Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (529)

Search Parameters:
Keywords = centrifugal pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 17392 KiB  
Article
Reducing Gas Accumulation in Horizontal Diffusers Under Two-Phase Flow Using Upstream Cross-Flow Steps
by Michael Mansour, Nicola Zanini, Mena Shenouda, Michele Pinelli, Alessio Suman and Dominique Thévenin
Int. J. Turbomach. Propuls. Power 2025, 10(3), 20; https://doi.org/10.3390/ijtpp10030020 (registering DOI) - 7 Aug 2025
Abstract
In gas–liquid two-phase flows, diverging channels such as diffusers often develop low-pressure separation zones where gas can accumulate, hindering pressure recovery and reducing system performance. This issue is particularly critical in centrifugal pumps, where it leads to efficiency losses. Unlike pumps, diffusers without [...] Read more.
In gas–liquid two-phase flows, diverging channels such as diffusers often develop low-pressure separation zones where gas can accumulate, hindering pressure recovery and reducing system performance. This issue is particularly critical in centrifugal pumps, where it leads to efficiency losses. Unlike pumps, diffusers without rotating components allow for more precise experimental studies. This research investigates a passive control method using upstream cross-flow steps to reduce gas accumulation in a horizontal diverging channel. Thin metallic sheets with toothed geometries of 2 mm, 5 mm, and 8 mm heights were installed upstream to interact with the flow. These features aim to enhance turbulence, break up larger gas pockets, and promote vertical bubble dispersion, all while minimizing additional flow separation. The diffuser was intentionally designed with an expanding angle to encourage flow separation and gas accumulation. The experiments covered various two-phase flow conditions (liquid Reynolds number 59,530–78,330; gas Reynolds number 3–9.25), and high-speed imaging captured detailed phase interactions. The results show that the steps significantly reduce gas accumulation, especially at higher water flow rates. These findings support the development of more accurate computational models and offer insights for optimizing centrifugal pump designs by minimizing gas buildup in separated flow regions. Full article
Show Figures

Figure 1

16 pages, 4461 KiB  
Article
Study on the Influence of Inducer Structure Change on Pump Cavitation Characteristics
by Zhengwei Wang, Wei Song, Xuanyi Lin, Yun Zhao and Yonggang Lu
Energies 2025, 18(15), 4059; https://doi.org/10.3390/en18154059 - 31 Jul 2025
Viewed by 174
Abstract
Given that cryogenic pumps on liquefied natural gas (LNG) carriers are prone to cavitation under complex operating conditions, this paper examines the inducer of an LNG centrifugal pump to uncover how the inducer geometry affects both the cavitation behavior and internal flow-induced excitation [...] Read more.
Given that cryogenic pumps on liquefied natural gas (LNG) carriers are prone to cavitation under complex operating conditions, this paper examines the inducer of an LNG centrifugal pump to uncover how the inducer geometry affects both the cavitation behavior and internal flow-induced excitation at −163 °C. Through detailed numerical simulations, we evaluate the cavitation performance and flow excitation characteristics across a range of inducer designs, systematically varying the blade count, inlet and outlet angles, and blade wrap angle. Our results show that reducing the number of blades, together with properly optimized inlet/outlet and wrap angles, significantly enhances the cavitation resistance. These findings provide a solid theoretical basis and practical guidance for the engineering optimization of LNG ship pumps. Full article
Show Figures

