Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (227)

Search Parameters:
Keywords = cationic resin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7231 KB  
Article
UV Light-Curable Epoxy Coatings with Natural Plant-Based Fillers—Evaluation of Antibacterial and Functional Properties
by Wojciech Żyłka, Barbara Pilch-Pitera, Katarzyna Krawczyk, Ewa Ciszkowicz, Beata Grabowska and Artur Bobrowski
Materials 2025, 18(23), 5464; https://doi.org/10.3390/ma18235464 - 4 Dec 2025
Viewed by 431
Abstract
This article presents the results of research on UV-curable epoxy coatings developed with selected plant modifiers such as garlic (Allium sativum), turmeric (Curcuma longa), common nettle (Urtica dioica), and privet (Ligustrum vulgare). This study aimed [...] Read more.
This article presents the results of research on UV-curable epoxy coatings developed with selected plant modifiers such as garlic (Allium sativum), turmeric (Curcuma longa), common nettle (Urtica dioica), and privet (Ligustrum vulgare). This study aimed to evaluate the influence of these natural components on the functional properties of UV-cured coatings and to assess their potential as bio-based modifiers. The coatings were formulated using Epidian® 5 epoxy resin, a safe and non-toxic material approved for food-contact applications, and cured with a commercial cationic photoinitiator. Their mechanical, surface, optical, and antibacterial properties were investigated. The results showed that all plant-based additives modified both the mechanical and esthetic characteristics of the coatings; however, garlic demonstrated outstanding antibacterial activity, achieving nearly complete inhibition of Staphylococcus aureus growth with a reduction rate of 99.998%. These findings highlight that natural modifiers, especially garlic, can serve as highly effective functional components, while future work should focus on implementing these coatings for surfaces exposed to bacteria, such as public utility items and shop, hospital, sports, and rehabilitation equipment. Full article
Show Figures

Graphical abstract

6 pages, 933 KB  
Proceeding Paper
Removal of Zn(II), Cu(II), Fe(II), and Sulphate Ions from Model Solutions Using Ion Exchange Resins
by Magdalena Balintova, Natalia Junakova, Alena Luptakova and Adriana Estokova
Eng. Proc. 2025, 116(1), 24; https://doi.org/10.3390/engproc2025116024 - 2 Dec 2025
Viewed by 264
Abstract
At present, a wide range of commercial resins is available for diverse applications, whether in both the food and industrial sector. However, limited information is available in the literature to scientifically evaluate the effectiveness and behaviour of new commercial resins under varying application [...] Read more.
At present, a wide range of commercial resins is available for diverse applications, whether in both the food and industrial sector. However, limited information is available in the literature to scientifically evaluate the effectiveness and behaviour of new commercial resins under varying application conditions. In this study, the Purolite MB400 ion-exchange resin was investigated for its capacity to simultaneously remove metal cations (Cu, Zn, Fe) and sulphates from model solutions. The highest efficiency was observed in the CuSO4 model solution (10 mg/L), where Cu2+ removal reached 97.8% and SO42− removal 95.1%. However, increasing concentrations of metals and sulphates resulted in a gradual decline in removal efficiency. Full article
Show Figures

