Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (227)

Search Parameters:
Keywords = cement stone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 14190 KiB  
Article
A Comprehensive Evaluation Method for Cement Slurry Systems to Enhance Zonal Isolation: A Case Study in Shale Oil Well Cementing
by Xiaoqing Zheng, Weitao Song, Xiutian Yang, Jian Liu, Tao Jiang, Xuning Wu and Xin Liu
Energies 2025, 18(15), 4138; https://doi.org/10.3390/en18154138 - 4 Aug 2025
Abstract
Due to post-cementing hydraulic fracturing and other operational stresses, inadequate mechanical properties or suboptimal design of the cement sheath can lead to tensile failure and microcrack development, compromising both hydrocarbon recovery and well integrity. In this study, three field-deployed cement slurry systems were [...] Read more.
Due to post-cementing hydraulic fracturing and other operational stresses, inadequate mechanical properties or suboptimal design of the cement sheath can lead to tensile failure and microcrack development, compromising both hydrocarbon recovery and well integrity. In this study, three field-deployed cement slurry systems were compared on the basis of their basic mechanical properties such as compressive and tensile strength. Laboratory-scale physical simulations of hydraulic fracturing during shale oil production were conducted, using dynamic permeability as a quantitative indicator of integrity loss. The experimental results show that evaluating only basic mechanical properties is insufficient for cement slurry system design. A more comprehensive mechanical assessment is re-quired. Incorporation of an expansive agent into the cement slurry system can alleviate the damage caused by the microannulus to the interfacial sealing performance of the cement sheath, while adding a toughening agent can alleviate the damage caused by tensile cracks to the sealing performance of the cement sheath matrix. Through this research, a microexpansive and toughened cement slurry system, modified with both expansive and toughening agents, was optimized. The expansive agent and toughening agent can significantly enhance the shear strength, the flexural strength, and the interfacial hydraulic isolation strength of cement stone. Moreover, the expansion agents mitigate the detrimental effects of microannulus generation on the interfacial sealing, while the toughening agents alleviate the damage caused by tensile cracking to the bulk sealing performance of the cement sheath matrix. This system has been successfully implemented in over 100 wells in the GL block of Daqing Oilfield. Field application results show that the proportion of high-quality well sections in the horizontal section reached 88.63%, indicating the system’s high performance in enhancing zonal isolation and cementing quality. Full article
Show Figures

Figure 1

23 pages, 4322 KiB  
Article
Fly-Ash-Based Microbial Self-Healing Cement: A Sustainable Solution for Oil Well Integrity
by Lixia Li, Yanjiang Yu, Qianyong Liang, Tianle Liu, Guosheng Jiang, Guokun Yang and Chengxiang Tang
Sustainability 2025, 17(15), 6989; https://doi.org/10.3390/su17156989 - 1 Aug 2025
Viewed by 178
Abstract
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and [...] Read more.
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and elevated operational expenditures. This study investigates the development of a novel microbial self-healing well cement slurry system, employing fly ash as microbial carriers and sustained-release microcapsules encapsulating calcium sources and nutrients. Systematic evaluations were conducted, encompassing microbial viability, cement slurry rheology, fluid loss control, anti-channeling capability, and the mechanical strength, permeability, and microstructural characteristics of set cement stones. Results demonstrated that fly ash outperformed blast furnace slag and nano-silica as a carrier, exhibiting superior microbial loading capacity and viability. Optimal performance was observed with additions of 3% microorganisms and 3% microcapsules to the cement slurry. Microscopic analysis further revealed effective calcium carbonate precipitation within and around micro-pores, indicating a self-healing mechanism. These findings highlight the significant potential of the proposed system to enhance cement sheath integrity through localized self-healing, offering valuable insights for the development of advanced, durable well-cementing materials tailored for challenging downhole environments. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

