Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,355)

Search Parameters:
Keywords = causes of migration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3164 KB  
Article
Influence of MgO Binder Regulation on the Interfacial Structure of Lithium Thermal Batteries
by Zhi-Yang Fan, Xiao-Min Wang, Wei-Yi Zhang, Li-Ke Cheng, Wen-Xiu Gao and Cheng-Yong Shu
C 2026, 12(1), 10; https://doi.org/10.3390/c12010010 - 22 Jan 2026
Abstract
Lithium thermal batteries are primary reserve batteries utilizing solid molten salt electrolytes. They are regarded as ideal power sources for high-reliability applications due to their high power density, rapid activation, long shelf life, wide operating temperature range, and excellent environmental adaptability. However, existing [...] Read more.
Lithium thermal batteries are primary reserve batteries utilizing solid molten salt electrolytes. They are regarded as ideal power sources for high-reliability applications due to their high power density, rapid activation, long shelf life, wide operating temperature range, and excellent environmental adaptability. However, existing electrode systems are limited by insufficient conductivity and the use of high-impedance MgO binders. This results in sluggish electrode reaction kinetics and incomplete material conversion during high-temperature discharge, causing actual discharge capacities to fall far below theoretical values. To address this, FeS2-CoS2 multi-component composite cathode materials were synthesized via a high-temperature solid-phase method. Furthermore, two distinct MgO binders were systematically investigated: flake-like MgO (MgO-F) with a sheet-stacking structure and spherical MgO (MgO-S) with a low-tortuosity granular structure. Results indicate that while MgO-F offers superior electrolyte retention via physical confinement, its high tortuosity limits ionic conduction. In contrast, MgO-S facilitates the construction of a wettability-enhanced continuous ionic network, which effectively reduces interfacial impedance and enhances system conductivity. This regulation promoted Li+ migration and accelerated interfacial reaction kinetics. This study provides a feasible pathway for improving the electrochemical performance of lithium thermal batteries through morphology-oriented MgO binder regulation. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

23 pages, 3422 KB  
Article
Therapeutic Exosomes Carrying VEGFA siRNA Inhibit Pathological Corneal Angiogenesis via PI3K–Akt–Caspase-3 Signaling
by Woojune Hur, Basanta Bhujel, Seorin Lee, Seheon Oh, Ho Seok Chung, Hun Lee and Jae Yong Kim
Biomedicines 2026, 14(1), 246; https://doi.org/10.3390/biomedicines14010246 - 21 Jan 2026
Viewed by 105
Abstract
Background/Objectives: Neovascularization, defined as the sprouting of new blood vessels from pre-existing vasculature, is a critical pathological feature in ocular diseases such as pathological myopia and represents a leading cause of corneal vision loss. Vascular endothelial growth factor A (VEGFA) plays a pivotal [...] Read more.
Background/Objectives: Neovascularization, defined as the sprouting of new blood vessels from pre-existing vasculature, is a critical pathological feature in ocular diseases such as pathological myopia and represents a leading cause of corneal vision loss. Vascular endothelial growth factor A (VEGFA) plays a pivotal role in endothelial cell proliferation, migration, survival by anti-apoptotic signaling, and vascular permeability. Dysregulation of VEGFA is closely linked to pathological neovascularization. Exosomes, nanosized phospholipid bilayer vesicles ranging from 30 to 150 nm, have emerged as promising gene delivery vehicles due to their intrinsic low immunogenicity, superior cellular uptake, and enhanced in vivo stability. This study aimed to investigate whether highly purified mesenchymal stem cell (MSC)-derived exosomes loaded with VEGFA siRNA labeled with FAM can effectively suppress pathological corneal neovascularization (CNV) via targeeted cellular transduction and VEGFA inhibition. Furthermore, we examined whether the therapeutic effect involves the modulation of the PI3K–Akt–Caspase-3 signaling axis. Methods: Exosomes purified by chromatography were characterized by electronmicroscopy, standard marker immunoblotting, and nanoparticle tracking analysis. In vitro, we assessed exosome uptake and cytoplasmic release, suppression of VEGFA mRNA/protein, cell viability, and apoptosis. In a mouse CNV model, we evaluated tissue reach and stromal retention after repeated intrastromal injections; anterior segment angiogenic indices; CD31/VEGFA immunofluorescence/immunoblotting; phosphorylated PI3K and Akt; cleaved caspase-3; histology (H&E); and systemic safety (liver, kidney, and spleen). Results: Exosomes were of high quality and showed peak efficacy at 48 h, with decreased VEGFA mRNA/protein, reduced viability, and increased apoptosis in vitro. In vivo, efficient delivery and stromal retention were observed, with accelerated inhibition of neovascularization after Day 14 and maximal effect on Days 17–19. Treatment reduced CD31 and VEGFA, decreased p-PI3K and p-Akt, and increased cleaved caspase-3. Histologically, concurrent reductions in neovascularization, inflammatory cell infiltration, and inflammatory epithelial thickening were observed, alongside a favorable systemic safety profile. Conclusions:VEGFA siRNA-loaded exosomes effectively reduce pathological CNV via a causal sequence of intracellular uptake, cytoplasmic release, targeted inhibition, and phenotypic suppression. Supported by consistent PI3K–Akt inhibition and caspase-3–mediated apoptosis induction, these exosomes represent a promising local gene therapy that can complement existing antibody-based treatments. Full article
(This article belongs to the Special Issue Stem Cell Therapy: Traps and Tricks)
Show Figures