Figure 1

21 pages, 4532 KB  
Article
Heavy Metals Ions Removal from Local Tarnita Aquatic Streams by Reusable Zwitterionic Acrylic Ion Exchange Resins
by Marcela Mihai, Alina-Petronela Moraru, Ramona Ciobanu, Florin Bucatariu and Marius-Mihai Zaharia
Polymers 2025, 17(23), 3173; https://doi.org/10.3390/polym17233173 - 28 Nov 2025
Viewed by 416
Abstract
This study represents comprehensive research that arises from the advanced sorption properties of zwitterionic resin beads, which were tested on simulated mono- and multicomponent heavy metal ion (HMI)-polluted water, compared to the stream collected in the Tarnita mine area. Ionic exchange resins (IExRs) [...] Read more.
This study represents comprehensive research that arises from the advanced sorption properties of zwitterionic resin beads, which were tested on simulated mono- and multicomponent heavy metal ion (HMI)-polluted water, compared to the stream collected in the Tarnita mine area. Ionic exchange resins (IExRs) were first synthesized in cationic form from a highly crosslinked (8%) acrylic copolymer, by introducing different side groups containing amino functionalities, such as ethylenediamine, triethylenetetramine, and hydrazine hydrate. The corresponding zwitterionic form of each IExR was obtained by reacting the cationic resins with sodium chloroacetate. The structures and morphologies of the synthesized resins were characterized using scanning electron microscopy and infrared spectroscopy. Successful removal of Cu(II), Fe(II), and Mn(II) was quantified by using atomic absorption spectroscopy. Tests with multicomponent synthetic solutions revealed the following typical order of retention: Cu(II) > Fe(II) > Mn(II). In the case of water samples collected from the Tarnita area, the zwitterionic resins were able to retain approximately 93.8% Mn(II), 94.7% Fe(II), and >95.5% Cu(II); in all instances, the concentration of Fe(II) was significantly higher than that of Cu(II) and Mn(II). Additionally, sorption isotherms, kinetics, and thermodynamic parameters were studied. Wheat germination was included to test the efficiency of the batch sorption using IExRs, compared to the stream collected from Tarnita, highlighting how the water cleaning process leads to healthy plant growth. The results demonstrate that, after IExRs sorption the tested HMIs content is below the permissible maximum level for surface water, effectively mitigating the pollution of the steam near to the Tarnita closed mine area, removing the main contaminants found in it. Full article
Show Figures

Graphical abstract

7 pages, 229 KB  
Proceeding Paper
Solutions for Reducing the Extreme Hardness in Treated Water
by Petra Malíková, Jitka Chromíková and Silvie Drabinová
Eng. Proc. 2025, 116(1), 11; https://doi.org/10.3390/engproc2025116011 - 28 Nov 2025
Viewed by 508
Abstract
A technology aimed at reducing extremely high water hardness in Chotěšov, a village in the Czech Republic, was developed and tested. Three treatment methods were evaluated under laboratory conditions: softening filtration using a cation exchange resin in the Na+ cycle (resulting in [...] Read more.
A technology aimed at reducing extremely high water hardness in Chotěšov, a village in the Czech Republic, was developed and tested. Three treatment methods were evaluated under laboratory conditions: softening filtration using a cation exchange resin in the Na+ cycle (resulting in a 72% reduction in hardness); nanofiltration (NF); and reverse osmosis (RO), which reduced hardness by 71% and 96%, respectively. The mixing of the permeate with treated groundwater at a volume ratio of 1:1 resulted in a further reduction in hardness to 41% with NF permeate and to 53% with RO permeate, relative to the original value. Full article
15 pages, 3374 KB  
Article
Reaction Kinetics of the Synthesis of Polymethoxy Butyl Ether from n-Butanol and Trioxane with Acid Cation-Exchange Resin Catalyst
by Xue Wang, Linyu Lu, Qiuxin Ma, Hongyan Shang and Lanyi Sun
Polymers 2025, 17(23), 3137; https://doi.org/10.3390/polym17233137 - 25 Nov 2025
Viewed by 343
Abstract
Polymethoxy butyl ether (BTPOMn), a novel diesel additive developed for suppressing incomplete combustion emissions, was synthesized via an optimized batch slurry method employing n-butanol and trioxane (TOX) over NKC-9 acid cation-exchange resin (90–110 °C). A comprehensive kinetic model elucidated the reaction [...] Read more.
Polymethoxy butyl ether (BTPOMn), a novel diesel additive developed for suppressing incomplete combustion emissions, was synthesized via an optimized batch slurry method employing n-butanol and trioxane (TOX) over NKC-9 acid cation-exchange resin (90–110 °C). A comprehensive kinetic model elucidated the reaction mechanism, addressing competitive pathways governing both main product formation and key side reactions—specifically polyoxymethylene hemiformals (HDn) and polyoxymethylene glycols (MG) generation. As the first detailed kinetic investigation of BTPOMn synthesis, this work provides a fundamental dataset and a robust predictive model that are crucial for process intensification and reactor design. Hybrid optimization integrating genetic algorithms with nonlinear least-squares regression achieved robust parameter estimation, with model predictions showing excellent agreement with experimental data. Thermal effects significantly influenced reaction rates, enhancing decomposition and propagation processes with increasing temperature. Optimal catalyst loading was identified at 3 and 6 wt.%, balancing reaction acceleration and byproduct suppression. Temperature-dependent equilibrium revealed chain length regulation through growth and depolymerization processes. This mechanistic understanding enables predictive reactor design for cleaner fuel additive synthesis. It provides critical insights for developing emission-control technologies in diesel engine systems. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