Figure 1

27 pages, 8070 KiB  
Article
Study on Solid-Liquid Two-Phase Flow and Wear Characteristics in Multistage Centrifugal Pumps Based on the Euler-Lagrange Approach
by Zhengyin Yang, Yandong Gu, Yingrui Zhang and Zhuoqing Yan
Water 2025, 17(15), 2271; https://doi.org/10.3390/w17152271 - 30 Jul 2025
Viewed by 257
Abstract
Multistage centrifugal pumps, owing to their high head characteristics, are commonly applied in domains like subsea resource exploitation and groundwater extraction. However, the wear of flow passage components caused by solid particles in the fluid severely threatens equipment lifespan and system safety. To [...] Read more.
Multistage centrifugal pumps, owing to their high head characteristics, are commonly applied in domains like subsea resource exploitation and groundwater extraction. However, the wear of flow passage components caused by solid particles in the fluid severely threatens equipment lifespan and system safety. To investigate the influence of solid-liquid two-phase flow on pump performance and wear, this study conducted numerical simulations of the solid-liquid two-phase flow within multistage centrifugal pumps based on the Euler–Lagrange approach and the Tabakoff wear model. The simulation results showed good agreement with experimental data. Under the design operating condition, compared to the clear water condition, the efficiency under the solid-liquid two-phase flow condition decreased by 1.64%, and the head coefficient decreased by 0.13. As the flow rate increases, particle momentum increases, the particle Stokes number increases, inertial forces are enhanced, and the coupling effect with the fluid weakens, leading to an increased impact intensity on flow passage components. This results in a gradual increase in the wear area of the impeller front shroud, back shroud, pressure side, and the peripheral casing. Under the same flow rate condition, when particles enter the pump chamber of a subsequent stage from a preceding stage, the fluid, after being rectified by the return guide vane, exhibits a more uniform flow pattern and reduced turbulence intensity. The particle Stokes number in the subsequent stage is smaller than that in the preceding stage, weakening inertial effects and enhancing the coupling effect with the fluid. This leads to a reduced impact intensity on flow passage components, resulting in a smaller wear area of these components in the subsequent stage compared to the preceding stage. This research offers critical theoretical foundations and practical guidelines for developing wear-resistant multistage centrifugal pumps in solid-liquid two-phase flow applications, with direct implications for extending service life and optimizing hydraulic performance. Full article
Show Figures

Figure 1

27 pages, 5193 KiB  
Article
Fault Diagnosis Method of Plunger Pump Based on Meta-Learning and Improved Multi-Channel Convolutional Neural Network Under Small Sample Condition
by Xiwang Yang, Jiancheng Ma, Hongjun Hu, Jinying Huang and Licheng Jing
Sensors 2025, 25(15), 4587; https://doi.org/10.3390/s25154587 - 24 Jul 2025
Viewed by 194
Abstract
A fault diagnosis method based on meta-learning and an improved multi-channel convolutional neural network (MAML-MCCNN-ISENet) was proposed to solve the problems of insufficient feature extraction and low fault type identification accuracy of vibration signals at small sample sizes. The signal is first preprocessed [...] Read more.
A fault diagnosis method based on meta-learning and an improved multi-channel convolutional neural network (MAML-MCCNN-ISENet) was proposed to solve the problems of insufficient feature extraction and low fault type identification accuracy of vibration signals at small sample sizes. The signal is first preprocessed using adaptive chirp mode decomposition (ACMD) methods. A multi-channel input structure is then employed to process the multidimensional signal information after preprocessing. The improved squeeze and excitation networks (ISENets) have been enhanced to concurrently enhance the network’s adaptive perception of the significance of each channel feature. On this basis, a meta-learning strategy is introduced, the learning process of model initialization parameters is improved, the network is optimized by a multi-task learning mechanism, and the initial parameters of the diagnosis model are adaptively adjusted, so that the model can quickly adapt to new fault diagnosis tasks on limited datasets. Then, the overfitting problem under small sample conditions is alleviated, and the accuracy and robustness of fault identification are improved. Finally, the performance of the model is verified on the experimental data of the fault diagnosis of the laboratory plunger pump and the vibration dataset of the centrifugal pump of the Saint Longoval Institute of Engineering and Technology. The results show that the diagnostic accuracy of the proposed method for various diagnostic tasks can reach more than 90% on small samples. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