Figure 1

23 pages, 5142 KB  
Article
The Impact of Plant Debris on Hydraulic Conditions in a Semi-Natural Fish Pass
by Natalia Walczak, Zbigniew Walczak and Mateusz Hammerling
Water 2026, 18(2), 272; https://doi.org/10.3390/w18020272 - 21 Jan 2026
Viewed by 47
Abstract
Fish passes are essential hydraulic structures that maintain longitudinal connectivity in regulated rivers, but their hydraulic performance may be affected by debris accumulation at chamber openings. This study investigates the influence of partial and total inlet blockage by plant debris on flow conditions [...] Read more.
Fish passes are essential hydraulic structures that maintain longitudinal connectivity in regulated rivers, but their hydraulic performance may be affected by debris accumulation at chamber openings. This study investigates the influence of partial and total inlet blockage by plant debris on flow conditions within a semi-natural fish pass under field conditions. Hydraulic measurements were conducted at multiple locations along the fish pass, and the effects of debris covering were evaluated using statistical and mixed-effects modeling approaches. Field measurements demonstrated that the Froude number decreases systematically with increasing distance from the inlet, indicating progressive longitudinal dissipation of flow energy along the chamber sequence. Partial debris accumulation caused only marginal changes in the Froude number, remaining close to the threshold of statistical significance. In contrast, mean flow velocity decreased markedly with increasing inlet blockage, by approximately 17% at 50% covering and by about 36% under full blockage, indicating that debris primarily acts as a hydraulic damper rather than inducing a change in flow regime. The highest variability in hydraulic conditions was observed in chambers associated with changes in flow direction and local geometry. These results highlight the dominant role of longitudinal layout and chamber geometry in shaping hydraulic conditions in semi-natural fish passes, while moderate debris accumulation affects local velocities without fundamentally compromising hydraulic functionality. From an ecological perspective, transition zones with elevated hydraulic variability may represent critical locations influencing the swimming effort and passage efficiency of migrating fish. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

17 pages, 3200 KB  
Article
The Self-Assembling Peptide P11-4 Induces the Expression of Mineralization-Related Genes in Odontoblasts Independently of Metabolic Alterations
by Leticia Martins Pereira, Marina Damasceno e Souza de Carvalho Chiari, Diego Mauro Carneiro Pereira, Regina Maria Puppin-Rontani and Fábio Dupart Nascimento
J. Funct. Biomater. 2026, 17(1), 50; https://doi.org/10.3390/jfb17010050 - 18 Jan 2026
Viewed by 165
Abstract
(1) Background: The synthetic eleven-amino acid peptide P11-4, derived from DMP-1, self-assembles into β-sheet tapes, ribbons, fibrils, and fibers that form a 3D matrix enriched with calcium-binding sites. This study investigated whether P11-4 modulates gene and protein expression or [...] Read more.
(1) Background: The synthetic eleven-amino acid peptide P11-4, derived from DMP-1, self-assembles into β-sheet tapes, ribbons, fibrils, and fibers that form a 3D matrix enriched with calcium-binding sites. This study investigated whether P11-4 modulates gene and protein expression or induces adverse metabolic alterations in odontoblast-like cells. (2) Methods: MDPC-23 cells were cultured under standard conditions and stimulated with different concentrations of P11-4, followed by assessments of cell viability using the MTT assay, proliferation and migration, cytoplasmic calcium kinetics, reactive oxygen species (ROS) production, osteogenic differentiation-related gene expression via PCR array, and expression of the pro-inflammatory cytokine interleukin-6 (IL-6) using confocal microscopy and flow cytometry. (3) Results: The MTT assay showed that P11-4 at 6.3, 12.6, and 25.2 µmol/L was non-cytotoxic and did not alter MDPC-23 cell proliferation or migration. Only the 25.2 µmol/L concentration induced a detectable Ca2+ influx and a slight increase in ROS. Among the 84 genes examined, P11-4 at 6.3 µmol/L upregulated 79 genes, including transcription factors, signaling molecules, and extracellular matrix-related proteins. Furthermore, P11-4 did not increase IL-6 expression under any condition tested. (4) Conclusion: P11-4 markedly modulates mineralization-associated gene regulation without causing metabolic damage in odontoblast-like cells. Full article
(This article belongs to the Special Issue Biomaterials in Restorative Dentistry and Endodontics (2nd Edition))
Show Figures