10 pages, 1814 KB  
Article
Preparation and Characterization of a Dual-Layer Coating with Synergistic Ionic Selectivity and Photocathodic Protection Property
by Chuyuan Cui, Yongsheng An, Xiangpeng Wang and Ping Qiu
Corros. Mater. Degrad. 2025, 6(4), 60; https://doi.org/10.3390/cmd6040060 - 17 Nov 2025
Viewed by 538
Abstract
Inspired by the mechanism of ion exchange resins, this study is a first-report in constructing a dual-layer photocathodic protective coating with ionic selectivity to enhance corrosion resistance property. The microstructure, composition, and ion selectivity of the coating are characterized by scanning electron microscopy, [...] Read more.
Inspired by the mechanism of ion exchange resins, this study is a first-report in constructing a dual-layer photocathodic protective coating with ionic selectivity to enhance corrosion resistance property. The microstructure, composition, and ion selectivity of the coating are characterized by scanning electron microscopy, Raman spectroscopy, infrared spectroscopy, and membrane potential. It shows that the outer g-C3N4/TiO2 cation-selective layer plays a role in preventing corrosive Cl ions passing through the coating; the inner g-C3N4-TiO2-CTAB anion-selective layer could prevent Fe2+ ions from diffusing through the coating. Furthermore, the coated carbon steel sample demonstrates a minimum OCP (open circuit potential) value of −770 mV (vs. SCE) under illumination in 3.5% NaCl media. Interestingly, the OCP remains around −720 mV (vs. SCE) even after light deprivation. The synergistic effect between ion selectivity and photocathodic protection is described, in detail, in the following. Full article
Show Figures

Figure 1

17 pages, 515 KB  
Article
A Complete Mobile Treatment Chain to Produce Drinking Water from Sources Heavily Contaminated by Inorganic and Organic Compounds
by Jean-François Blais, Vincent Taillard, Geneviève Rioux, Justine Dionne, Richard Lévesque, Pejman Abolhosseini, Lan Huong Tran and Richard Martel
Water 2025, 17(22), 3246; https://doi.org/10.3390/w17223246 - 14 Nov 2025
Viewed by 983
Abstract
The provision of potable water for armed forces at their operational sites necessitates a robust treatment chain to ensure the production of safe drinking water from potentially contaminated local water sources. Relying on single-use water bottles is not considered an eco-friendly option and [...] Read more.
The provision of potable water for armed forces at their operational sites necessitates a robust treatment chain to ensure the production of safe drinking water from potentially contaminated local water sources. Relying on single-use water bottles is not considered an eco-friendly option and on-site production may exhibit limited efficiency depending on the water contamination. This study therefore aimed to define a mobile processing chain that could efficiently produce drinking water on-site while offering a multi-barrier level of protection. To evaluate the system, contaminated water was prepared from different water sources and then spiked with various inorganic contaminants (metals, anions: Cl, F, I, NO2, NO3, SO42−, CN), organic contaminants (e.g., pesticides, petroleum hydrocarbons, polycyclic aromatic hydrocarbons, chlorinated solvents), and energetic compound (perchlorate) at levels ranging from 5 to 50 times the standard water quality criteria. A specific treatment process was defined optimized and evaluated at flow rates reaching 500 L/h. This treatment chain includes the following: a sediment filter, a greensand filter, a cation exchange resin, an anion exchange resin, an activated carbon adsorption filter, ultrafiltration, a UV lamp, and a reverse osmosis (RO) unit. This treatment system successfully met all water quality criteria, providing a reliable and effective alternative to an RO-only treatment regime. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

