Does Regional Integration Enhance Green Development Efficiency? Evidence from the Yangtze River Delta Region in China
Abstract
1. Introduction
2. Literature Review
2.1. Regional Integration
2.2. Green Development Efficiency
2.3. Summary
3. Theoretical Analysis and Hypotheses Development
4. Material and Methods
4.1. Study Area
4.2. Model Specification
4.3. Variable Description
4.3.1. Dependent Variable
4.3.2. Explanatory Variable
4.3.3. Control Variables
4.3.4. Mediating Variables
4.3.5. Moderating Variables
4.4. Data Source
5. Empirical Results
5.1. Descriptive Statistics
5.2. Baseline Regression Results
5.3. Parallel Trend Test
5.4. Placebo Test
5.5. Mechanism Verification
5.5.1. Mediating Effect Analysis
5.5.2. Moderating Effect Analysis
6. Discussion
6.1. The Adverse Effect of Regional Integration on Green Development Efficiency
6.2. Heterogeneous Mediation by Trade Openness, Industrial Agglomeration, and Digital Economy in Regional Integration’s Effects on Green Development Efficiency
6.3. Innovation and the Digital Economy as Reinforcers of the Negative Effect of Regional Integration on Green Efficiency
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tinbergen, J. International Economic Integration; Elsevier: Amsterdam, The Netherlands, 1954. [Google Scholar]
- Haas, E.B. The Uniting of Europe: Political, Social, and Economic Forces, 1950–1957; Stanford University Press: Stanford, CA, USA, 1959; ISBN 0-8047-0515-1. [Google Scholar]
- Balassa, B. The Theory of Economic Integration; Routledge: London, UK, 1961; ISBN 978-0-203-80518-3. [Google Scholar]
- Parsley, D.C.; Wei, S.-J. Convergence to the Law of One Price without Trade Barriers or Currency Fluctuations. Q. J. Econ. 1996, 111, 1211–1236. [Google Scholar] [CrossRef]
- Badinger, H. Growth Effects of Economic Integration: Evidence from the EU Member States. Rev. World Econ. 2005, 141, 50–78. [Google Scholar] [CrossRef]
- De Lombaerde, P.; Dorrucci, E.; Genna, G.; Mongelli, F.P. Composite Indexes and Systems of Indicators of Regional Integration. In The Regional Integration Manual: Quantitative and Qualitative Methods; Routledge: London, UK, 2011; pp. 323–346. ISBN 978-0-203-81371-3. [Google Scholar]
- Hong, T.; Yu, N.; Storm, S.; Gao, B. How Much Does Regional Integration Contribute to Growth? An Analysis of the Impact of Domestic Market Integration on Regional Economic Performance in China (1997–2011). Econ. Res.-Ekon. Istraž. 2019, 32, 3189–3210. [Google Scholar] [CrossRef]
- Bai, L.; Zhou, X.; Tian, Y.; Wei, L. Evaluation for the Development of Urban Agglomeration Integration: A Case Study of Pearl River Delta. Social Indic. Res. 2024, 171, 877–904. [Google Scholar] [CrossRef]
- Feng, Y.; Lee, C.-C.; Peng, D. Does Regional Integration Improve Economic Resilience? Evidence from Urban Agglomerations in China. Sustain. Cities Soc. 2023, 88, 104273. [Google Scholar] [CrossRef]
- Jiang, N.; Jiang, W. How Does Regional Integration Policy Affect Urban Resilience? Evidence from Urban Agglomeration in China. Environ. Impact Assess. Rev. 2024, 104, 107298. [Google Scholar] [CrossRef]
- Gao, D.; Li, G.; Li, Y. Government Cooperation, Market Integration, and Energy Efficiency in Urban Agglomerations—Based on the Quasi-Natural Experiment of the Yangtze River Delta Urban Economic Coordination Committee. Energy Environ. 2022, 33, 1679–1694. [Google Scholar] [CrossRef]