Figure 1

15 pages, 4562 KB  
Article
Investigating the Role of Silica in Thermo-Oxidative Degradation of EPDM Recycled Composites for Applications in Building and Construction
by Xavier Colom, Leire Moral and Javier Cañavate
Polymers 2026, 18(2), 250; https://doi.org/10.3390/polym18020250 - 16 Jan 2026
Viewed by 203
Abstract
This work investigates the structural, acoustic, and thermo-oxidative degradation behavior of elastomeric composites made from neat EPDM and recycled devulcanized EPDM (EPDMd) blends, both with and without silica (SiO2). SiO2 plays a complex role in degradation, possibly acting as a [...] Read more.
This work investigates the structural, acoustic, and thermo-oxidative degradation behavior of elastomeric composites made from neat EPDM and recycled devulcanized EPDM (EPDMd) blends, both with and without silica (SiO2). SiO2 plays a complex role in degradation, possibly acting as a catalyst and also affecting the properties of the materials. Samples were subjected to accelerated degradation at 80 °C for 30 days. The characterization included the mechanical, spectroscopical (FTIR-ATR), thermal (TGA), and morphological (SEM) studies of the samples. Given EPDM’s use in construction as a sound-absorber, its acoustic properties were also analyzed. The determination of the mechanical properties shows that the incorporation of SiO2 improves the Young’s modulus (YM), maintains the tensile strength (TS) at similar values, and causes a decrease in elongation at break (EB). The content of EPDMd slightly decreases both the TS and the EB and increases the YM. The thermo-oxidative degradation of the studied composites does not affect the TS values, but it increases the YM for the samples with and without SiO2 for EPDMd contents higher than 40 phr, and decreases the EB for samples with and without SiO2 for all EPDMd contents. The FTIR-ATR, TGA, and SEM results show that the addition of SiO2 catalyzes the thermo-oxidative degradation process, while the EPDMd inhibits structural degradation. Migration of the ZnSt2 included in the formulations to the surface is common in these elastomers. In this case, EPDMd forms microaggregates, which retain the exudation of ZnSt2 crystals, especially in the non-degraded samples. The degraded samples present irregular structures, with microcavities, cracks, and occlusions, which increase the acoustic absorption mainly at frequencies below 1500 Hz. Full article
Show Figures

Figure 1

17 pages, 1188 KB  
Article
Simulation Experiment on the Effect of Saline Reclaimed Water Recharge on Soil Water and Salt Migration in Xinjiang, China
by Jiangwen Qin, Tao Zhou, Jihong Zhang, Tao Zhao, Ankun Wang, Hongbang Liang, Wenhao Li and Meng Li
Water 2026, 18(2), 238; https://doi.org/10.3390/w18020238 - 16 Jan 2026
Viewed by 174
Abstract
This study investigates the effects of saline reclaimed water recharge on soil salt accumulation and water migration in Xinjiang, China, aiming to provide scientific guidance for the sustainable utilization of reclaimed water in arid regions. Indoor vertical infiltration simulation experiments were conducted using [...] Read more.
This study investigates the effects of saline reclaimed water recharge on soil salt accumulation and water migration in Xinjiang, China, aiming to provide scientific guidance for the sustainable utilization of reclaimed water in arid regions. Indoor vertical infiltration simulation experiments were conducted using reclaimed water with varying salinity levels (0, 1, 2, 3, and 4 g L−1) to evaluate their impacts on soil water–salt distribution and infiltration dynamics. Results showed that irrigation with saline reclaimed water increased soil pH and significantly enhanced both the infiltration rate and wetting front migration velocity, while causing only minor changes in the moisture content of the wetted zone. When the salinity was 2 g L−1, the observed improvement effect was the most significant. Specifically, the cumulative infiltration increased by 22.73% after 180 min, and the time required for the wetting peak to reach the specified depth was shortened by 21.74%. At this salinity level, the soil’s effective water storage capacity reached 168.19 mm, with an average moisture content increase of just 6.20%. Soil salinity increased with the salinity of the irrigation water, and salts accumulated at the wetting front as water moved downward, resulting in a characteristic distribution pattern of desalination in the upper layer and salt accumulation in the lower layer. Notably, reclaimed water recharge reduced soil salinity in the 0–30 cm layer, with salinity in the 0–25 cm layer decreasing below the crop salt tolerance threshold. When the salinity of the reclaimed water was ≤2 g L−1, the salt storage in the 0–30 cm layer was less than 7 kg ha−1, achieving a desalination rate exceeding 60%. Reclaimed water with a salinity of 2 g L−1 enhanced infiltration (wetting front depth increased by 27.78%) and desalination efficiency (>60%). These findings suggest it is well suited for urban greening and represents an optimal choice for the moderate reclamation of saline-alkali soils in arid environments. Overall, this study provide a reference for the water quality threshold and parameters of reclaimed water for urban greening, farmland irrigation, and saline land improvement. Full article
(This article belongs to the Special Issue Synergistic Management of Water, Fertilizer, and Salt in Arid Regions)
Show Figures

