analysis was employed to identify potential directional shifts in shoreline behavior. These measures are combined with segment-scale cumulative area and the EPR trend to reveal where erosion or accretion intensifies, weakens, or reverses through time. Results show distinct, system-specific trajectories, the Nile lost ~27 km2 from 1972 to1997 as a result of the dam construction and sediment reduction, and lost only ~3 km2 more from 1997 to 2022, with local stabilization. The Indus switched from intermittent gains before 1990s to sustained loss after that, totaling ~300 km2 of cumulative land loss mainly due to upstream dam constructions and storm events. The Yellow River gained ~500 km2 from 1973 to 1996 then lost ~200 km2 after main-channel relocation and reduced sediment supply despite active-mouth management. These outcomes indicate that deltas are very vulnerable to system wide human activities and natural events. Combined, satellite-derived metrics can help prioritize locations, guide feasible interventions, establish annual monitoring and trigger action. A major caveat of this study is that yearly shoreline rates and 5–10-yearaverages can mask short-lived or very local shifts. Targeted field surveys and finer-scale modeling (hydrodynamics, subsidence monitoring, bathymetry) are therefore needed to refine the design and inform better policy choices. Full article
Show Figures

Figure 1

27 pages, 5598 KB  
Article
Spawning Habitat Partitioning of Sympatric Salmonid Populations in the Upper Bois Brule River, Wisconsin
by Benjamin T. Schleppenbach, Thomas R. Hrabik, Daniel D. McCann, Karen B. Gran and Greg G. Sass
Fishes 2025, 10(10), 506; https://doi.org/10.3390/fishes10100506 - 8 Oct 2025
Viewed by 177
Abstract
Spawning habitat partitioning can be important for maintaining sympatric fish species. Likewise, critical spawning habitat loss may challenge the long-term persistence of sympatric fish species. The Bois Brule River, Wisconsin, USA, is a spring-fed, western Lake Superior tributary that supports five naturally reproducing [...] Read more.
Spawning habitat partitioning can be important for maintaining sympatric fish species. Likewise, critical spawning habitat loss may challenge the long-term persistence of sympatric fish species. The Bois Brule River, Wisconsin, USA, is a spring-fed, western Lake Superior tributary that supports five naturally reproducing populations of salmonids (native brook trout Salvelinus fontinalis; introduced brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, coho salmon O. kisutch, and chinook salmon O. tshawytscha). Given increases in recreational angler use and predicted climate-associated changes to trout stream habitat, a better understanding of species interactions during spawning is important to guide future management and conservation of these anthropogenically derived sympatric native and introduced salmonids. Our aim was to establish whether there was partitioning or overlapping in the redd site location preferences among native and introduced salmonids inhabiting the Bois Brule River. We mapped species-specific redd locations by canoe over a 15.3 river km section known to be important for salmonid spawning and evaluated physical, flow, and thermal conditions of these habitats of the Bois Brule River during 2021–2022. We found that spring spawning rainbow trout and fall spawning pacific salmonids and brown trout used the same spawning locations on mid-channel, larger gravel reefs downstream of riffle sections. Native brook trout spawned on smaller substrates with lower streamflow on the edges of the channel, with the highest spawning activity occurring in littoral areas of lentic portions of the river. Our findings provide valuable knowledge of critical spawning habitats for sympatric salmonids that may inform habitat conservation and enhancement efforts in the Bois Brule River and other Great Lakes tributaries with similar sympatric, naturally reproducing salmonids populations. Full article
Show Figures

Figure 1

31 pages, 11924 KB  
Article
Enhanced 3D Turbulence Models Sensitivity Assessment Under Real Extreme Conditions: Case Study, Santa Catarina River, Mexico
by Mauricio De la Cruz-Ávila and Rosanna Bonasia
Hydrology 2025, 12(10), 260; https://doi.org/10.3390/hydrology12100260 - 2 Oct 2025
Viewed by 296
Abstract
This study compares enhanced turbulence models in a natural river channel 3D simulation under extreme hydrometeorological conditions. Using ANSYS Fluent 2024 R1 and the Volume of Fluid scheme, five RANS closures were evaluated: realizable k–ε, Renormalization-Group k–ε, Shear Stress Transport k–ω, Generalized k–ω, [...] Read more.
This study compares enhanced turbulence models in a natural river channel 3D simulation under extreme hydrometeorological conditions. Using ANSYS Fluent 2024 R1 and the Volume of Fluid scheme, five RANS closures were evaluated: realizable k–ε, Renormalization-Group k–ε, Shear Stress Transport k–ω, Generalized k–ω, and Baseline-Explicit Algebraic Reynolds Stress model. A segment of the Santa Catarina River in Monterrey, Mexico, defined the computational domain, which produced high-energy, non-repeatable real-world flow conditions where hydrometric data were not yet available. Empirical validation was conducted using surface velocity estimations obtained through high-resolution video analysis. Systematic bias was minimized through mesh-independent validation (<1% error) and a benchmarked reference closure, ensuring a fair basis for inter-model comparison. All models were realized on a validated polyhedral mesh with consistent boundary conditions, evaluating performance in terms of mean velocity, turbulent viscosity, strain rate, and vorticity. Mean velocity predictions matched the empirical value of 4.43 [m/s]. The Baseline model offered the highest overall fidelity in turbulent viscosity structure (up to 43 [kg/m·s]) and anisotropy representation. Simulation runtimes ranged from 10 to 16 h, reflecting a computational cost that increases with model complexity but justified by improved flow anisotropy representation. Results show that all models yielded similar mean flow predictions within a narrow error margin. However, they differed notably in resolving low-velocity zones, turbulence intensity, and anisotropy within a purely hydrodynamic framework that does not include sediment transport. Full article
Show Figures