12 pages, 1313 KiB  
Article
Chair-Time During Polishing with Different Burs and Drills After Cement Customized Brackets Bonding: An In Vitro Comparative Study
by Javier Flores-Fraile, Alba Belanche Monterde, Oscar Alonso-Ezpeleta, Cosimo Galletti and Álvaro Zubizarreta-Macho
Dent. J. 2025, 13(8), 347; https://doi.org/10.3390/dj13080347 - 28 Jul 2025
Viewed by 224
Abstract
Introduction: Digital planning and evolution of technology is allowing dentistry to be more efficient in time than before. In orthodontics the main purpose is to obtain fewer patient visits and to reduce the bonding time. For that, indirect bonding planned with CAD-CAM softwares [...] Read more.
Introduction: Digital planning and evolution of technology is allowing dentistry to be more efficient in time than before. In orthodontics the main purpose is to obtain fewer patient visits and to reduce the bonding time. For that, indirect bonding planned with CAD-CAM softwares is used to obtain a shorter treatment period, in general, and less chair-time. This waste of chair-time should also be reduced in other fields of dentistry such as endodontics, surgery, prosthodontics, and aesthetics. Methods: A total of 504 teeth were embedded into epoxy resin models mounted as a dental arch. Customized lingual multibracket appliances were bonded by a current adhesion protocol. After that, they were debonded, the polishing of cement remnants was performed with three different burs and two drills. The polishing time of each group was recorded by an iPhone 14 chronometer. Results: Descriptive and comparative statistical analyses were performed with the different study groups. Statistical differences (p < 0.005) between diamond bur and tungsten carbide and white stone burs and turbine were obtained, with the first being the slowest of them. Discussion: Enamel roughness was widely studied in orthodontics polishing protocol as the main variable for protocols establishment. However, in lingual orthodontics, due the difficulty of the access to the enamel surfaces, the protocol is not clear and efficiency should be considered. It was observed that the tungsten carbide bur is the safest bur. It was also recommended that a two-step protocol of polishing by tungsten carbide bur be followed by polishers. Conclusions: A tungsten carbide bur mounted in a turbine was the most efficient protocol for polishing after lingual bracket debonding. Full article
(This article belongs to the Special Issue Malocclusion: Treatments and Rehabilitation)
Show Figures

Figure 1

19 pages, 3828 KiB  
Communication
Multifunctional Graphene–Concrete Composites: Performance and Mechanisms
by Jun Shang, Mingyang Wang, Pei Wang, Mengyao Yang, Dingyang Zhang, Xuelei Cheng, Yifan Wu and Wangze Du
Appl. Sci. 2025, 15(15), 8271; https://doi.org/10.3390/app15158271 - 25 Jul 2025
Viewed by 259
Abstract
Concrete is a cornerstone material in the construction industry owing to its versatile performance; however, its inherent brittleness, low tensile strength, and poor permeability resistance limit its broader application. Graphene, with its exceptional thermal conductivity, stable lattice structure, and high specific surface area, [...] Read more.
Concrete is a cornerstone material in the construction industry owing to its versatile performance; however, its inherent brittleness, low tensile strength, and poor permeability resistance limit its broader application. Graphene, with its exceptional thermal conductivity, stable lattice structure, and high specific surface area, presents a transformative solution to these challenges. Despite its promise, comprehensive studies on the multifunctional properties and underlying mechanisms of graphene-enhanced concrete remain scarce. In this study, we developed a novel concrete composite incorporating cement, coarse sand, crushed stone, water, and graphene, systematically investigating the effects of the graphene dosage and curing duration on its performance. Our results demonstrate that graphene incorporation markedly improves the material’s density, brittleness, thermal conductivity, and permeability resistance. Notably, a comprehensive analysis of scanning electron microscopy (SEM) images and thermogravimetric (TG) data demonstrates that graphene-modified concrete exhibits a denser microstructure and the enhanced formation of hydration products compared to conventional concrete. In addition, the graphene-reinforced concrete exhibited a 44% increase in compressive strength, a 0.7% enhancement in the photothermal absorption capacity, a 0.4% decrease in maximum heat release, a 0.8% increase in heat-storage capacity, and a 200% reduction in the maximum penetration depth. These findings underscore the significant potential of graphene-reinforced concrete for advanced construction applications, offering superior mechanical strength, thermal regulation, and durability. Full article
Show Figures