- Guo, L.; Tang, M.; Wu, Y.; Bao, S.; Wu, Q. Government-Led Regional Integration and Economic Growth: Evidence from a Quasi-Natural Experiment of Urban Agglomeration Development Planning Policies in China. Cities 2025, 156, 105482. [Google Scholar] [CrossRef]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, Circular, Bio Economy: A Comparative Analysis of Sustainability Avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Tone, K. A Slacks-Based Measure of Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Hou, S.; Song, L. Market Integration and Regional Green Total Factor Productivity: Evidence from China’s Province-Level Data. Sustainability 2021, 13, 472. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zhang, C.; Yang, Q. How Regional Integration Affects Urban Green Development Efficiency: Evidence from Urban Agglomeration in the Middle Reaches of the Yangtze River. Int. J. Environ. Res. Public Health 2022, 19, 7937. [Google Scholar] [CrossRef]
- Feng, Y.; Sun, M.; Pan, Y.; Zhang, C. Fostering Inclusive Green Growth in China: Identifying the Impact of the Regional Integration Strategy of Yangtze River Economic Belt. J. Environ. Manag. 2024, 358, 120952. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Cao, B.; Hua, Y.; Ding, L. Efficiency Measurement of Green Regional Development and Its Influencing Factors: An Improved Data Envelopment Analysis Framework. Sustainability 2020, 12, 4361. [Google Scholar] [CrossRef]
- Si, L.; Wang, J.; Yang, S.; Yang, Y.; Zhang, J. Urban Green Development towards Sustainability in Northwest China: Efficiency Assessment, Spatial Temporal Differentiation Characters, and Influencing Factors. Complexity 2021, 2021, 6630904. [Google Scholar] [CrossRef]
- Gu, R.; Li, C.; Yang, Y.; Zhang, J. The Impact of Industrial Digital Transformation on Green Development Efficiency Considering the Threshold Effect of Regional Collaborative Innovation: Evidence from the Beijing-Tianjin-Hebei Urban Agglomeration in China. J. Clean. Prod. 2023, 420, 138345. [Google Scholar] [CrossRef]
- Liu, B.; Huang, Y.; Chen, M.; Lan, Z. Towards Sustainability: How Does the Digital-Real Integration Affect Regional Green Development Efficiency? Econ. Anal. Policy 2024, 83, 42–59. [Google Scholar] [CrossRef]
- Zhang, R.; Ying, W.; Wu, K.; Sun, H. The Impact of Innovative Human Capital Agglomeration on Urban Green Development Efficiency: Based on Panel Data of 278 Cities in China. Sustain. Cities Soc. 2024, 111, 105566. [Google Scholar] [CrossRef]
- Solow, R.M. A Contribution to the Theory of Economic Growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Krugman, P. Increasing Returns and Economic Geography. J. Polit. Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Porter, M. The Competitive Advonfoge of Notions. Compet. Intell. Rev. 1990, 1, 14. [Google Scholar] [CrossRef]
- Coase, R.H. The Problem of Social Cost. J. Law Econ. 1960, 3, 1. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic Growth and the Environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Khan, R.Z.; Razak, L.A.; Premaratne, G. Green Growth and Sustainability: A Systematic Literature Review on Theories, Measures and Future Directions. Clean. Responsible Consum. 2025, 17, 100274. [Google Scholar] [CrossRef]
- Zou, X.; Xiao, Y.; Ma, D.; Zhang, F.; An, B.; Guo, Z.; Zhang, J. How to Achieve Green Development? A Study on Spatiotemporal Differentiation and Influence Factors of Green Development Efficiency in China. PLoS ONE 2024, 19, e0291468. [Google Scholar] [CrossRef]
- Mehmood, S.; Zaman, K.; Khan, S.; Ali, Z. The Role of Green Industrial Transformation in Mitigating Carbon Emissions: Exploring the Channels of Technological Innovation and Environmental Regulation. Energy Built Environ. 2024, 5, 464–479. [Google Scholar] [CrossRef]