Figure 1

21 pages, 3532 KB  
Article
Pollution Status, Ecological Risks, and Potential Sources of Metals in the Middle and Lower Reaches of the Lianjiang River Basin, Guangdong Province, China
by Yongzhong Lai, Le Li, Xianbing Huang, Guoyong Lu, Fengqin Pan and Wenhua Liu
Toxics 2025, 13(10), 840; https://doi.org/10.3390/toxics13100840 - 1 Oct 2025
Viewed by 372
Abstract
Human activities have led to severe aquatic pollution and significant concerns about the ecological health of the Lianjiang River Basin (LRB). These concerns resulted in the implementation of comprehensive policies and treatments to improve the sediment and water quality. Herein, we explore the [...] Read more.
Human activities have led to severe aquatic pollution and significant concerns about the ecological health of the Lianjiang River Basin (LRB). These concerns resulted in the implementation of comprehensive policies and treatments to improve the sediment and water quality. Herein, we explore the concentrations, sources, and degree of metal contamination in filtered water (FW), suspended solids (SSs), and surficial channel sediments (SCSs) in streams of the LRB. Calculated enrichment factors, an ecological risk index, and a principal component analysis were employed to understand the degree of elemental contamination, ecological risks, and their potential sources. Elements (e.g., Hg, Cd, Sn, Sb, Cu, and Mo) were mainly detected in FW, SSs, and SCSs in the Bergang, Hucheng, Xiashan, and Zhonggang rivers, and the mainstream of the LR. Four potential anthropogenic sources were identified, including electronic waste recycling (e.g., Cu, Sb, Pb, and Ni), mixed pollution (e.g., Se, Zn, Mn, and Mo), metal processing (e.g., Hg, Cr, Sn, and Cd), and battery manufacturing and recycling (e.g., Co, Ni, and Mn). Overall, Sn, Sb, Hg, Cu, and Cd were enriched by 37.5–79.2% and 34.8–91.3% at the SS and SCS sites, respectively. Mercury, Cd, Sn, Sb, Cu, and Mo posed the most risk both in the SSs and SCSs. Overall, the SS and SCS samples from the LRB remain severely contaminated with metals after recent environmental remediation. The implementation of pollution source control, sewage interception, and dredging operations should be further enhanced. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

28 pages, 9925 KB  
Article
The Impact of Urbanization Level on Urban Ecological Resilience and Its Role Mechanisms: A Case Study of Resource-Based Cities in China
by Lei Suo, Linsen Zhu, Haiying Feng and Wei Li
Sustainability 2025, 17(19), 8774; https://doi.org/10.3390/su17198774 - 30 Sep 2025
Viewed by 428
Abstract
Against the backdrop of accelerating global urbanization and intensifying ecological pressures, investigating the relationship between urbanization levels and ecological resilience in resource-based cities has become crucial for nations striving to achieve both sustainable development and ecological conservation. Utilizing panel data from 114 resource-based [...] Read more.
Against the backdrop of accelerating global urbanization and intensifying ecological pressures, investigating the relationship between urbanization levels and ecological resilience in resource-based cities has become crucial for nations striving to achieve both sustainable development and ecological conservation. Utilizing panel data from 114 resource-based cities in China between 2010 and 2023, this study innovatively employs a composite nighttime light index to measure urbanization levels and constructs a comprehensive ecological resilience index using the entropy method. By applying a double machine learning model, this study thoroughly examines the impact, mechanisms, and heterogeneity of urbanization on ecological resilience in these cities. The findings reveal a gradual increase in ecological resilience among China’s resource-based cities, with the majority reaching high resilience levels by 2023. Spatial aggregation centers are identified in eastern China, the Yangtze River Delta, and the Pearl River Delta. Moreover, urbanization demonstrates a significant positive correlation with ecological resilience, a conclusion reinforced through robustness tests. Mechanism analysis reveals that industrial structure upgrading, green technology innovation, and energy efficiency improvement serve as key transmission channels. Heterogeneity analysis indicates that urbanization exerts a more pronounced effect on enhancing ecological resilience in regenerative resource-based cities as well as those located in eastern and central regions, while its impact is relatively weaker in declining resource-based cities and those in western and northeastern regions. Finally, this study proposes policy recommendations focusing on advancing industrial structure sophistication, constructing a green technology innovation ecosystem, implementing an energy efficiency enhancement initiative, deepening region-specific governance, and adopting targeted policy interventions. These findings provide theoretical support for precise policy formulation in resource-based cities and contribute to advancing academic understanding of the relationship between sustainable development and ecological resilience in such regions. Full article
Show Figures