Figure 1

18 pages, 3365 KiB  
Article
Novel Methodology to Assess Salt Movement Between Mortar and Stones from Heritage in Spain
by Linde Pollet, Andrea Antolín-Rodríguez, Josep Gisbert-Aguilar, Gabriel Búrdalo-Salcedo, Andrés Juan-Valdés, César García-Álvarez, Angel Raga-Martín, Wouter Schroeyers, Víctor Calvo and María Fernández-Raga
Materials 2025, 18(14), 3340; https://doi.org/10.3390/ma18143340 - 16 Jul 2025
Viewed by 333
Abstract
The development of sustainable cementitious materials is crucial to reduce the environmental footprint of the construction industry. Alkali-activated materials (AAMs) have emerged as promising environmentally friendly alternatives; however, their compatibility with natural stone in heritage structures remains poorly understood, especially regarding salt migration [...] Read more.
The development of sustainable cementitious materials is crucial to reduce the environmental footprint of the construction industry. Alkali-activated materials (AAMs) have emerged as promising environmentally friendly alternatives; however, their compatibility with natural stone in heritage structures remains poorly understood, especially regarding salt migration and related damage to stones. This study presents a novel methodology for assessing salt movement in solid materials between two types of stones—Boñar and Silos—and two types of binders: blended Portland cement (BPC) and an AAM. The samples underwent capillarity and immersion tests to evaluate water absorption, salt transport, and efflorescence behavior. The capillarity of the Silos stone was 0.148 kg·m−2·t−0.5, whereas this was 0.0166 kg·m−2·t−0.5 for the Boñar stone, a ninefold difference. Conductivity mapping and XRD analysis revealed that AAM-based mortars exhibit a significantly higher release of salts, primarily sodium sulfate, which may pose a risk to adjacent porous stones. In contrast, BPC showed lower salt mobility and different salt compositions. These findings highlight the importance of evaluating the compatibility between alternative binders and heritage stones. The use of AAMs may pose significant risks due to their tendency to release soluble salts. Although, in the current experiments, no pore damage or mechanical degradation was observed, additional studies are required to confirm this. A thorough understanding of salt transport mechanisms is therefore essential to ensure that sustainable restoration materials do not inadvertently accelerate the deterioration of structures, a process more problematic when the deterioration affects heritage monuments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 6254 KiB  
Article
Cleaner Production of Metallurgical-Grade Iron from High-Iron Bauxite Residue via Smelting Reduction: Thermodynamic Control, Industrial Application Potential, and Slag Utilization Strategy
by Kun Wang, Ting-An Zhang, Zhi-He Dou, Yan Liu and Guo-Zhi Lv
Materials 2025, 18(14), 3288; https://doi.org/10.3390/ma18143288 - 11 Jul 2025
Viewed by 266
Abstract
Iron-rich bauxite residue (red mud) is a hazardous alkaline solid waste produced during the production of alumina from high-iron bauxite, which poses severe environmental challenges due to its massive stockpiling and limited utilization. In this study, metallic iron was recovered from high-iron red [...] Read more.
Iron-rich bauxite residue (red mud) is a hazardous alkaline solid waste produced during the production of alumina from high-iron bauxite, which poses severe environmental challenges due to its massive stockpiling and limited utilization. In this study, metallic iron was recovered from high-iron red mud using the smelting reduction process. Thermodynamic analysis results show that an increase in temperature and sodium oxide content, along with an appropriate mass ratio of Al2O3 to SiO2 (A/S) and mass ratio of CaO to SiO2 (C/S), contribute to the enhancement of the liquid phase mass fraction of the slag. During the smelting reduction process of high-iron red mud, iron recoveries for low-alkali high-iron red mud and high-alkali high-iron red mud under optimal conditions were 98.14% and 98.36%, respectively. The metal obtained through reduction meets the industrial standard for steel-making pig iron, which is also confirmed in the pilot-scale experiment. The smelting reduction process of high-iron red mud can be divided into two stages, where the reaction is predominantly governed by interfacial chemical reaction and diffusion control, respectively. The apparent activation energy of high-alkali high-iron red mud is lower than that observed for low-alkali high-iron red mud. The reduced slag can be used as a roadside stone material or cement clinker. This proposed method represents a sustainable process for the comprehensive utilization of high-iron red mud, which also promotes the minimization of red mud. Full article
(This article belongs to the Special Issue Advances in Efficient Utilization of Metallurgical Solid Waste)
Show Figures