17 pages, 5727 KB  
Article
Bio-Based Epoxy Adhesives Reinforced with Recycled Fillers
by Alberto Cellai, Lorenzo Pezzana, Valentina Casalegno, Milena Salvo and Marco Sangermano
Polymers 2025, 17(22), 2975; https://doi.org/10.3390/polym17222975 - 7 Nov 2025
Viewed by 565
Abstract
This study explores the potential of a bio-based thermosetting adhesive system incorporating recycled fillers to enhance structural bonding applications while promoting sustainability. Diglycidylether of vanillyl alcohol (DGEVA) was selected as the resin matrix due to its favorable thermomechanical properties and low moisture absorption. [...] Read more.
This study explores the potential of a bio-based thermosetting adhesive system incorporating recycled fillers to enhance structural bonding applications while promoting sustainability. Diglycidylether of vanillyl alcohol (DGEVA) was selected as the resin matrix due to its favorable thermomechanical properties and low moisture absorption. To improve mechanical performance and support circular economy principles, recycled carbon fibers (RCFs) and mineral wool (MW) were integrated into the adhesive formulation in varying proportions (10, 30, and 50 phr). A cationic thermal initiator, ytterbium (III) trifluoromethanesulfonate (YTT), was used to permit polymerization. Comprehensive characterization was performed to assess the curing behavior, thermal stability, and mechanical performance of the adhesive. FTIR spectroscopy monitored the polymerization process, while DSC and dynamic DSC provided insights into reaction kinetics, including activation energy, and curing rates. The mechanical and thermomechanical properties were evaluated using dynamic mechanical thermal analysis (DMTA) and shear lap testing on bonded joints. Additionally, SEM imaging was employed to examine fillers’ morphology and joint interfaces. The results indicated that increasing filler content slowed polymerization and raised activation energy but still permitted high conversion rates. Both RCF- and MW-containing formulations exhibited improved stiffness and adhesion strength, particularly in CMC joints. These findings suggest that DGEVA-based adhesives reinforced with recycled fillers offer a viable and sustainable alternative for structural bonding, contributing to waste valorization and green material development in engineering applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 5841 KB  
Article
Supercritical Water Oxidation of Nuclear Cation Exchange Resins: Process Optimization and Reaction Mechanism
by Tiantian Xu, Yanhui Li, Shuzhong Wang, Donghai Xu, Qian Zhang, Yabin Jin and Wenhan Song
Processes 2025, 13(10), 3249; https://doi.org/10.3390/pr13103249 - 13 Oct 2025
Cited by 1 | Viewed by 607
Abstract
This study conducted a systematic investigation of the degradation pathway and process optimization of strong acid cation exchange resins subjected to SCWO. Controlled experiments evaluated the effects of operating temperature, oxidant stoichiometry, initial organic concentration, and residence time. RSM was utilized to refine [...] Read more.
This study conducted a systematic investigation of the degradation pathway and process optimization of strong acid cation exchange resins subjected to SCWO. Controlled experiments evaluated the effects of operating temperature, oxidant stoichiometry, initial organic concentration, and residence time. RSM was utilized to refine the operating parameters, and a second-order regression model (R2 = 0.9951) was established to predict COD removal (RCOD), valid within experimental ranges: reaction temperature 400–500 °C, oxidant stoichiometry 80–150%, initial COD 10,000–100,000 mg·L−1, and residence time 1–10 min. COD-dependent NaOH addition could enhance degradation efficiency. The RCOD was sensitive to operating temperature, oxidant stoichiometry, and residence time. Under the optimized conditions of 472 °C, oxidant stoichiometry of 137%, initial COD of 77,216 mg·L−1, and residence time of 4.9 min with the addition of 1.74 wt% NaOH, the RCOD reached 99.92%, which was in close agreement with model predictions. GC-MS analysis of intermediates revealed that sulfonic groups dissociated early, followed by aromatic compounds, particularly phenol, undergoing ring-opening and oxidation to small carboxylic acids and aliphatic species, which were ultimately mineralized to CO2 and H2O. These findings provide mechanistic insight into resin decomposition and offer a scientific basis for the safe treatment of radioactive waste resins using SCWO. Full article
Show Figures