22 pages, 7942 KiB  
Article
Research on the Influence of Impeller Oblique Cutting Angles on the Performance of Double-Suction Pumps
by Zhongsheng Wang, Xinxin Li, Jun Liu, Ji Pei, Wenjie Wang, Kuilin Wang and Hongyu Wang
Energies 2025, 18(15), 3907; https://doi.org/10.3390/en18153907 - 22 Jul 2025
Viewed by 180
Abstract
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming [...] Read more.
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming ratio and constant average post-trim diameter. Numerical simulations and tests reveal that under low-flow (0.7Qd) and design-flow conditions, the flat-cut (0°) minimizes reflux ratio and maximizes efficiency by aligning blade outlet flow with the mainstream. Increasing oblique cutting angles disrupts this alignment, elevating reflux and reducing efficiency. Conversely, at high flow (1.3Qd), the 12° bevel optimizes outlet flow, achieving peak efficiency. Pressure pulsation at the volute tongue (P11) peaks at the blade-passing frequency, with amplitudes significantly higher for 9°/12° bevels than for 0°/6°. The flat-cut suppresses wake vortices and static–rotor interaction, but oblique cutting angle choice critically influences shaft-frequency pulsation. Entropy analysis identifies the volute as the primary loss source. Larger oblique cutting angles intensify wall effects, increasing total entropy; pump chamber losses rise most sharply due to worsened outlet velocity non-uniformity and turbulent dissipation. The flat-cut yields minimal entropy at Qd. These findings provide a basis for tailoring impeller trimming to specific operational requirements. Furthermore, the systematic analysis provides critical guidance for impeller trimming strategies in other double-suction pumps and pumps as turbines in micro hydropower plants. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

17 pages, 4176 KiB  
Article
Drag Reduction and Efficiency Enhancement in Wide-Range Electric Submersible Centrifugal Pumps via Bio-Inspired Non-Smooth Surfaces: A Combined Numerical and Experimental Study
by Tao Fu, Songbo Wei, Yang Gao and Bairu Shi
Appl. Sci. 2025, 15(14), 7989; https://doi.org/10.3390/app15147989 - 17 Jul 2025
Viewed by 241
Abstract
Wide-range electric submersible centrifugal pumps (ESPs) are critical for offshore oilfields but suffer from narrow high-efficiency ranges and frictional losses under dynamic reservoir conditions. This study introduces bio-inspired dimple-type non-smooth surfaces on impeller blades to enhance hydraulic performance. A combined numerical-experimental approach was [...] Read more.
Wide-range electric submersible centrifugal pumps (ESPs) are critical for offshore oilfields but suffer from narrow high-efficiency ranges and frictional losses under dynamic reservoir conditions. This study introduces bio-inspired dimple-type non-smooth surfaces on impeller blades to enhance hydraulic performance. A combined numerical-experimental approach was employed: a 3D CFD model with the k-ω turbulence model analyzed oil–water flow (1:9 ratio) to identify optimal dimple placement, while parametric studies tested diameters (0.6–1.2 mm). Experimental validation used 3D-printed prototypes. Results revealed that dimples on the pressure surface trailing edge reduced boundary layer separation, achieving a 12.98% head gain and 8.55% efficiency improvement at 150 m3/d in simulations, with experimental tests showing an 11.5% head increase and 4.6% efficiency gain at 130 m3/d. The optimal dimple diameter (0.9 mm, 2% of blade chord) balanced performance and manufacturability, demonstrating that bio-inspired surfaces improve ESP efficiency. This work provides practical guidelines for deploying drag reduction technologies in petroleum engineering, with a future focus on wear resistance in abrasive flows. Full article
Show Figures