- Zhan, L.; Guo, P.; Pan, G. The Effect of Mandatory Environmental Regulation on Green Development Efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 9782–9792. [Google Scholar] [CrossRef] [PubMed]
- Saraji, M.K.; Streimikiene, D. Challenges to the Low Carbon Energy Transition: A Systematic Literature Review and Research Agenda. Energy Strategy Rev. 2023, 49, 101163. [Google Scholar] [CrossRef]
- Lema, R.; Fu, X.; Rabellotti, R. Green Windows of Opportunity: Latecomer Development in the Age of Transformation toward Sustainability. Ind. Corp. Change 2020, 29, 1193–1209. [Google Scholar] [CrossRef]
- Copeland, B.R.; Taylor, M.S. Trade, Growth, and the Environment. J. Econ. Lit. 2004, 42, 7–71. [Google Scholar] [CrossRef]
- Peters, G.P.; Minx, J.C.; Weber, C.L.; Edenhofer, O. Growth in Emission Transfers via International Trade from 1990 to 2008. Proc. Natl. Acad. Sci. USA 2011, 108, 8903–8908. [Google Scholar] [CrossRef]
- Antweiler, W.; Copeland, B.R.; Taylor, M.S. Is Free Trade Good for the Environment? Am. Econ. Rev. 2001, 91, 877–908. [Google Scholar] [CrossRef]
- Marshall, A. Industry and Trade: A Study of Industrial Technique and Business Organization, and of Their Influences on the Conditions of Various Classes and Nations; Macmillan and Co.: London, UK, 1919. [Google Scholar]
- Henderson, J.V. The Sizes and Types of Cities. Am. Econ. Rev. 1974, 64, 640–656. [Google Scholar]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and Energy Consumption. Does ICT Reduce Energy Demand? Ecol. Econ. 2020, 176, 106760. [Google Scholar] [CrossRef]
- Jevons, W.S. The Coal Question; an Inquiry Concerning the Progress of the Nation, and the Probable Exhaustion of Our Coal-Mines; Macmilan: London, UK, 1865. [Google Scholar]
- Arthur, W.B. Increasing Returns and Path Dependence in the Economy; University of Michigan Press: Ann Arbor, MI, USA, 1994; ISBN 978-0-472-06496-0. [Google Scholar]
- Abadie, A. Semiparametric Difference-in-Differences Estimators. Rev. Econom. Stud. 2005, 72, 1–19. [Google Scholar] [CrossRef]
- Judd, C.M.; Kenny, D.A. Estimating the Effects of Social Intervention; the Press Syndicate of the University of Cambridge: New York, NY, USA, 1981; ISBN 978-0-521-22975-3. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The Moderator–Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Muller, D.; Judd, C.M.; Yzerbyt, V.Y. When Moderation Is Mediated and Mediation Is Moderated. J. Pers. Soc. Psychol. 2005, 89, 852–863. [Google Scholar] [CrossRef] [PubMed]
- Fairchild, A.J.; MacKinnon, D.P. A General Model for Testing Mediation and Moderation Effects. Prev. Sci. 2009, 10, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Xie, Z.; Wu, R. Evaluating Green Innovation Efficiency and Its Socioeconomic Factors Using a Slack-Based Measure with Environmental Undesirable Outputs. Int. J. Environ. Res. Public Health 2021, 18, 12880. [Google Scholar] [CrossRef]
- Xiang, Y.; Shao, W.; Wang, S.; Zhang, Y.; Zhang, Y. Study on Regional Differences and Convergence of Green Development Efficiency of the Chemical Industry in the Yangtze River Economic Belt Based on Grey Water Footprint. Int. J. Environ. Res. Public Health 2022, 19, 1703. [Google Scholar] [CrossRef] [PubMed]
- Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1999; ISBN 978-0-691-00547-8. [Google Scholar]