Figure 1

15 pages, 1246 KB  
Article
Removal of Aggregates During Bispecific Antibody Purification Using Hydrophobic Interaction Chromatography
by Puya Zhao, Yue Qi and Kai Gao
Membranes 2025, 15(10), 299; https://doi.org/10.3390/membranes15100299 - 1 Oct 2025
Viewed by 1803
Abstract
In the production of recombinant antibody/Fc-fusion proteins using mammalian cells, many aggregates often form alongside the target proteins, particularly with bispecific antibodies. To ensure the safety of biological products, it is essential to control the amount of aggregates within a specific range. A [...] Read more.
In the production of recombinant antibody/Fc-fusion proteins using mammalian cells, many aggregates often form alongside the target proteins, particularly with bispecific antibodies. To ensure the safety of biological products, it is essential to control the amount of aggregates within a specific range. A traditional downstream process typically involves using Protein A (ProA) resin to capture the target antibody, followed by two polishing steps to ensure purity; for instance, using an anion exchange chromatography (AEX) in flow-through mode and a cation exchange chromatography (CEX) in binding–elution mode. In this study, we choose a Dual Action Fab (DAF), which can bind two antigens and is prone to aggregation when expression in CHO (Chinese Hamster Ovary) cells. We introduce hydrophobic interaction membrane chromatography (HIMC) operating in flow-through mode, which enhances production efficiency while reducing costs and the risks associated with column packing. We evaluated the impact of the operating buffer system, as well as the pH and conductivity of the loading samples, on aggregate removal using HIMC. Additionally, we investigated the mechanism of aggregate binding and found that loading conditions had a limited impact on this process. Overall, our findings indicate that employing HIMC can achieve a 20% reduction in aggregate levels. These results demonstrate that HIMC in flow-through mode is an effective and robust approach for reducing aggregates during antibody purification. Full article
Show Figures

Figure 1

29 pages, 5066 KB  
Article
Preparation of Urea-Formaldehyde-Coated Cationic Red-Ternary System Microcapsules and Properties Optimization
by Jingyi Hang, Yuming Zou, Xiaoxing Yan and Jun Li
Coatings 2025, 15(9), 1112; https://doi.org/10.3390/coatings15091112 - 22 Sep 2025
Cited by 2 | Viewed by 724
Abstract
Thermochromic microcapsules were synthesized and optimized using crystal violet lactone, bisphenol A, and decanol as the core materials, a dispersible cationic red dye as the color-modifying additive, and urea-formaldehyde resin as the wall material, based on orthogonal and single-factor experiments. The effects of [...] Read more.
Thermochromic microcapsules were synthesized and optimized using crystal violet lactone, bisphenol A, and decanol as the core materials, a dispersible cationic red dye as the color-modifying additive, and urea-formaldehyde resin as the wall material, based on orthogonal and single-factor experiments. The effects of the proportion of cationic red dye in the core material, the mass ratio of formaldehyde to urea, the emulsifier HLB value, and the core–wall mass ratio on yield, encapsulation rate, thermochromic ΔE, and formaldehyde release of microcapsules were systematically investigated. The results showed that the core–wall ratio was the key factor affecting the comprehensive performance of the microcapsules. Through the comparison of orthogonal and single-factor tests, 11# microcapsule was identified as having the best overall performance in terms of ΔE, and encapsulation rate. The ΔE value was increased by about 165% compared with the lowest-performing sample, significantly enhancing the thermochromic response. The encapsulation rate was improved by nearly 40%, effectively enhancing the encapsulation quality and core stability, with overall performance standing out. The best preparation process was to add 0.5% of the core material mass of dispersible cationic red dye, the mass ratio of formaldehyde and urea was 1.2:1, the HLB value of emulsifier was 10, and the core–wall ratio was 1:1.1. The yield of 11# microcapsules prepared under this condition was 31.95%, the encapsulation rate was 68%, the thermochromic ΔE was 9.292, and the formaldehyde release concentration was 1.381 mg/m3. Furthermore, 11# microcapsules with different addition levels were introduced into the UV primer to evaluate their effects on the mechanical and optical properties of the coating. The results showed that the addition of microcapsules weakened the gloss and light transmittance of the coating, increased the surface roughness, and decreased the elongation at break. When the addition amount was 5%, the coating exhibited the best overall performance: UV-visible light transmittance reached 91.92%, 60° gloss was 42.2 GU, elongation at break was 9.3%, and surface roughness was 0.308 μm. This study developed a purple thermochromic microcapsule system by regulating the dispersible dye content and interfacial conditions. In coating applications, the system exhibited a strong ΔE response and excellent overall performance, offering great advantages over existing similar systems in terms of color-change efficiency, ΔE enhancement, and coating adaptability. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