Figure 1

23 pages, 11965 KiB  
Article
Research on the Impact of Labyrinth Seal Ring Tooth Profile on the Pressure Pulsation of Leakage Chambers in High-Speed Centrifugal Pumps
by Guodong Zhao, Jiahao Xu, Jie Lian, Yanpi Lin and Zuchao Zhu
Lubricants 2025, 13(7), 308; https://doi.org/10.3390/lubricants13070308 - 16 Jul 2025
Viewed by 287
Abstract
The gap seal ring is a critical component in high-speed centrifugal pumps. The leakage rate and performance of the pump are sensitive to variation in seal ring parameters. This study investigates the influence of seal ring tooth profile on the leakage flow of [...] Read more.
The gap seal ring is a critical component in high-speed centrifugal pumps. The leakage rate and performance of the pump are sensitive to variation in seal ring parameters. This study investigates the influence of seal ring tooth profile on the leakage flow of pump chambers. Numerical simulation and experimental tests are used to analyze the impact of four different tooth-height labyrinth seal ring structures on the pressure pulsation characteristics of pump leakage chambers. It can be concluded that the use of labyrinth seal rings can significantly reduce the pressure pulsation and leakage rate of pump chambers. For the Case 2 structure with a tooth height of 0.18 mm, the pressure pulsation in the pump chamber can be reduced by a maximum of 22.5%, and the leakage rate can be reduced by 41.1%. For the Case 3 structure with a tooth height of 0.23 mm, the pressure pulsation in the pump chamber can be reduced by a maximum of 30.3%, and the leakage rate can be reduced by 40.6%. The use of labyrinth seal rings significantly reduces the pressure pulsation intensity of the impeller surfaces, which improves the force stability of the high-speed centrifugal pump impeller. This study is helpful in providing theoretical support for the design of labyrinth seal rings in high-speed centrifugal pumps. Full article
(This article belongs to the Special Issue Recent Advances in Sealing Technologies)
Show Figures

Figure 1

38 pages, 15198 KiB  
Article
Analysis the Composition of Hydraulic Radial Force on Centrifugal Pump Impeller: A Data-Centric Approach Based on CFD Datasets
by Hehui Zhang, Kang Li, Ting Liu, Yichu Liu, Jianxin Hu, Qingsong Zuo and Liangxing Jiang
Appl. Sci. 2025, 15(13), 7597; https://doi.org/10.3390/app15137597 - 7 Jul 2025
Viewed by 331
Abstract
Centrifugal pumps are essential in various industries, where their operational stability and efficiency are crucial. This study aims to analyze the composition and variation characteristics of the hydraulic radial force on the impeller using a data-centric approach based on computational fluid dynamics (CFD) [...] Read more.
Centrifugal pumps are essential in various industries, where their operational stability and efficiency are crucial. This study aims to analyze the composition and variation characteristics of the hydraulic radial force on the impeller using a data-centric approach based on computational fluid dynamics (CFD) datasets, providing guidance for optimizing impeller design. A high-precision CFD simulation on a six-blade end-suction centrifugal pump generated a comprehensive hydraulic load dataset. Data analysis methods included exploratory data analysis (EDA) to uncover patterns and trigonometric function fitting to model force variations accurately. Results revealed that the hydraulic radial force exhibits periodic behavior with a dominant blade passing frequency (BPF), showing minimal fluctuations at the rated flow rate and increased fluctuations as flow deviates. Each blade’s force could be approximated by sine curves with equal amplitudes and frequencies but successive phase changes, achieving high fitting quality (R2 ≥ 0.96). The force on the impeller can be decomposed into the contributions of each blade, with symmetric blades canceling out the main harmonics, leaving only constant terms and residuals. This study provides insights into force suppression mechanisms, enhancing pump stability and efficiency, and offers a robust framework for future research on fluid–structure interactions and pump design. Full article
(This article belongs to the Special Issue Text Mining and Data Mining)
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Hydraulic Performance and Flow Characteristics of a High-Speed Centrifugal Pump Based on Multi-Objective Optimization
by Yifu Hou and Rong Xue
Fluids 2025, 10(7), 174; https://doi.org/10.3390/fluids10070174 - 2 Jul 2025
Viewed by 297
Abstract
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller [...] Read more.
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller size while maintaining hydraulic performance, thereby significantly decreasing the overall volume and mass. However, high-speed operation introduces considerable internal flow losses, placing stricter demands on the geometric design and flow-field compatibility of the impeller. In this study, a miniature high-speed centrifugal pump (MHCP) was investigated, and a multi-objective optimization of the impeller was carried out using response surface methodology (RSM) to improve internal flow characteristics and overall hydraulic performance. Numerical simulations demonstrated strong predictive capability, and experimental results validated the model’s accuracy. At the design condition (10,000 rpm, 4.8 m3/h), the pump achieved a head of 46.1 m and an efficiency of 49.7%, corresponding to its best efficiency point (BEP). Sensitivity analysis revealed that impeller outlet diameter and blade outlet angle were the most influential parameters affecting pump performance. Following the optimization, the pump head increased by 3.7 m, and the hydraulic efficiency improved by 4.8%. In addition, the pressure distribution and streamlines within the impeller exhibited better uniformity, while the turbulent kinetic energy near the blade suction surface and at the impeller outlet was markedly decreased. This work provides theoretical support and design guidance for the efficient application of MHCPs in UAV thermal management systems. Full article
Show Figures