Figure 1

22 pages, 9987 KB  
Article
Network Hypoactivity in ALG13-CDG: Disrupted Developmental Pathways and E/I Imbalance as Early Drivers of Neurological Features in CDG
by Rameen Shah, Rohit Budhhraja, Silvia Radenkovic, Graeme Preston, Alexia Tyler King, Sahar Sabry, Charlotte Bleukx, Ibrahim Shammas, Lyndsay Young, Jisha Chandran, Seul Kee Byeon, Ronald Hrstka, Doughlas Y. Smith, Nathan P. Staff, Richard Drake, Steven A. Sloan, Akhilesh Pandey, Eva Morava and Tamas Kozicz
Cells 2026, 15(2), 147; https://doi.org/10.3390/cells15020147 - 14 Jan 2026
Viewed by 678
Abstract
Background: ALG13-CDG is an X-linked N-linked glycosylation disorder caused by pathogenic variants in the glycosyltransferase ALG13, leading to severe neurological manifestations. Despite the clear CNS involvement, the impact of ALG13 dysfunction on human brain glycosylation and neurodevelopment remains unknown. We hypothesize that ALG13-CDG [...] Read more.
Background: ALG13-CDG is an X-linked N-linked glycosylation disorder caused by pathogenic variants in the glycosyltransferase ALG13, leading to severe neurological manifestations. Despite the clear CNS involvement, the impact of ALG13 dysfunction on human brain glycosylation and neurodevelopment remains unknown. We hypothesize that ALG13-CDG causes brain-specific hypoglycosylation that disrupts neurodevelopmental pathways and contributes directly to cortical network dysfunction. Methods: We generated iPSC-derived human cortical organoids (hCOs) from individuals with ALG13-CDG to define the impact of hypoglycosylation on cortical development and function. Electrophysiological activity was assessed using MEA recordings and integrated with multiomic profiling, including scRNA-seq, proteomics, glycoproteomics, N-glycan imaging, lipidomics, and metabolomics. X-inactivation status was evaluated in both iPSCs and hCOs. Results: ALG13-CDG hCOs showed reduced glycosylation of proteins involved in ECM organization, neuronal migration, lipid metabolism, calcium homeostasis, and neuronal excitability. These pathway disruptions were supported by proteomic and scRNA-seq data and included altered intercellular communication. Trajectory analyses revealed mistimed neuronal maturation with early inhibitory and delayed excitatory development, indicating an E/I imbalance. MEA recordings demonstrated early network hypoactivity with reduced firing rates, immature burst structure, and shortened axonal projections, while transcriptomic and proteomic signatures suggested emerging hyperexcitability. Altered lipid and GlcNAc metabolism, along with skewed X-inactivation, were also observed. Conclusions: Our study reveals that ALG13-CDG is a disorder of brain-specific hypoglycosylation that disrupts key neurodevelopmental pathways and destabilizes cortical network function. Through integrated multiomic and functional analyses, we identify early network hypoactivity, mistimed neuronal maturation, and evolving E/I imbalance that progresses to compensatory hyperexcitability, providing a mechanistic basis for seizure vulnerability. These findings redefine ALG13-CDG as disorders of cortical network instability, offering a new framework for targeted therapeutic intervention. Full article
Show Figures

Figure 1

22 pages, 5575 KB  
Article
Influence of Seabed Scouring on the Bearing Capacity of Suction Caisson Foundations of Offshore Wind Turbines
by Zhuang Jin, Xuan Liu, Mayao Cheng, Maozhu Peng and Jie Yang
J. Mar. Sci. Eng. 2026, 14(2), 171; https://doi.org/10.3390/jmse14020171 - 13 Jan 2026
Viewed by 121
Abstract
Local scour around suction caisson foundations has emerged as a significant geotechnical hazard for offshore wind turbines as developments extend into deeper waters. This study quantitatively evaluates the scour-induced degradation of the bearing capacity of suction buckets in sand using a three-dimensional finite [...] Read more.
Local scour around suction caisson foundations has emerged as a significant geotechnical hazard for offshore wind turbines as developments extend into deeper waters. This study quantitatively evaluates the scour-induced degradation of the bearing capacity of suction buckets in sand using a three-dimensional finite element model incorporating the Hardening Soil (HS) constitutive model. The HS framework enables realistic representation of stress-dependent stiffness, dilatancy, and plastic hardening, which are essential for simulating stress redistribution caused by scour. Parametric analyses covering a broad range of relative scour depths show that scour depth is the primary factor governing capacity loss. Increasing scour leads to systematic reductions in horizontal and moment capacities, evident stiffness softening, and a downward migration of plastic zones. A critical threshold is identified at Sd/L = 0.3, beyond which the rate of capacity deterioration increases significantly. The HM failure envelopes contract progressively and exhibit increasing flattening with scour depth while maintaining nearly constant eccentricity. Empirical relationships between scour depth and key envelope parameters are further proposed to support engineering prediction. The results highlight the necessity of integrating scour effects into design and assessment procedures for suction bucket foundations to ensure the long-term performance and safety of offshore wind turbines. Full article
(This article belongs to the Special Issue Wave–Structure–Seabed Interaction)
Show Figures