- Simar, L.; Wilson, P.W. Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Estimation and Inference in Two-Stage, Semi-Parametric Models of Production Processes. J. Econom. 2007, 136, 31–64. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Li, J.; Gao, Y.; Zhao, C. Green Development Efficiency and Its Influencing Factors in China’s Iron and Steel Industry. Sustainability 2021, 13, 510. [Google Scholar] [CrossRef]
- Liu, R.; Chen, D.; Yang, S.; Chen, Y. Evaluation of Green Development Efficiency of the Major Cities in Gansu Province, China. Sustainability 2021, 13, 3034. [Google Scholar] [CrossRef]
- Wang, A.; Lin, W.; Liu, B.; Wang, H.; Xu, H. Does Smart City Construction Improve the Green Utilization Efficiency of Urban Land? Land 2021, 10, 657. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, S.; Zhang, Y.; Dai, Z. Green Development Efficiency Measurement and Influencing Factors of the Paper Industry in the Yangtze River Economic Belt. Water 2021, 13, 1286. [Google Scholar] [CrossRef]
- Liu, K.; Qiao, Y.; Zhou, Q. Analysis of China’s Industrial Green Development Efficiency and Driving Factors: Research Based on MGWR. Int. J. Environ. Res. Public Health 2021, 18, 3960. [Google Scholar] [CrossRef]
- Huang, J.; Shangguan, Z.; Gui, T.; Liu, J. How Urban Development Affects Green Development Efficiency in China: Taking the City Cluster of Yangtze River Economic Belt as an Example. Front. Environ. Sci. 2023, 11, 1169226. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Xu, X. Spatial-Temporal Pattern and Influencing Factors of Ecological Efficiency in Zhejiang—Based on Super-SBM Method. Environ. Model. Assess. 2023, 28, 227–243. [Google Scholar] [CrossRef]
- Guo, A.; Liu, P.; Zhong, F.; Yang, C.; Luo, X. Borrowing Size and Urban Green Development Efficiency in the City Network of China: Impact Measures and Size Thresholds. Land 2022, 11, 493. [Google Scholar] [CrossRef]
- Xia, M.; Tao, D. How Does Livelihood Public Service Affect Urban Green Development Efficiency? Evidence from 281 Cities in China. J. Resour. Ecol. 2024, 15, 304–316. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, M.; Xie, P.; Li, H.; Jiang, M. Impact Assessment of Construction Waste Policy Intensity on Environmental Efficiency Based on System Generalized Method of Moments. Environ. Sci. Pollut. Res. 2024, 31, 23522–23534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dou, W. Impact of Air Pollution Prevention and Control on Urban Green Economy Efficiency: Evidence from China. Sci. Rep. 2024, 14, 27905. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Sun, K.; Cao, H. The Impact and Mechanism of Vertical Fiscal Imbalance on Green Development Efficiency: An Empirical Analysis Based on City-Level Samples in China. Heliyon 2024, 10, e27097. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, X. Research on the Efficiency of China’s Fiscal Expenditure Structure under the Goal of Inclusive Green Growth. Sustainability 2021, 13, 9725. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, Y. Public Expenditure and Green Total Factor Productivity: Evidence from Chinese Prefecture-Level Cities. Int. J. Environ. Res. Public Health 2022, 19, 5755. [Google Scholar] [CrossRef]
- Liu, P.; Huang, W.-C.; Chen, Z.; Wang, S.; Ren, T. The Relationship between Policy Adjustment of SO2 Emissions Charge Standard and the Growth of Green Total Factor Productivity—Evidence from China. Front. Environ. Sci. 2022, 10, 988957. [Google Scholar] [CrossRef]
- Shen, N.; Liao, H.; Deng, R.; Wang, Q. Different Types of Environmental Regulations and the Heterogeneous Influence on the Environmental Total Factor Productivity: Empirical Analysis of China’s Industry. J. Clean. Prod. 2019, 211, 171–184. [Google Scholar] [CrossRef]