Figure 1

21 pages, 5864 KiB  
Article
Study on Abrasion Resistance of Granite Manufactured Sand Concrete Based on Indoor Abrasion Tester
by Zhitang Li, Yuankuo Wang, Xiaolong Yang, Junlin Liang, Yuanfeng Chen and Minqiang Pan
Coatings 2025, 15(6), 659; https://doi.org/10.3390/coatings15060659 - 30 May 2025
Viewed by 453
Abstract
The long-term wear resistance of granite manufactured sand (HGY) concrete has not been sufficiently investigated. This deficiency makes it difficult to accurately predict and evaluate the service life and durability of such concrete pavements in practical engineering applications. Consequently, this study employed a [...] Read more.
The long-term wear resistance of granite manufactured sand (HGY) concrete has not been sufficiently investigated. This deficiency makes it difficult to accurately predict and evaluate the service life and durability of such concrete pavements in practical engineering applications. Consequently, this study employed a self-developed indoor abrasion test device and combined it with scanning electron microscope (SEM) and X-ray diffraction (XRD) technologies. From the two dimensions of macroscopic performance and microscopic structure, the mechanisms’ influence of the effective sand ratio, stone powder content, and fine aggregate lithology on the wear resistance of HGY concrete were systematically investigated. The optimal content of the effective sand and stone powder content were determined, and the long-term evolution law of the wear resistance of HGY concrete was revealed. The results demonstrate that increasing the effective sand content will reduce the mass loss of concrete. When the stone powder content is 9%, the wear resistance of the concrete is optimal. The order of mass loss of different fine aggregate lithologies is river sand (HS) > limestone mechanism sand (SHY) > HGY, and the wear resistance of HGY is better than that of other fine aggregates. Increasing the effective sand content can enhance the bonding strength between the aggregate and the cement matrix and reduce the porosity, which is conducive to improving the wear resistance of the concrete. Under a relatively small stone powder content, as the amount of stone powder added increases, the pore structure becomes tighter, and the wear resistance of the concrete becomes better. Compared to HS, the manufactured sand (MS) containing stone powder can optimize the pore structure and hydration products of concrete, improve the pore structure of concrete, and improve the wear resistance. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Figure 1

40 pages, 10249 KiB  
Review
Utilizing Agro-Waste as Aggregate in Cement Composites: A Comprehensive Review of Properties, Global Trends, and Applications
by Ivanka Netinger Grubeša, Dunja Šamec, Sandra Juradin and Marijana Hadzima-Nyarko
Materials 2025, 18(10), 2195; https://doi.org/10.3390/ma18102195 - 9 May 2025
Viewed by 1424
Abstract
Amid growing environmental concerns and the increasing demand for sustainable construction practices, the exploration of alternative materials in building applications has garnered significant attention. This paper provides a comprehensive review of the use of agricultural waste as an aggregate in cementitious composites, with [...] Read more.
Amid growing environmental concerns and the increasing demand for sustainable construction practices, the exploration of alternative materials in building applications has garnered significant attention. This paper provides a comprehensive review of the use of agricultural waste as an aggregate in cementitious composites, with a particular focus on palm kernel shells, coconut shells, hazelnut, peanut and pistachio shells, stone fruit shells and pits, date and grape seeds, rice husks, maize (corn) cobs, and sunflower seed shells. For each type of agro-waste, the paper discusses key physical and mechanical properties, global production volumes, and primary countries of origin. Furthermore, it offers an in-depth analysis of existing research on the incorporation of these materials into cement-based composites, highlighting both the advantages and limitations of their use. Although the integration of agro-waste into construction materials presents certain challenges, the vast quantities of agricultural residues generated globally underscore the urgency and potential of their reuse. In line with circular economy principles, this review advocates for the valorization of agro-waste through innovative and sustainable applications within the construction industry. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