Figure 1

19 pages, 4761 KiB  
Article
An Open-Type Crossflow Microfluidic Chip for Deformable Droplet Separation Driven by a Centrifugal Field
by Zekun Li, Yongchao Cai, Xiangfu Wei, Cuimin Sun, Wenshen Luo and Hui You
Micromachines 2025, 16(7), 774; https://doi.org/10.3390/mi16070774 - 30 Jun 2025
Viewed by 307
Abstract
This study presents an innovative wedge-shaped inlet weir-type microfluidic chip designed to address common issues of clogging and inefficiency in microfiltration processes. Driven solely by centrifugal force, the chip integrates a crossflow separation mechanism and enables selective droplet sorting based on size, without [...] Read more.
This study presents an innovative wedge-shaped inlet weir-type microfluidic chip designed to address common issues of clogging and inefficiency in microfiltration processes. Driven solely by centrifugal force, the chip integrates a crossflow separation mechanism and enables selective droplet sorting based on size, without the need for external pumps. Fabricated from PMMA, the device features a central elliptical chamber, a wedge-shaped inlet, and spiral microchannels. These structures leverage shear stress and Dean vortices under centrifugal fields to achieve high-throughput separation of droplets with different diameters. Using water-in-oil emulsions as a model system, we systematically investigated the effects of geometric parameters and rotational speed on separation performance. A theoretical model was developed to derive the critical droplet size based on force balance, accounting for centrifugal force, viscous drag, pressure differentials, and surface tension. Experimental results demonstrate that the chip can effectively separate droplets ranging from 0 to 400 μm in diameter at 200 rpm, achieving a sorting efficiency of up to 72% and a separation threshold (cutoff accuracy) of 98.2%. Fluorescence analysis confirmed the absence of cross-contamination during single-chip operation. This work offers a structure-guided, efficient, and contamination-free droplet sorting strategy with broad potential applications in biomedical diagnostics and drug screening. Full article
Show Figures

Figure 1

17 pages, 5158 KiB  
Article
Centrifugal Pumping Force in Oil Injection-Based TMS to Cool High-Power Aircraft Electric Motors
by Giuseppe Di Lorenzo, Diego Giuseppe Romano, Antonio Carozza and Antonio Pagano
Energies 2025, 18(13), 3390; https://doi.org/10.3390/en18133390 - 27 Jun 2025
Viewed by 325
Abstract
One of the challenges of our age is climate change and the ways in which it affects the Earth’s global ecosystem. To face the problems linked to such an issue, the international community has defined actions aimed at the reduction in greenhouse gas [...] Read more.
One of the challenges of our age is climate change and the ways in which it affects the Earth’s global ecosystem. To face the problems linked to such an issue, the international community has defined actions aimed at the reduction in greenhouse gas emissions in several sectors, including the aviation industry, which has been requested to mitigate its environmental impact. Conventional aircraft propulsion systems depend on fossil fuels, significantly contributing to global carbon emissions. For this reason, innovative propulsion technologies are needed to reduce aviation’s impact on the environment. Electric propulsion has emerged as a promising solution among the several innovative technologies introduced to face climate change challenges. It offers, in fact, a pathway to more sustainable air travel by eliminating direct greenhouse gas emissions, enhancing energy efficiency. Unfortunately, integrating electric motors into aircraft is currently a big challenge, primarily due to thermal management-related issues. Efficient heat dissipation is crucial to maintain optimal performance, reliability, and safety of the electric motor, but aeronautic applications are highly demanding in terms of power, so ad hoc Thermal Management Systems (TMSs) must be developed. The present paper explores the design and optimization of a TMS tailored for a megawatt electric motor in aviation, suitable for regional aircraft (~80 pax). The proposed system relies on coolant oil injected through a hollow shaft and radial tubes to directly reach hot spots and ensure effective heat distribution inside the permanent magnet cavity. The goal of this paper is to demonstrate how advanced TMS strategies can enhance operational efficiency and extend the lifespan of electric motors for aeronautic applications. The effectiveness of the radial tube configuration is assessed by means of advanced Computational Fluid Dynamics (CFD) analysis with the aim of verifying that the proposed design is able to maintain system thermal stability and prevent its overheating. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
Show Figures