- Dai, S.; Tang, D.; Li, Y.; Lu, H. Digital Trade, Trade Openness, FDI, and Green Total Factor Productivity. Int. Rev. Financ. Anal. 2025, 97, 103777. [Google Scholar] [CrossRef]
- Shu, Z.; Peng, S.; Huang, X. How Does Service Trade Openness Promote the Green Transformation of Manufacturing Firms? Evidence from China. Energy Econ. 2025, 144, 108347. [Google Scholar] [CrossRef]
- Xie, W.; Li, X. Can Industrial Agglomeration Facilitate Green Development? Evidence from China. Front. Environ. Sci. 2021, 9, 745465. [Google Scholar] [CrossRef]
- Yu, H.; Dai, S.; Ke, H. Industrial Collaborative Agglomeration and Green Economic Efficiency—Based on the Intermediary Effect of Technical Change. Growth Change 2024, 55, e12727. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, Y.; Ren, J. Green Development Performance Evaluation Based on Dual Perspectives of Level and Efficiency: A Case Study of the Yangtze River Economic Belt, China. Int. J. Environ. Res. Public Health 2022, 19, 9306. [Google Scholar] [CrossRef]
- Gao, X.; Li, J. China’s Digital Economy: A Dual Mission of Carbon-Emission Reduction and Efficiency Enhancement. Sustainability 2024, 16, 2351. [Google Scholar] [CrossRef]
- Kong, L.; Li, J. Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China. Sustainability 2023, 15, 3. [Google Scholar] [CrossRef]
- Lee, C.-C.; He, Z.-W.; Wen, H. The Impact of Digitalization on Green Economic Efficiency: Empirical Evidence from City-Level Panel Data in China. Energy Environ. 2024, 35, 23–46. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Huo, L. Digital Economy, Spatial Spillover and Industrial Green Innovation Efficiency: Empirical Evidence from China. Heliyon 2023, 9, e12875. [Google Scholar] [CrossRef]
- Melnyk, L.H.; Kubatko, O.V.; Piven, V.S.; Klymenko, K.; Rybina, L. Digital and Economic Transformations for Sustainable Development Promotion: A Case of OECD Countries. Environ. Econ. 2021, 12, 140–148. [Google Scholar] [CrossRef]
- Zhang, L.; Azam, S.F.; Tham, J. Impact of Digital Inclusive Finance on the High Quality Development of Rural Economy: Evidence from China. Res. World Agric. Econ. 2025, 6, 192–210. [Google Scholar] [CrossRef]
- Zhu, Y. A Sustainable Mechanism for Digitization to Promote Green Technological Innovation in Enterprises. Appl. Math. Nonlinear Sci. 2024, 9, 1–13. [Google Scholar] [CrossRef]
- Duan, S.; Shang, B.; Nie, Y.; Wang, J.; Li, M.; Yu, J. Spatial and Temporal Differentiation of Carbon Emission Efficiency and the Impact of Green Technology Innovation in Hubei Province. Sustainability 2025, 17, 3613. [Google Scholar] [CrossRef]
- Bertrand, M.; Duflo, E.; Mullainathan, S. How Much Should We Trust Differences-In-Differences Estimates? Q. J. Econ. 2004, 119, 249–275. [Google Scholar] [CrossRef]
- Imbens, G.W.; Wooldridge, J.M. Recent Developments in the Econometrics of Program Evaluation. J. Econ. Lit. 2009, 47, 5–86. [Google Scholar] [CrossRef]
- Angrist, J.D.; Pischke, J.-S. Mostly Harmless Econometrics: An Empiricist’s Companion; Princeton University Press: Princeton, NJ, USA, 2009; ISBN 978-0-691-12035-5. [Google Scholar]
- Cameron, A.C.; Miller, D.L. A Practitioner’s Guide to Cluster-Robust Inference. J. Hum. Resour. 2015, 50, 317–372. [Google Scholar] [CrossRef]
- Abadie, A.; Diamond, A.; Hainmueller, J. Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program. J. Am. Stat. Assoc. 2010, 105, 493–505. [Google Scholar] [CrossRef]
- Bruhn, M.; McKenzie, D. In Pursuit of Balance: Randomization in Practice in Development Field Experiments. Am. Econ. J. Appl. Econ. 2009, 1, 200–232. [Google Scholar] [CrossRef]