Figure 1

19 pages, 5264 KB  
Article
Integrated Allocation of Water-Sediment Resources and Its Impacts on Socio-Economic Development and Ecological Systems in the Yellow River Basin
by Lingang Hao, Enhui Jiang, Bo Qu, Chang Liu, Jia Jia, Ying Liu and Jiaqi Li
Water 2025, 17(19), 2821; https://doi.org/10.3390/w17192821 - 26 Sep 2025
Viewed by 301
Abstract
Both water and sediment resource allocation are critical for achieving sustainable development in sediment-laden river basins. However, current understanding lacks a holistic perspective and fails to capture the inseparability of water and sediment. The Yellow River Basin (YRB) is the world’s most sediment-laden [...] Read more.
Both water and sediment resource allocation are critical for achieving sustainable development in sediment-laden river basins. However, current understanding lacks a holistic perspective and fails to capture the inseparability of water and sediment. The Yellow River Basin (YRB) is the world’s most sediment-laden river, characterized by pronounced ecological fragility and uneven socio-economic development. This study introduces integrated water-sediment allocation frameworks for the YRB based on the perspective of the water-sediment nexus, aiming to regulate their impacts on socio-economic and ecological systems. The frameworks were established for both artificial units (e.g., irrigation zones and reservoirs) and geological units (e.g., the Jiziwan region, lower channels, and estuarine deltas) within the YRB. The common feature of the joint allocation of water and sediment across the five units lies in shaping a coordinated water–sediment relationship, though their focuses differ, including in-stream water-sediment processes and combinations, the utilization of water and sediment resources, and the constraints imposed by socio-economic and ecological systems on water-sediment distribution. In irrigation zones, the primary challenge lies in engineering-based control of inflow magnitude and spatiotemporal distribution for both water and sediment. In reservoir systems, effective management requires dynamic regulation through density current flushing and coordinated operations to achieve water-sediment balance. In the Jiziwan region, reconciling socio-economic development with ecological integrity requires establishing science-based thresholds for water and sediment use while ensuring a balance between utilization and protection. Along the lower channel, sustainable management depends on delineating zones for human activities and ecological preservation within floodplains. For deltaic systems, key strategies involve adjusting upstream sediment and refining depositional processes. Full article
Show Figures

Figure 1

28 pages, 11489 KB  
Article
Long-Term Responses of Crustacean Zooplankton to Hydrological Alterations in the Danube Inland Delta: Patterns of Biotic Homogenization and Differentiation
by Pavel Beracko, Igor Kokavec and Igor Matečný
Diversity 2025, 17(10), 670; https://doi.org/10.3390/d17100670 - 25 Sep 2025
Viewed by 228
Abstract
Our study addresses how large-scale hydrological alterations shape zooplankton biodiversity in floodplain ecosystems, which are highly sensitive to changes in river connectivity. Following the operation of the Gabčíkovo hydroelectric power plant in the Danube inland delta, we examined the long-term responses of crustacean [...] Read more.
Our study addresses how large-scale hydrological alterations shape zooplankton biodiversity in floodplain ecosystems, which are highly sensitive to changes in river connectivity. Following the operation of the Gabčíkovo hydroelectric power plant in the Danube inland delta, we examined the long-term responses of crustacean zooplankton communities, as these organisms are key indicators of hydromorphological disturbance. Based on previous evidence that river regulation often reduces habitat heterogeneity, we hypothesized that hydrological alterations in the Danube riverscape would promote increasing taxonomic and functional homogenization within sites, while simultaneously enhancing differentiation between sites over the past three decades. A total of 121 planktonic crustacean species were recorded across six monitored sites between 1991 and 2020, comprising 49 copepods and 72 cladocerans. Communities showed rising species richness, especially during the first decade of the hydropower plant’s operation. While overall richness increased, dam-induced hydromorphological changes triggered habitat-specific community shifts. In the main channel and adjacent parapotamal arm, taxonomic and functional homogenization occurred, dominated by resilient tychoplanktonic species with a gathering or secondary filter-feeding strategy. In contrast, isolated side arms experienced gradual eutrophication, favoring euplanktonic and primary filter-feeding taxa. The observed taxonomic and functional convergence within both habitat groups reflects the loss of connectivity and the cessation of artificial flooding. Full article
(This article belongs to the Special Issue Aquatic Biodiversity and Habitat Restoration)
Show Figures