21 pages, 6570 KB  
Article
An Integrated Strategy for Pre-Disposal of Spent Cation-Exchange Resins by Repurposing Industrial By-Products
by Francesco Galluccio, Andrea Santi, Edoardo Rizzi, Fabio Fattori, Gabriele Magugliani, Veronica Piazza, Chiara Milanese, Giacomo Diego Gatta, Luca Fornara, Elena Macerata, Mario Mariani and Eros Mossini
Sustainability 2025, 17(18), 8241; https://doi.org/10.3390/su17188241 - 13 Sep 2025
Viewed by 1113
Abstract
Large amounts of spent, radioactive, ion-exchange resins have been generated worldwide, and their production is expected to grow due to a renaissance of nuclear power. Such waste is being stored at individual plant sites around the world, awaiting a reliable disposal route to [...] Read more.
Large amounts of spent, radioactive, ion-exchange resins have been generated worldwide, and their production is expected to grow due to a renaissance of nuclear power. Such waste is being stored at individual plant sites around the world, awaiting a reliable disposal route to overcome the downsides of the state-of-the-art management approaches. In this work, a first-of-its-kind pre-disposal strategy is proposed, based on the integration of a heterogeneous Fenton-like treatment with conditioning in an alkali-activated matrix. In particular, the circular economy is pursued by repurposing two industrial by-products, coal fly ash and steel slag, both as catalysts of the Fenton treatment and precursors of the conditioning matrix. The obtained waste forms have been preliminarily tested for leaching and compressive strength according to the Italian waste acceptance criteria for disposal. The proposed technology, tested at laboratory scale up to 100 g of virgin cationic resin, has proven successful in decomposing the waste and synthesizing waste forms with an overall volume increase of only 30%, thereby achieving a remarkable result compared to state-of-the-art technologies. Full article
(This article belongs to the Special Issue Waste Management for Sustainability: Emerging Issues and Technologies)
Show Figures

Graphical abstract

17 pages, 647 KB  
Article
Impact of Cation-Exchange Resin Treatment on Acidification and Quality of Monastrell Red Wine
by Alejandro Martínez-Moreno, Ana Leticia Pérez-Mendoza, Paola Sánchez-Bravo, Encarna Gómez-Plaza, Ricardo Jurado-Fuentes and Ana Belén Bautista-Ortín
Fermentation 2025, 11(9), 512; https://doi.org/10.3390/fermentation11090512 - 31 Aug 2025
Viewed by 1391
Abstract
Climate change is having a significant impact on vine physiology and grape composition, leading to notable alterations in wine quality, such as reduced acidity, increased ethanol content, and higher pH levels. These effects are particularly problematic in arid and semi-arid regions, such as [...] Read more.
Climate change is having a significant impact on vine physiology and grape composition, leading to notable alterations in wine quality, such as reduced acidity, increased ethanol content, and higher pH levels. These effects are particularly problematic in arid and semi-arid regions, such as Mediterranean areas, where high summer temperatures and low rainfall accelerate the degradation of organic acids in grapes. As a result, wines produced under these conditions often lack the acidity required to preserve their freshness and enological quality. This study evaluated the effect of must acidification using cation-exchange resins on the composition and quality of red wines made from the Monastrell variety, comparing them with wines acidified using tartaric acid to reach the same target pH. The results showed that treating a portion of the must (20% and 30%) with cation-exchange resins significantly reduced wine pH values and increased total acidity compared to the control wine. A similar result was observed in wines acidified with tartaric acid. However, as an additional effect, the treatment with resin more markedly reduced the concentration of pro-oxidant metal cations such as iron, copper, and manganese, contributing to lower values of volatile acidity and a greater stability against oxidation of phenolic compounds. Must acidification with both methods improved wine color quality by increasing color intensity and decreasing hue values. Although no significant differences were found in the total concentration of phenolic compounds, variations were detected in their compositional profile. Furthermore, the acidification also affected the concentration and composition of aromatic compounds in the final wine. Sensory analysis revealed that the treated wines—particularly those made with must acidified using cation-exchange resins—exhibited greater aromatic intensity, more pronounced fruity notes, and reduced astringency, resulting in a fresher mouthfeel. In conclusion, must treatment with cation-exchange resins appears to be a low-cost good alternative compared tartaric acid addition for reducing pH and increasing acidity in Monastrell red wines, thereby enhancing their quality in winegrowing regions with arid or semi-arid climates. Full article
(This article belongs to the Special Issue Biotechnology in Winemaking)
Show Figures