Figure 1

11 pages, 841 KiB  
Data Descriptor
Sensor-Based Monitoring Data from an Industrial System of Centrifugal Pumps
by Angelo Martone, Alessia D’Ambrosio, Michele Ferrucci, Assuntina Cembalo, Gianpaolo Romano and Gaetano Zazzaro
Data 2025, 10(6), 91; https://doi.org/10.3390/data10060091 - 19 Jun 2025
Viewed by 563
Abstract
We present a detailed dataset collected via a wireless IoT sensor network monitoring three industrial centrifugal pumps (units A, B, and C) at the Italian Aerospace Research Centre (CIRA), along with the methods for data collection and structuring. Background: Centrifugal pumps are [...] Read more.
We present a detailed dataset collected via a wireless IoT sensor network monitoring three industrial centrifugal pumps (units A, B, and C) at the Italian Aerospace Research Centre (CIRA), along with the methods for data collection and structuring. Background: Centrifugal pumps are critical in industrial plants, and monitoring their condition is essential to ensure reliability, safety, and efficiency. High-quality operational data under normal operating conditions are fundamental for developing effective maintenance strategies and diagnostic models. Methods: Data were gathered by means of smart sensors measuring motor and pump vibrations, temperatures, outlet fluid pressures, and environmental conditions. Data were transmitted over a WirelessHART mesh network and acquired through an IoT architecture. Results: The dataset consists of eight CSV files, each representing a specific pump during a distinct operational day. Each file includes timestamped measurements of displacement, peak vibration values, sensor temperatures, fluid pressure, ambient temperature, and atmospheric pressure. Conclusions: This dataset supports advanced methodologies in feature extraction, multivariate signal analysis, unsupervised pattern discovery, vibration analysis, and the development of digital twins and soft sensing models for predictive maintenance optimization. Full article
Show Figures

Figure 1

17 pages, 901 KiB  
Review
What Are the Best Biocompatible Materials for Extracorporeal Membrane Oxygenation
by Junya Hagiwara, Jeffrey D. DellaVolpe and Yuichi Matsuzaki
J. Funct. Biomater. 2025, 16(6), 226; https://doi.org/10.3390/jfb16060226 - 19 Jun 2025
Viewed by 847
Abstract
Extracorporeal membrane oxygenation (ECMO) is a crucial life support therapy for patients with severe cardiac and respiratory failure. However, the complications associated with venoarterial ECMO (VA-ECMO), including thrombus formation, bleeding, and hemolysis, remain significant challenges that impact patient outcomes and healthcare costs. These [...] Read more.
Extracorporeal membrane oxygenation (ECMO) is a crucial life support therapy for patients with severe cardiac and respiratory failure. However, the complications associated with venoarterial ECMO (VA-ECMO), including thrombus formation, bleeding, and hemolysis, remain significant challenges that impact patient outcomes and healthcare costs. These complications primarily arise from blood–material interactions within the ECMO circuit, necessitating the development of biocompatible materials to optimize hemocompatibility. This review provides an updated overview of the latest advancements in VA-ECMO materials, focusing on cannula, oxygenators, and centrifugal pumps. Various surface modifications, such as heparin coatings, nitric oxide-releasing polymers, phosphorylcholine (PC)-based coatings, and emerging omniphobic surfaces, have been explored to mitigate thrombosis and bleeding risks. Additionally, novel oxygenator membrane technologies, including zwitterionic polymers and endothelial-mimicking coatings, offer promising strategies to enhance biocompatibility and reduce inflammatory responses. In centrifugal pumps, magnetic levitation systems and hybrid polymer-composite impellers have been introduced to minimize shear stress and thrombogenicity. Despite these advancements, no single material has fully addressed all complications, and further research is needed to refine surface engineering strategies. This review highlights the current progress in ECMO biomaterials and discusses future directions in developing more effective and durable solutions to improve patient safety and clinical outcomes. Full article
(This article belongs to the Special Issue Cardiovascular Tissue Engineering: Current Status and Advances)
Show Figures