Figure 1

21 pages, 7863 KB  
Article
Identification of Microplastic Accumulation Zones in a Tidal River: A Case Study of the Fraser River, British Columbia, Canada
by Shahrzad Hamidiaala, Golnoosh Babajamaaty, Abdolmajid Mohammadian, Abolghasem Pilechi and Mohammad Ghazizadeh
Sustainability 2025, 17(19), 8591; https://doi.org/10.3390/su17198591 - 24 Sep 2025
Viewed by 301
Abstract
Sustainable management of aquatic ecosystems requires effective strategies to monitor and mitigate microplastic pollution, particularly in vulnerable tidal river systems. Microplastic accumulation in these environments poses significant environmental risks, threatening biodiversity, ecosystem health, and long-term water quality. This study employs a three-dimensional hydrodynamic [...] Read more.
Sustainable management of aquatic ecosystems requires effective strategies to monitor and mitigate microplastic pollution, particularly in vulnerable tidal river systems. Microplastic accumulation in these environments poses significant environmental risks, threatening biodiversity, ecosystem health, and long-term water quality. This study employs a three-dimensional hydrodynamic model (TELEMAC-3D—v8p5) coupled with a Lagrangian particle tracking model (CaMPSim-3D—v1.2.1) to simulate microplastic transport dynamics in the lower Fraser River, British Columbia, Canada. The model incorporates tidal forcing, riverine hydrodynamics, and mixing processes, and was validated with good agreement against observed water levels. This model provides a high-resolution representation of microplastic dispersion under varying release scenarios, including emissions from combined sewer overflows (CSOs) and wastewater treatment plants (WWTPs). A novel approach is proposed to identify microplastic accumulation zones using the OPTICS (Ordering Points to Identify the Clustering Structure) clustering algorithm. Accumulation zone locations remain spatially consistent despite variations in release volume. Persistent clusters occurred near channel constrictions and shoreline segments associated with flow deceleration. These findings demonstrate the robustness of the method and provide a systematic framework for prioritizing high-risk areas, supporting targeted monitoring and informing sustainable estuarine management. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

19 pages, 5873 KB  
Article
Seasonal Variations in Riverine Sediment Transport Timescales in the Pearl River Estuary
by Rong Lu, Huizhong He, Anyuan Xie, Xi He, Cong Peng, Zhengyuan Li and Hao Zheng
Water 2025, 17(19), 2805; https://doi.org/10.3390/w17192805 - 24 Sep 2025
Viewed by 438
Abstract
Understanding sediment transport timescales is essential for predicting morphological evolution, pollutant accumulation, and ecosystem health in estuaries. This study examines seasonal hydrodynamics and sediment transport in the Pearl River Estuary using a well-calibrated numerical model. The results indicate that plume dynamics largely control [...] Read more.
Understanding sediment transport timescales is essential for predicting morphological evolution, pollutant accumulation, and ecosystem health in estuaries. This study examines seasonal hydrodynamics and sediment transport in the Pearl River Estuary using a well-calibrated numerical model. The results indicate that plume dynamics largely control sediment transport in both the wet and dry seasons. During the wet season, sediments are exported along both estuary flanks with the expanding freshwater plume. Under the combined effects of topography and the Coriolis force, a greater proportion of sediments exits via the confluence of the West Channel and West Shoal. In the dry season, prevailing northeasterly winds suppress sediment export along the East Channel, redirecting most of the riverine sediment westward. Sediment transport timescales, quantified by sediment age, further show that, during the wet season, export via the East Channel requires approximately 30 days, whereas export along the western flank takes about 45 days due to the weaker dynamics over the West Shoal. Reduced river discharge in the dry season increases sediment age overall; offshore delivery within the plume region takes roughly 50 days, while transport via the East Channel may require an additional 30–60 days. Comparative simulations with and without wind forcing reveal that southerly winds during the wet season weaken plume intensity and prolong transport timescales, whereas northeasterly winds in the dry season enhance plume dynamics, accelerating sediment export from the estuary. Collectively, these findings clarify the mechanisms underlying the seasonal variability in sediment transport and provide a scientific basis for estuarine management and engineering. Full article
Show Figures

Figure 1

Back to TopTop