- Fu, L.; Han, X.; Peng, J. The Impact of Innovation-Driven Policies on Urban Resilience. Humanit. Soc. Sci. Commun. 2025, 12, 1–16. [Google Scholar] [CrossRef]
- Mu, L.; Zhang, C.; Liu, H. The Impact of the River Chief System on Corporate ESG Performance: Evidence from China. Water 2025, 17, 265. [Google Scholar] [CrossRef]
- Sobel, M.E. Asymptotic Confidence Intervals for Indirect Effects in Structural Equation Models. Sociol. Methodol. 1982, 13, 290–312. [Google Scholar] [CrossRef]
- Bollen, K.A.; Stine, R. Direct and Indirect Effects: Classical and Bootstrap Estimates of Variability. Sociol. Methodol. 1990, 20, 115–140. [Google Scholar] [CrossRef]
- Qiu, P.; Tang, C.; Tu, X.; Crompvoets, J. How Does Regional Cooperation Affect Green Total Factor Productivity?—Evidence from the Guangdong-Hong Kong-Macao Greater Bay Area in China. Heliyon 2024, 10, e38598. [Google Scholar] [CrossRef]
- Cai, J.; Baohang, H.; Tan, L. Can the Yangtze River Delta Urban Agglomeration Policy Promote Green High-Quality Development? Evidence from the Digital Economy and Green Total Factor Productivity. J. Resour. Ecol. 2024, 15, 105–116. [Google Scholar] [CrossRef]
- Liang, K.; Li, Z.; Luo, L. Measurement, Dynamic Evolution and Influencing Factors of Green Development Efficiency in Western China: Based on Ecological-Economic-Social System. PLoS ONE 2023, 18, e0290472. [Google Scholar] [CrossRef]
- Stern, D.I. The Rise and Fall of the Environmental Kuznets Curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Fajri, M.N.; Pratama, B.P.; Kharisudin, A. Fiscal Decentralization and Green Development Efficiency. Bestuurskd. J. Gov. Stud. 2023, 3, 103–115. [Google Scholar] [CrossRef]
- Liu, H.; Jafri, M.A.H.; Zhu, P.; Hafeez, M. Fiscal Policy-Green Growth Nexus: Does Financial Efficiency Matter in Top Carbon Emitter Economies? Environ. Dev. Sustainability 2024, 26, 20379–20396. [Google Scholar] [CrossRef]
- Stern, D.I.; Common, M.S.; Barbier, E.B. Economic Growth and Environmental Degradation: The Environmental Kuznets Curve and Sustainable Development. World Dev. 1996, 24, 1151–1160. [Google Scholar] [CrossRef]
- Chen, Y.; Kong, X.; Wang, F. Carbon Emission, Air Pollution, and Total Factor Productivity: Evidence from Prefecture-Level Cities in China. SAGE Open 2023, 13, 21582440231209100. [Google Scholar] [CrossRef]
- Oloyede, B.M.; Osabuohien, E.S.; Ejemeyovwi, J.O. Trade Openness and Economic Growth in Africa’s Regional Economic Communities: Empirical Evidence from ECOWAS and SADC. Heliyon 2021, 7, e06996. [Google Scholar] [CrossRef]
- Pomerlyan, E.; Belitski, M. Regional Integration and Economic Performance: Evidence from the Eurasian Economic Union. Eurasian Geogr. Econ. 2024, 65, 627–655. [Google Scholar] [CrossRef]
- Chhabra, M.; Giri, A.K.; Kumar, A. Do Trade Openness and Institutional Quality Contribute to Carbon Emission Reduction? Evidence from BRICS Countries. Environ. Sci. Pollut. Res. 2023, 30, 50986–51002. [Google Scholar] [CrossRef]
- Pham, D.T.T.; Nguyen, H.T. Effects of Trade Openness on Environmental Quality: Evidence from Developing Countries. J. Appl. Econ. 2024, 27, 2339610. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, Y.; Ding, X.; Wu, C.; Chen, Y. Environmental Regulation Promotes Eco-Efficiency through Industrial Transfer: Evidence from the Yangtze River Economic Belt in China. Int. J. Environ. Res. Public Health 2022, 19, 10127. [Google Scholar] [CrossRef] [PubMed]