Figure 1

22 pages, 4486 KB  
Article
Astaxanthin as a Natural Photoprotective Agent: In Vitro and In Silico Approach to Explore a Multi-Targeted Compound
by Aida Lahmar, Balkis Abdelaziz, Nahla Gouader, Abir Salek, Imen Waer and Leila Chekir Ghedira
Sci. Pharm. 2026, 94(1), 8; https://doi.org/10.3390/scipharm94010008 - 13 Jan 2026
Viewed by 231
Abstract
Ultraviolet B radiation is a major cause of skin aging, cellular senescence, and inflammaging, mediated by the excessive production of reactive oxygen species (ROS) and induction of apoptosis. This study evaluated the photo-protective effects of astaxanthin, one of the strongest natural antioxidants, in [...] Read more.
Ultraviolet B radiation is a major cause of skin aging, cellular senescence, and inflammaging, mediated by the excessive production of reactive oxygen species (ROS) and induction of apoptosis. This study evaluated the photo-protective effects of astaxanthin, one of the strongest natural antioxidants, in UVB-treated keratinocytes. The antioxidant capacity of astaxanthin was evaluated using ABTS, DPPH, and NBT/riboflavin/SOD assays. HaCaT cells were exposed to 30 mJ/cm2 of UVB radiation. Photoprotective effects and accumulated ROS were evaluated in UVB-irradiated HaCaT cells by MTT and DCFH-DA assays. Nitric oxide levels were quantified using the Griess reagent. Apoptosis was assessed by dual staining using acridine orange/ethidium bromide, lysosomal integrity by acridine orange uptake, and cell migration by scratch assay. Cell adhesion was assessed on ECM-coated Nunc plates. Finally, we formulated a 0.5% astaxanthin-enriched cream. Astaxanthin mitigated UVB-induced damage by reducing intracellular ROS levels by 3.7-fold, decreasing nitric oxide production to 29.8 ± 7.7% at the highest concentration, and maintaining lysosomal integrity. The carotenoid significantly enhanced cell viability, increasing it from 60.64 ± 8.3% in UV-treated cells to 102.1 ± 3.22% at 40 µM. Moreover, treated cells showed a significant reduction (p < 0.001) in the apoptotic rate (37.7 ± 3.1 vs. 87.7 ± 3.8 in UVB-irradiated cells, as evidenced by reduced chromatin condensation and nuclear fragmentation. Astaxanthin also enhanced tissue repair, as evidenced by increased cell migration and adhesion to several extracellular matrix (ECM) proteins (poly-L-lysine, laminin, fibrinogen, vitronectin and collagen I). In silico molecular docking predicted strong binding affinities between astaxanthin and key cellular targets, including JAK2 (−9.9 kcal/mol, highest affinity), STAT3, FAK, COX-2, NF-k-B, MMP2, and MMP9. The formulated cream demonstrated an in vitro SPF of 7.2 ± 2.5. Astaxanthin acts as a multifunctional photoprotective compound, providing a strong rationale for its incorporation into cosmetic and dermatological formulations, as further supported by the successful formulation and in vitro SPF estimation of an astaxanthin-enriched cream. Full article
Show Figures