11 pages, 6910 KiB  
Article
Industrial-Scale Brownmillerite Formation in Oxygen-Blown Basic Oxygen Furnace Slag: A Novel Stabilization Approach for Sustainable Utilization
by Yao-Hung Tseng, Yu-Hsien Kuo and Meng-Hsun Tsai
Materials 2025, 18(10), 2182; https://doi.org/10.3390/ma18102182 - 9 May 2025
Viewed by 511
Abstract
This study introduces an innovative process for stabilizing BOF slag by blowing oxygen into molten slag, addressing challenges associated with conventional methods that require silica injection. Molten BOF slag from a steelmaking workshop at China Steel Corporation is directly modified at the slag [...] Read more.
This study introduces an innovative process for stabilizing BOF slag by blowing oxygen into molten slag, addressing challenges associated with conventional methods that require silica injection. Molten BOF slag from a steelmaking workshop at China Steel Corporation is directly modified at the slag modification station, where chemical compositions and crystalline phases are analyzed under varying oxygen injection amounts. In 70 industrial trials (20–25 tons per trial) with the basicity of the BOF slag ranging from 2.2 to 4.5, the reduction in the slag expansion rate increases proportionally with oxygen-blowing amounts. Oxygen blowing facilitates the oxidation of FeO to Fe2O3, which reacts with f-CaO to form volumetrically stable C2AF (brownmillerite, Ca2AlxFe2−xO5), as confirmed by XRD and SEM-EDX analyses. The treated BOF slag exhibits excellent volumetric stability (expansion < 0.5%), lower pH (10.6–10.8) in comparison to original BOF slag, and compliance with Taiwan’s EPA-leaching regulations. This stabilized slag demonstrates potential for engineering applications, such as pavement bricks, concrete products, and high-value engineered stones. Additionally, the high brownmillerite content highlights its promise for low-carbon cement applications, offering a scalable and cost-effective solution for BOF slag utilization in the steel industry. Full article
Show Figures

Figure 1

26 pages, 32560 KiB  
Article
Sustainable Production of Building Blocks by Reusing Stone Waste Sludge
by Albina Scioti, Francesco Fabbrocino and Fabio Fatiguso
Appl. Sci. 2025, 15(9), 5031; https://doi.org/10.3390/app15095031 - 30 Apr 2025
Cited by 1 | Viewed by 475
Abstract
Mining and stone processing activities generate a large amount of various types of waste. Among these, Stone Waste Sludge (SWS) constitutes 22.5 percent of the raw material processed and is disposed of by delivering it to now disused quarries with significant landscape and [...] Read more.
Mining and stone processing activities generate a large amount of various types of waste. Among these, Stone Waste Sludge (SWS) constitutes 22.5 percent of the raw material processed and is disposed of by delivering it to now disused quarries with significant landscape and environmental consequences. This paper describes research aimed at identifying the possible uses of this waste, transforming it from a waste to a resource for the production of building blocks. The production of such building blocks is based on historical preparations of mixtures for artificial stone and is developed through an experimental approach and a simple and economical production methodology. Mixes consisting mainly of SWS and Portland cement (PC) were designed and tested. The aggregates and PC were mixed, wetted, and compacted under high pressure in special molds to form the specimens. The design of the mixtures and related tests aimed to define the process parameters considered such as the amount of water (W), the ratio of PC to SWS, and the compaction pressure. The compressive strength of the manufactured specimens at the age of 28 days was identified as the response variable. The results indicated that all of the mixtures had high mechanical strength values even when using high amounts of SWS relative to the amount of PC and that all of them have excellent characteristics for use as building elements in construction. This implies that such waste has an excellent potential for large-scale reuse in construction and encourages further research and testing, both in terms of the thermo-hygrometric properties of such elements and in terms of LCA analysis. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