- An, M.; Wang, J.; An, H.; Zhang, J.; Huang, J. A Dynamic View of Environmental Regulation Influence Mechanism on Manufacturing Agglomeration-a Case Study of the Yangtze River Delta City Cluster. Environ. Sci. Pollut. Res. 2023, 30, 6643–6657. [Google Scholar] [CrossRef]
- Zheng, Q.; Su, Y.; Cao, C. The Nonlinear and Spatial Effects of Digital Economy on Regional Green Development Efficiency: Empirical Evidence from 30 Provinces in China. Int. J. Finance Econ. 2025. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, T. Research on the Coupling Coordination of Digital Economy and Urban Green Development in the Yangtze River Delta of China. Environ. Res. Commun. 2024, 6, 095027. [Google Scholar] [CrossRef]
- Gao, S.; Li, X.; Duan, H.; Liu, S.; Sun, X. How Digital Technology Affects Regional Energy Intensity from the Perspective of Energy Economy: A Case Study of the Yangtze River Economic Belt. Front. Environ. Sci. 2024, 12, 1468512. [Google Scholar] [CrossRef]
- Hu, S.; Zeng, G.; Cao, X.; Yuan, H.; Chen, B. Does Technological Innovation Promote Green Development? A Case Study of the Yangtze River Economic Belt in China. Int. J. Environ. Res. Public Health 2021, 18, 6111. [Google Scholar] [CrossRef]
- Cheng, M.; Wen, Z.; Yang, S. The Driving Effect of Technological Innovation on Green Development: Dynamic Efficiency Spatial Variation. Environ. Sci. Pollut. Res. 2022, 29, 84562–84580. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, T. Towards Green Development: Exploring the Impact of Housing Price Bubbles on Regional Green Innovation Efficiency Based on Chinese Provincial Panel Data Analysis. Sustainability 2024, 16, 10275. [Google Scholar] [CrossRef]
- Chen, S.; Du, Y.; Liu, Y. Regional Integration and Urban Green and Low-Carbon Development: A Quasi-Natural Experiment Based on the Expansion of the Yangtze River Delta Urban Agglomeration. Sustainability 2025, 17, 3621. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, M.; Chen, H.; Ma, J. The Green Finance Pilot Policy Suppresses Green Innovation Efficiency: Evidence from Chinese Cities. Sustainability 2025, 17, 6136. [Google Scholar] [CrossRef]
Target | Indicator | Primary Indicator | Secondary Indicator | Unit |
---|---|---|---|---|
GDE* and GDE | Input | Capital input | Fixed asset stock | 10,000 yuan |
Labor input | The year-end number of employed persons | 10,000 people | ||
Land input | Urban construction land area | Square kilometers | ||
Energy input | Total electricity consumption | 10,000 KW·h | ||
Total supply of liquefied petroleum gas and natural gas | 10,000 tons | |||
Total available water resources | 10,000 cubic meters | |||
Output | Desirable output | GDP | 10,000 yuan | |
Per capita disposable income of urban residents | Yuan | |||
Urban park green space area | Square kilometers | |||
Undesirable output | Carbon emission intensity | Tons/10,000 yuan |
Approval Time | Cities Involved |
---|---|
2006 | Shanghai, Nanjing, Wuxi, Changzhou, Suzhou(Jiangsu), Nantong, Yangzhou, Zhenjiang, Taizhou(Jiangsu), Hangzhou, Ningbo, Jiaxing, Huzhou, Shaoxing, Zhoushan, Taizhou(Zhejiang) |
2016 | Yancheng, Jinhua, Hefei, Wuhu, Ma’anshan, Tongling, Anqing, Chuzhou, Chizhou, Xuancheng |
2019 | Bengbu, Huai’an, Huaibei, Huangshan, Fuyang, Quzhou, Suzhou(Anhui), Lu’an, Bozhou, Xuzhou, Lianyungang, Suqian, Wenzhou, Lishui, Huainan |
Variable | Obs | Mean | Std. Dev. | Min | Max | Unit |
---|---|---|---|---|---|---|
656 | 0.766 | 0.232 | 0.3056 | 1.615 | - | |
656 | 0.747 | 0.244 | 0.286 | 1.873 | - | |
656 | 0.550 | 0.498 | 0.000 | 1.000 | - | |
656 | 535.185 | 380.956 | 71 | 2489 | 10 thousand persons | |
656 | 60,000.57 | 38,637.62 | 4473.426 | 187,218.4 | yuan | |