Figure 1

21 pages, 7900 KB  
Article
Mechanisms and Multi-Field-Coupled Responses of CO2-Enhanced Coalbed Methane Recovery in the Yanchuannan and Jinzhong Blocks Toward Improved Sustainability and Low-Carbon Reservoir Management
by Hequn Gao, Yuchen Tian, Helong Zhang, Yanzhi Liu, Yinan Cui, Xin Li, Yue Gong, Chao Li and Chuncan He
Sustainability 2026, 18(2), 765; https://doi.org/10.3390/su18020765 - 12 Jan 2026
Viewed by 189
Abstract
Supercritical CO2 modifies deep coal reservoirs through the coupled effects of adsorption-induced deformation and geochemical dissolution. CO2 adsorption causes coal matrix swelling and facilitates micro-fracture propagation, while CO2–water reactions generate weakly acidic fluids that dissolve minerals such as calcite [...] Read more.
Supercritical CO2 modifies deep coal reservoirs through the coupled effects of adsorption-induced deformation and geochemical dissolution. CO2 adsorption causes coal matrix swelling and facilitates micro-fracture propagation, while CO2–water reactions generate weakly acidic fluids that dissolve minerals such as calcite and kaolinite. These synergistic processes remove pore fillings, enlarge flow channels, and generate new dissolution pores, thereby increasing the total pore volume while making the pore–fracture network more heterogeneous and structurally complex. Such reservoir restructuring provides the intrinsic basis for CO2 injectivity and subsequent CH4 displacement. Both adsorption capacity and volumetric strain exhibit Langmuir-type growth characteristics, and permeability evolution follows a three-stage pattern—rapid decline, slow attenuation, and gradual rebound. A negative exponential relationship between permeability and volumetric strain reveals the competing roles of adsorption swelling, mineral dissolution, and stress redistribution. Swelling dominates early permeability reduction at low pressures, whereas fracture reactivation and dissolution progressively alleviate flow blockage at higher pressures, enabling partial permeability recovery. Injection pressure is identified as the key parameter governing CO2 migration, permeability evolution, sweep efficiency, and the CO2-ECBM enhancement effect. Higher pressures accelerate CO2 adsorption, diffusion, and sweep expansion, strengthening competitive adsorption and improving methane recovery and CO2 storage. However, excessively high pressures enlarge the permeability-reduction zone and may induce formation instability, while insufficient pressures restrict the effective sweep volume. An optimal injection-pressure window is therefore essential to balance injectivity, sweep performance, and long-term storage integrity. Importantly, the enhanced methane production and permanent CO2 storage achieved in this study contribute directly to greenhouse gas reduction and improved sustainability of subsurface energy systems. The multi-field coupling insights also support the development of low-carbon, environmentally responsible CO2-ECBM strategies aligned with global sustainable energy and climate-mitigation goals. The integrated experimental–numerical framework provides quantitative insight into the coupled adsorption–deformation–flow–geochemistry processes in deep coal seams. These findings form a scientific basis for designing safe and efficient CO2-ECBM injection strategies and support future demonstration projects in heterogeneous deep coal reservoirs. Full article
Show Figures

Figure 1

23 pages, 1598 KB  
Article
Understanding Transit Migration Through the Push-Pull Plus Framework: Evidence from Casa del Migrante, Honduras
by Mabely Romero, Bernardo Trejos, Marco Granadino, Juan Carlos Flores and Pablo Lamino
Soc. Sci. 2026, 15(1), 39; https://doi.org/10.3390/socsci15010039 - 12 Jan 2026
Viewed by 254
Abstract
Migration through Central America continues to rise, yet limited research examines how people make migration decisions, especially among those traveling in transit. This study addresses that gap by analyzing the motivations of migrants passing through Casa del Migrante San José in Ocotepeque, Honduras, [...] Read more.
Migration through Central America continues to rise, yet limited research examines how people make migration decisions, especially among those traveling in transit. This study addresses that gap by analyzing the motivations of migrants passing through Casa del Migrante San José in Ocotepeque, Honduras, to examine how long-term pressures interact with immediate triggers during migration. A mixed-methods approach was used, integrating two data sources: 3934 registration records from the Human Mobility Pastoral database (2021–2022) and 75 semi-structured interviews conducted in December 2022. The Push-Pull Plus (PPP) framework was applied to interpret how persistent conditions, immediate triggers, and available support networks influence decisions to migrate. Quantitative results show a marked increase in arrivals during 2022, especially among Venezuelan migrants, with a peak in October following a U.S. policy announcement. Most participants were men aged 21–40 with incomplete secondary education, and economic hardship was the most frequently cited reason for leaving. However, interviews indicate that financial motives were often intertwined with insecurity, family obligations, and unexpected opportunities to travel. Overall, the findings suggest that migration decisions are complex, dynamic, and timing-sensitive, underscoring the need for policies that address the root causes while providing support for migrants in transit. Full article
(This article belongs to the Special Issue Civil Society, Migration and Citizenship)
Show Figures