16 pages, 10275 KiB  
Article
Structure Formation and Properties of Activated Supersulfate Cement
by Leonid Dvorkin, Vadim Zhitkovsky, Izabela Hager, Tomasz Tracz and Tomasz Zdeb
Materials 2025, 18(9), 1912; https://doi.org/10.3390/ma18091912 - 23 Apr 2025
Cited by 1 | Viewed by 454
Abstract
The article investigates the characteristics of the phase composition and structure of supersulfated cement (SSC) during hardening using X-ray, electron microscopy, and ultrasonic analysis methods. The influence of different types of activators, hardening accelerators, and superplasticizers on the type and morphology of the [...] Read more.
The article investigates the characteristics of the phase composition and structure of supersulfated cement (SSC) during hardening using X-ray, electron microscopy, and ultrasonic analysis methods. The influence of different types of activators, hardening accelerators, and superplasticizers on the type and morphology of the newly formed phases during SSC hardening was studied. The effect of a polycarboxylate-type superplasticizer and calcium chloride on the standard consistency and setting times of SSC was experimentally determined. It was established that the introduction of the superplasticizer reduces the standard consistency by 10–16%. Experimental data showed higher effectiveness of phosphogypsum as a sulfate activator compared to gypsum stone. The strength increase of SSC at 7 days reached up to 35%, and at 28 days, up to 15%. Based on the kinetics of ultrasonic wave propagation during SSC hardening, the main stages of structure formation and the influence of cement composition on these stages were determined. The experimental results demonstrate the effect of SSC composition on its standard consistency, setting time, and mechanical properties. The impact of the type of activator and admixtures on the change in SSC strength during storage was investigated. It was found that the addition of a polycarboxylate-type superplasticizer significantly reduces the strength loss of SSC during long-term storage. Using mathematical modeling, experimentally obtained statistical models of strength were developed, which allow for the quantitative evaluation of individual and combined effects, as well as the determination of optimal SSC compositions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 6409 KiB  
Article
Experimental and Mechanical Characteristics of Xanthan Gum and Calcium Lignosulfonate-Cured Gravel Soil
by Cheng Peng, Jierong Zhu, Dongxing Wang, Haiyan Zhou and Junjie Bi
Appl. Sci. 2025, 15(6), 3339; https://doi.org/10.3390/app15063339 - 19 Mar 2025
Viewed by 581
Abstract
The objective of this study was to enhance the mechanical properties of gravelly soil and to consider the binding and filling effects of xanthan gum and calcium lignosulfonate. To this end, gravelly soil samples were prepared with various dosages of xanthan gum and [...] Read more.
The objective of this study was to enhance the mechanical properties of gravelly soil and to consider the binding and filling effects of xanthan gum and calcium lignosulfonate. To this end, gravelly soil samples were prepared with various dosages of xanthan gum and calcium lignosulfonate, and their curing effects were investigated. The mechanical properties and strength parameters of the cured gravelly soil were investigated using unconfined compressive strength (UCS) tests and conventional triaxial compression tests. Furthermore, scanning electron microscopy (SEM) was employed to examine the microstructure and curing mechanisms of the gravelly soil treated with these additives. The findings demonstrate that as the dosage increases, both xanthan gum and calcium lignosulfonate markedly enhance the compressive strength and shear strength of the gravelly soil. The curing effect of xanthan gum was found to be more pronounced with higher dosages, while the optimal curing effect for calcium lignosulfonate was achieved at a dosage of 4%. The gravelly soil treated with xanthan gum exhibited superior performance compared to that treated with calcium lignosulfonate when the same dosage was used. Moreover, at elevated confining pressures, the binding effect of xanthan gum and calcium lignosulfonate on the gravelly soil was less pronounced than the strength effect imparted by the confining pressure. This suggests that the impact of dosage on the shear strength of the gravelly soil is diminished at higher confining pressures. The stabilization of crushed stone soil by xanthan gum is a complex process that involves two main mechanisms: bonding and cementation, and filling and film-forming. The curing mechanism of calcium lignosulfonate-cured gravelly soil can be summarized as follows: ion exchange, adsorption and encapsulation, and pore filling and binding effects. The findings of this research offer significant insights that are pertinent to the construction of high earth–rock dams and related engineering applications. Full article
Show Figures

Figure 1

9 pages, 1458 KiB  
Communication
Research on Cement-Free Grouting Material for Shield Tunneling in Water-Rich Karst Regions
by Zheng Che, Tian-Liang Wang, Zheng-Guo Zhou, Shuo Wang and Xin-Wei Ma
Materials 2025, 18(6), 1192; https://doi.org/10.3390/ma18061192 - 7 Mar 2025
Cited by 1 | Viewed by 789
Abstract
With the increasing number of anti-seepage reinforcement projects and the continuous improvement of quality requirements, high-performance and green requirements have also been put forward for grouting materials. Traditional karst cave grouting mainly uses cement-based grouting materials, which not only have high carbon emissions [...] Read more.
With the increasing number of anti-seepage reinforcement projects and the continuous improvement of quality requirements, high-performance and green requirements have also been put forward for grouting materials. Traditional karst cave grouting mainly uses cement-based grouting materials, which not only have high carbon emissions but also do not comply with the sustainable development strategy with regard to being green, low-carbon, and environmentally friendly. A green grouting material made by mixing a slurry A and slurry B is proposed in this paper. The solid phase of slurry A is composed of stone powder and bentonite, for which an anti-washout admixture is necessary. Slurry B is a suspension of thickener (CMC or HPMC) and anhydrous ethanol. By mixing the two slurries evenly, the grouting material is obtained. Experiments were used to investigate the ideal ratios of stone powder, bentonite, and water in slurry A, and the ratio of thickener to anhydrous ethanol in slurry B, and to analyze the development and evolution of the apparent viscosity of slurry A and slurry B after mixing. This study revealed that the optimum ratio of stone powder and bentonite was 4:1, and the most reasonable water–solid ratio was 0.8:1.0. The optimum ratio of anhydrous ethanol to CMC or HPMC in slurry B was 5:1. Slurry B was added to slurry A at a rate of 5~10% to obtain the best grouting material properties. The proposed mixed grouting material would not disperse even in flowing water and could harden and consolidate quickly. The strength of the consolidation grouting body was close to that of wet soil, which can meet requirements for tunnel construction. Full article
(This article belongs to the Topic Advances in Sustainable Materials and Products)
Show Figures