656 | 522.505 | 915.508 | 20.591 | 8430.856 | 100 million yuan | |
656 | 40,461.800 | 49,009.510 | 490.000 | 496,377.000 | ton | |
656 | 0.309 | 0.354 | 0.006 | 2.883 | - | |
656 | 1.027 | 0.159 | 0.503 | 1.525 | - | |
656 | 155.077 | 97.160 | 8.477 | 359.683 | - | |
656 | 0.079 | 0.105 | 0.001 | 0.866 | - |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
RI | −0.016 | −0.013 | −0.098 ** | −0.097 ** |
(0.056) | (0.063) | (0.038) | (0.040) | |
LNPOP | 0.077 | 0.062 | 0.147 | 0.036 |
(0.082) | (0.105) | (0.174) | (0.189) | |
LNPGDP | 0.092 | 0.104 | 0.176 * | 0.055 |
(0.079) | (0.084) | (0.103) | (0.167) | |
LNGFE | −0.057 | −0.028 | −0.123 * | −0.205 * |
(0.063) | (0.089) | (0.073) | (0.105) | |
LNEG | −0.041 ** | −0.068 * | −0.052 *** | −0.051 * |
(0.017) | (0.039) | (0.014) | (0.026) | |
Constant | 0.031 | 0.096 | −0.773 | 1.664 |
(0.908) | (0.942) | (1.338) | (2.418) | |
Observations | 656 | 656 | 656 | 656 |
R-squared | 0.031 | 0.033 | 0.076 | 0.066 |
City FE | No | No | Yes | Yes |
Year FE | No | Yes | No | Yes |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
LNTO | GDE | IAS | GDE | LNDE | GDE | |
RI | 0.205 *** | −0.072 * | −0.039 * | −0.111 *** | 0.077 * | −0.079 ** |
(0.056) | (0.039) | (0.021) | (0.040) | (0.039) | (0.038) | |
LNTO | −0.125 ** | |||||
(0.050) | ||||||
IAS | −0.354 *** | |||||
(0.124) | ||||||
LNDE | −0.237 *** | |||||
(0.068) | ||||||
Constant | 2.011 | 1.915 | −2.352 ** | 0.830 | 0.827 | 1.860 |
(3.535) | (2.370) | (0.887) | (2.361) | (2.621) | (2.218) | |
Control | Yes | Yes | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Sobel Z-statistics | −3.211 *** | 2.346 ** | −2.662 ** | |||
Proportion mediated | 26.2% | −14.2% | 18.7% | |||
Bootstrap 95% CI for Mediation | [−0.0435, −0.0138] | [0.0049, 0.0312] | [−0.0332, −0.0072] | |||
R-squared | 0.337 | 0.0907 | 0.346 | 0.0837 | 0.237 | 0.116 |
Observations | 656 | 656 | 656 | 656 | 656 | 656 |
Variables | (1) | (2) | (3) |
---|---|---|---|
GDE | GDE | GDE | |
RI | 0.031 | 0.000 | 0.035 |
(0.068) | (0.067) | (0.064) | |
LNTO | −0.114 ** | ||
(0.049) | |||
IAS | −0.338 *** | ||
(0.121) | |||
LNDE | −0.239 *** | ||
(0.066) | |||
IC | 2.422 ** | 2.544 *** | 2.628 *** |
(0.908) | (0.873) | (0.803) | |
RI × IC | −1.915 ** | −2.037 ** | −2.094 ** |
(0.900) | (0.881) | (0.818) | |
Constant | 1.665 | 0.629 | 1.614 |
(2.408) | (2.390) | (2.230) | |
Control | Yes | Yes | Yes |
City FE | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes |
R-squared | 0.121 | 0.116 | 0.150 |
Observations | 656 | 656 | 656 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Zeng, Z.; Yang, D.; Wang, H.; Niu, X. Does Regional Integration Enhance Green Development Efficiency? Evidence from the Yangtze River Delta Region in China. Systems 2025, 13, 904. https://doi.org/10.3390/systems13100904
Wu G, Zeng Z, Yang D, Wang H, Niu X. Does Regional Integration Enhance Green Development Efficiency? Evidence from the Yangtze River Delta Region in China. Systems. 2025; 13(10):904. https://doi.org/10.3390/systems13100904
Chicago/Turabian StyleWu, Guancen, Zhicheng Zeng, Dongqin Yang, Hongqiang Wang, and Xing Niu. 2025. "Does Regional Integration Enhance Green Development Efficiency? Evidence from the Yangtze River Delta Region in China" Systems 13, no. 10: 904. https://doi.org/10.3390/systems13100904
APA StyleWu, G., Zeng, Z., Yang, D., Wang, H., & Niu, X. (2025). Does Regional Integration Enhance Green Development Efficiency? Evidence from the Yangtze River Delta Region in China. Systems, 13(10), 904. https://doi.org/10.3390/systems13100904