Figure 1

23 pages, 3127 KB  
Article
Heterogeneous Federated Learning via Knowledge Transfer Guided by Global Pseudo Proxy Data
by Wenhao Sun, Xiaoxuan Guo, Wenjun Liu and Fang Sun
Future Internet 2026, 18(1), 36; https://doi.org/10.3390/fi18010036 - 8 Jan 2026
Viewed by 170
Abstract
Federated learning with data free knowledge distillation enables effective and privacy-preserving knowledge aggregation by employing generators to produce local pseudo samples during client-side model migration. However, in practical applications, data distributions across different institutions are often non-independent and identically distributed (Non-IID), which introduces [...] Read more.
Federated learning with data free knowledge distillation enables effective and privacy-preserving knowledge aggregation by employing generators to produce local pseudo samples during client-side model migration. However, in practical applications, data distributions across different institutions are often non-independent and identically distributed (Non-IID), which introduces bias in local models and consequently impedes the effective transfer of knowledge to the global model. In addition, insufficient local training can further exacerbate model bias, undermining overall performance. To address these challenges, we propose a heterogeneous federated learning framework that enhances knowledge transfer through guidance from global proxy data. Specifically, a noise filter is incorporated into the training of local generators to mitigate the negative impact of low-quality pseudo proxy samples on local knowledge distillation. Furthermore, a global generator is introduced to produce global pseudo proxy samples, which, together with local pseudo proxy data, are used to construct a cross attention matrix. This design effectively alleviates overfitting and underfitting issues in local models caused by data heterogeneity. Extensive experiments on publicly available datasets with heterogeneous data distributions demonstrate the superiority of the proposed framework. Results show that when the Dirichlet distribution coefficient is 0.05, our method achieves an average accuracy improvement of 5.77% over popular baselines; when the coefficient is 0.1, the improvement reaches 6.54%. Even under uniformly distributed sample classes, our model still achieves an average accuracy improvement of 7.07% compared to other methods. Full article
Show Figures

Figure 1

15 pages, 1782 KB  
Article
Impact of Meteorological Conditions on the Bird Cherry–Oat Aphid (Rhopalosiphum padi L.) Flights Recorded by Johnson Suction Traps
by Kamila Roik, Sandra Małas, Paweł Trzciński and Jan Bocianowski
Agriculture 2026, 16(2), 152; https://doi.org/10.3390/agriculture16020152 - 7 Jan 2026
Viewed by 346
Abstract
Due to its abundance, bird cherry–oat aphid is the most important vector in Poland of the complex of viruses causing barley yellow dwarf virus (BYDV). These viruses infect all cereals. During the growing season, cereal plants are exposed to many species of agrophages, [...] Read more.
Due to its abundance, bird cherry–oat aphid is the most important vector in Poland of the complex of viruses causing barley yellow dwarf virus (BYDV). These viruses infect all cereals. During the growing season, cereal plants are exposed to many species of agrophages, which can limit their growth, development and yield. As observed for many years, global warming contributes to changes in the development of many organisms. Aphids (Aphidoidea), which are among the most important pests of agricultural crops, respond very dynamically to these changes. Under favorable conditions, their populations can increase several-fold within a few days. The bird cherry–oat aphid (Rhopalosiphum padi L.) is a dioecious species that undergoes a seasonal host shift during its life cycle. Its primary hosts are trees and shrubs (Prunus padus L.), while secondary hosts include cereals and various grass species. R. padi feeds directly on bird cherry tree, reducing its ornamental value, and on cereals, where it contributes to yields losses. The species can also damage plants indirectly by transmitting harmful viruses. Indirect damage is generally more serious than direct feeding injury. Monitoring aphid flights with a Johnson suction trap (JST) is useful for plant protection, which enables early detection of their presence in the air and then on cereal crops. To provide early detection of R. padi migrations and to study the dynamics of abundance, flights were monitored in 2020–2024 with Johnson suction traps at two localities: Winna Góra (Greater Poland Province) and Sośnicowice (Silesia Province). The aim of the research conducted in 2020–2024 was to study the dynamics of the bird cherry–oat aphid (Rhopalosiphum padi L.) population in relation to meteorological conditions as recorded by a Johnson suction trap. Over five years of research, a total of 129,638 R. padi individuals were captured using a Johnson suction trap at two locations (60,426 in Winna Góra and 69,212 in Sośnicowice). In Winna Góra, the annual counts were as follows: 5766 in 2020, 6498 in 2021, 36,452 in 2022, 5598 in 2023, and 6112 in 2024. In Sośnicowice, the numbers were as follows: 6954 in 2020, 9159 in 2021, 49,120 in 2022, 3855 in 2023, and 124 in 2024. The year 2022 was particularly notable for the exceptionally high abundance of R. padi, especially in the autumn. Monitoring crops for the presence of pests is the basis of integrated plant protection. Climate change, modern cultivation technologies, and increasing restrictions on chemical control are the main factors contributing to the development and spread of aphids. Therefore, measures based on monitoring the level of threat and searching for control solutions are necessary. Full article
Show Figures