Figure 1

28 pages, 4873 KiB  
Review
The Role of Environmental Product Declarations in the Decarbonization of Building Materials and Components
by Francesco Asdrubali, Gianluca Grazieschi and Dante Maria Gandola
Energies 2025, 18(5), 1308; https://doi.org/10.3390/en18051308 - 6 Mar 2025
Cited by 1 | Viewed by 1453
Abstract
As energy efficiency measures have reduced the operational carbon footprint of buildings, the significance of embodied carbon has increased. Efforts by all construction players, including material and component manufacturers, are needed to avoid burdens shifting towards embodied impacts. Environmental Product Declarations (EPDs) can [...] Read more.
As energy efficiency measures have reduced the operational carbon footprint of buildings, the significance of embodied carbon has increased. Efforts by all construction players, including material and component manufacturers, are needed to avoid burdens shifting towards embodied impacts. Environmental Product Declarations (EPDs) can represent useful instruments to push the decarbonization of construction materials. This study examines EPDs to assess the embodied GWP of insulation materials, bricks, concrete, cement, steel, and natural stones. The variance structure of the GWP was studied for each material, the main variation parameters were detected, and statistically significant categories were identified. For each category reference values were calculated (i.e., mean or median values, lower and upper interquartile ranges, and box plot whiskers) which can be useful for manufacturers to reduce the impact of their products, for EPD verifiers to detect outliers, and for designers to determine safety coefficients for using EPD data in the early design stage. Consolidated results were achieved for materials produced through standardized processes whose GWP variability was mainly structured around universal physical properties or production techniques. More localized or artisanal products demonstrate higher decarbonization potential but require further segmentation and additional GWP data to establish more robust reduction benchmarks. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

13 pages, 3252 KiB  
Article
CDW-Based Geopolymers: Pro and Cons of Using Unselected Waste
by Ilaria Capasso, Gigliola D’Angelo, Mercedes del Río Merino, Assunta Campanile, Domenico Caputo and Barbara Liguori
Polymers 2025, 17(5), 570; https://doi.org/10.3390/polym17050570 - 21 Feb 2025
Viewed by 716
Abstract
Geopolymer technology is considered a strategic alternative for recycling construction and demolition waste (CDW) and to produce new construction products which meet the requirements of environmental and energy sustainability. The separation and management of CDW fractions is still a technological complex process and, [...] Read more.
Geopolymer technology is considered a strategic alternative for recycling construction and demolition waste (CDW) and to produce new construction products which meet the requirements of environmental and energy sustainability. The separation and management of CDW fractions is still a technological complex process and, even if large-scale separation technology is quite common, the necessity to perform this treatment may reduce the environmental and economic benefits of CDW reuse. So, a very promising option is represented by the manufacturing of geopolymers using unseparated CDW. In this aim, waste deriving from cement-based mortars, bricks and natural stones have been selected and widely characterized from a mineralogical, chemical and morphological point of view. Then, geopolymer mortars were produced using several amounts of either a single fraction or a mixture of the selected waste. The chemical, physical, mechanical, and microstructural characterization of the geopolymer-produced mortars was carried out to assess how the combination and different quantities of the mixed CDW affected the final properties. In particular, geopolymeric mortars produced from the unselected CDW showed higher mechanical properties, despite the lower apparent density, when compared to geopolymeric mortars produced from single fractions of CDW. The improvement of mechanical features seems to be not affected by the waste amount used, providing encouraging findings to promote the actual use of unseparated CDW with the resulting enhancement of environmental and economic benefits. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

Back to TopTop