Figure 1

12 pages, 1147 KB  
Article
Sorption Extraction of Lithium from the Brines of the Pre-Aral Region Using Ion-Exchangers Under Static Conditions
by Yelena Bochevskaya, Elmira Sargelova, Ainash Sharipova, Salikha Kilibayeva and Zhansaya Yakhiyayeva
Appl. Sci. 2025, 15(17), 9248; https://doi.org/10.3390/app15179248 - 22 Aug 2025
Viewed by 771
Abstract
Samples of gel-type cation exchangers of the TOKEM nomenclature were tested for lithium extraction from multicomponent natural brines. The dependencies of the extraction of Li and other impurities—Na, Ca, and Mg—on the duration of the sorption process for the tested ion-exchange resins under [...] Read more.
Samples of gel-type cation exchangers of the TOKEM nomenclature were tested for lithium extraction from multicomponent natural brines. The dependencies of the extraction of Li and other impurities—Na, Ca, and Mg—on the duration of the sorption process for the tested ion-exchange resins under static conditions are presented. Metal ions can be arranged according to the degree of extraction for each ion exchanger in a row: Ca2+ < Mg2+ < Li+, Na+. Testing of ion exchangers under static conditions on technological Li-containing solutions confirms the applicability of TOKEM-140 and TOKEM-160 cation exchangers for lithium extraction. For TOKEM-140, lithium extraction over time varies from 76.2% to 73.8% and for TOKEM-160—from 73.8% to 72.4%. The ionic background of natural brines has a significant effect on the capacity of ion exchangers for lithium and forms the following series Li+ << Mg2+ < Ca2+ << Na+ relative to the obtained concentrations of metal ions in natural brine. The overlay of IR spectra of TOKEM-140 and TOKEM-160 ion exchangers before and after saturation shows slight changes in their appearance, indicating that the lithium sorption process has occurred. The values of static exchange capacity (SEC) for TOKEM-140 and TOKEM-160 cation exchangers are identical. Full article
Show Figures

Figure 1

21 pages, 2559 KB  
Article
Calix[4]resorcinarene Amide Derivative: Thermodynamics of Cation Complexation Processes and Its Remarkable Properties for the Removal of Calcium (II) from Water
by Angela F. Danil de Namor, Ahmad Jumaa and Nawal Al Hakawati
Int. J. Mol. Sci. 2025, 26(16), 8043; https://doi.org/10.3390/ijms26168043 - 20 Aug 2025
Viewed by 832
Abstract
The state of the art in the thermodynamics of calix[4]resorcinarene derivatives and its metal ion complexes is briefly discussed in the introduction. This is followed by the synthesis and characterization of a recyclable calix[4]resorcinarene amide derivative (L). The 1H NMR analyses in CD3CN [...] Read more.
The state of the art in the thermodynamics of calix[4]resorcinarene derivatives and its metal ion complexes is briefly discussed in the introduction. This is followed by the synthesis and characterization of a recyclable calix[4]resorcinarene amide derivative (L). The 1H NMR analyses in CD3CN and CD3OD showed solvent-dependent conformational changes with a notable downfield chemical shift in the aromatic proton (H-2) in moving from deuterated methanol to acetonitrile, indicating an interaction of the solvent within the ligand cavity as suggested by molecular dynamic simulations. 1H NMR complexation in acetonitrile revealed that L forms relatively strong 1:1 complexes with cations, with selectivity for Ca(II) and, to lesser extent, with Pb(II) over other metal cations. The composition of the complexes is corroborated by conductance measurements. The thermodynamics of these systems indicate that the complexation process is predominantly enthalpy controlled in acetonitrile, while it is entropy controlled in methanol. A remarkable outcome of fundamental studies is found in its application as new material for the removal of Ca(II) from water. The capacity of L to remove Ca(II) from water is 24 mmol/g which exceeds by far the capacity of cation exchange resins. Full article
(This article belongs to the Special Issue Supramolecular Receptors for Cations and Anions)
Show Figures

Figure 1

Back to TopTop