Figure 1

24 pages, 18899 KB  
Article
Network Pharmacology of the Phytochemical Content of Sunflower Seed (Helianthus annuus L.) Extract from LC-MS on Wound-Healing Activity and the In Vitro Wound Scratch Assay
by Juthamat Ratha, Tanit Padumanonda, Chawalit Yongram, Pimolwan Siriparu, Suthida Datham, Muhammad Subhan, Chatchavarn Chenboonthai and Ploenthip Puthongking
Plants 2026, 15(2), 187; https://doi.org/10.3390/plants15020187 - 7 Jan 2026
Viewed by 441
Abstract
Sunflower seeds have been reported to be a healthy natural source of polyphenols. This study aimed to explore the mechanisms of potential compounds in sunflower seed extract involved in wound healing; major compounds were investigated through network pharmacology and molecular docking. In an [...] Read more.
Sunflower seeds have been reported to be a healthy natural source of polyphenols. This study aimed to explore the mechanisms of potential compounds in sunflower seed extract involved in wound healing; major compounds were investigated through network pharmacology and molecular docking. In an in vitro wound-healing assay applied using an immortalised human keratinocyte (HaCaT) cell model, 10 µg/mL of the sunflower seed extract promoted cell migration in HaCaT cells and led to complete wound closure after 24 h; at a 1 µg/mL concentration, it led to complete wound closure after 72 h. The sunflower seed extract presented moderate-to-strong antioxidant activity. Liquid chromatography–mass spectrometry and high-performance liquid chromatography were used to identify the major compounds present in the sunflower seed extract. Forty-seven compounds were identified, among which chlorogenic acid was the most abundant phenolic compound. Network pharmacology was used to identify wound-healing-related targets. In total, 252 proteins were linked to the 47 compounds. Cyto-Hubba analysis identified 10 hub proteins with a strong correlation with wound healing. Molecular docking was used to assess the ability of the major compounds in the sunflower seed extract to combat NF-κB1, EGFR, and MMP9. Chlorogenic acid showed higher binding affinity to all targets. Moreover, its pharmacokinetic properties were well distributed in the plasma (VDss = 0.377 log L/kg), and they were not a carcinogen and did not cause skin sensitisation. In conclusion, the findings suggest that the sunflower seed extract is a potential source of bioactive compounds that can enhance wound healing and can be developed to create a transdermal application. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

13 pages, 1309 KB  
Case Report
Left Atrial Thrombus and Cardioembolic Stroke in Chagas Cardiomyopathy Presenting with Atrial Flutter: A Case Report
by Mauricio Sebastián Moreno-Bejarano, Israel Silva-Patiño, Andrea Cristina Aragón-Jácome, Juan Esteban Aguilar, Ana Sofía Cepeda-Zaldumbide, Angela Velez-Reyes, Camila Salazar-Santoliva, Jorge Vasconez-Gonzalez, Juan S. Izquierdo-Condoy and Esteban Ortiz-Prado
J. Clin. Med. 2026, 15(2), 456; https://doi.org/10.3390/jcm15020456 - 7 Jan 2026
Viewed by 202
Abstract
Background: Chagas disease, caused by Trypanosoma cruzi, remains endemic throughout Latin America but is increasingly reported in urban areas due to migration and vector adaptation. The cardiac form is the most severe manifestation, associated with arrhythmia, mural thrombus formation, and a [...] Read more.
Background: Chagas disease, caused by Trypanosoma cruzi, remains endemic throughout Latin America but is increasingly reported in urban areas due to migration and vector adaptation. The cardiac form is the most severe manifestation, associated with arrhythmia, mural thrombus formation, and a high risk of cardioembolic events. Stroke secondary to Chagas cardiomyopathy is uncommon and poses diagnostic and therapeutic challenges. Case Presentation: A 58-year-old woman with serologic evidence of T. cruzi infection presented with sudden-onset dyspnea, oppressive chest pain, and left-sided weakness. Neurological examination revealed left brachiocrural hemiparesis and mild dysarthria (NIHSS = 9). Non-contrast cranial CT showed an acute infarct in the right middle cerebral artery territory (ASPECTS = 7). Electrocardiography demonstrated typical atrial flutter with variable conduction, and transthoracic echocardiography revealed a markedly dilated left atrium containing a mural thrombus and a left ventricular ejection fraction of 45%. Intravenous thrombolysis with alteplase (0.9 mg/kg) was administered within 4.5 h of symptom onset. Pharmacologic rhythm control was achieved using intravenous and oral amiodarone, followed by oral anticoagulation with warfarin (target INR 2.0–3.0) after excluding hemorrhagic transformation. The patient showed rapid neurological improvement (NIHSS reduction from 9 to 2) and was discharged on day 10 with minimal residual deficit (mRS = 1), sinus rhythm, and stable hemodynamics. Conclusions: This case highlights the rare coexistence of Chagas cardiomyopathy, atrial flutter, and cardioembolic stroke due to left atrial thrombus. Early recognition, adherence to evidence-based guidelines, and multidisciplinary management were key to achieving a favorable outcome. Timely diagnosis and intervention remain crucial to preventing severe complications in patients with Chagas disease. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

Back to TopTop