Figure 1

25 pages, 6353 KiB  
Article
CFD and Experimental Comparison for Micro-Pump Performance in Space Applications: A Case Study
by Oana Dumitrescu, Cristian Dobromirescu, Valeriu Dragan, Ionut Sebastian Vintila and Radu Mihalache
Appl. Sci. 2025, 15(12), 6623; https://doi.org/10.3390/app15126623 - 12 Jun 2025
Viewed by 378
Abstract
This paper presents a case study comparing CFD predictions with experimental measurements for micropumps, with the goal of evaluating the accuracy and limitations of CFD methods in complex microscale geometries. A fast design and evaluation methodology was developed, integrating linear design, 3D fully [...] Read more.
This paper presents a case study comparing CFD predictions with experimental measurements for micropumps, with the goal of evaluating the accuracy and limitations of CFD methods in complex microscale geometries. A fast design and evaluation methodology was developed, integrating linear design, 3D fully viscous CFD-based optimization, and rapid prototyping and testing. The main problem at this scale and configuration of pumps is the combination of Reynolds and Taylor numbers. Their impact on labyrinth performance prediction and therefore volumetric efficiency dominates the losses at this scale. Multiple CFD simulations were conducted using various turbulence models and solver settings, and results were compared against experimental data. The labyrinth region was simulated both independently and as part of the full pump assembly, with RANS and LES used for the former and RANS for the latter. Precision 3D-printed rotors and volutes were tested, and performance maps were obtained. Significant discrepancies between CFD and experiments were observed, which were reconciled using two empirical scaling coefficients for pressure and mass flow. These collapsed the CFD predictions onto the experimental data across all available speedlines. While the generalizability of these coefficients remains uncertain, the concept of using corrected scales, rather than other methods, seems to capture the macroscopic discrepancies between CFD and experiments. Full article
Show Figures

Figure 1

19 pages, 4545 KiB  
Article
Influence of Gap Blade Geometry on the Energy Performance of Low-Specific-Speed Centrifugal Pumps
by Aneta Nycz, Janusz Skrzypacz and Przemysław Szulc
Energies 2025, 18(11), 2867; https://doi.org/10.3390/en18112867 - 30 May 2025
Viewed by 549
Abstract
This study investigates the influence of modifications in the geometry of the blades—specifically, the introduction of a gap blade into the impeller blades—on the hydraulic performance of a low specific speed centrifugal pump. The research addresses the problem of efficiency losses in such [...] Read more.
This study investigates the influence of modifications in the geometry of the blades—specifically, the introduction of a gap blade into the impeller blades—on the hydraulic performance of a low specific speed centrifugal pump. The research addresses the problem of efficiency losses in such pumps and explores whether implementing a blade gap can improve energy characteristics without altering the primary flow path. A set of impellers with different gap configurations was designed and manufactured using 3D printing. Experimental tests were carried out on a laboratory test rig equipped with standard pressure, flow, and power measurement instruments. Next, numerical simulations were performed using CFD methods in Ansys CFX, using the k-ω SST turbulence model. The results show that impellers with gap blades achieved higher efficiency—up to 4 percentage points compared to the reference design—and an increase in the maximum pump capacity. CFD analysis confirmed more uniform velocity distributions and reduced separation zones in the interscapular channels, along with a smoother pressure gradient across the blade surfaces. The results demonstrate that modifying impeller geometry using gap blades can improve hydraulic efficiency and expand the range of stable operation. These conclusions support further research on performance optimisation in low-specific-speed centrifugal pumps. Full article
Show Figures

Figure 1

Back to TopTop