Removal of Zn(II), Cu(II), Fe(II), and Sulphate Ions from Model Solutions Using Ion Exchange Resins †
Abstract
1. Introduction
2. Material and Methods
2.1. Ion Exchange Resin Characterisation
2.2. Synthetic Solutions
2.3. Sorption Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Kumar, A.; Cabral-Pinto, M.; Kumar, A.; Kumar, M.; Dinis, P.A. Estimation of risk to the eco-environment and human health of using heavy metals in the Uttarakhand Himalaya, India. Appl. Sci. 2020, 10, 7078. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Birn, A.E.A.; Shipton, L.; Schrecker, T.; Shipton, L. Canadian mining and ill health in Latin America: A call to action. Can. J. Public Health 2018, 109, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Zak, D.; Hupfer, M.; Cabezas, A.; Jurasinski, G.; Audet, J.; Kleeberg, A.; McInnes, R.; Kristiansen, S.M.; Petersen, R.J.; Liu, H.; et al. Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth-Sci. Rev. 2021, 212, 103446. [Google Scholar] [CrossRef]
- Runtti, H.; Tolonen, E.T.; Tuomikoski, S.; Luukkonen, T.; Lassi, U. How to tackle the stringent sulfate removal requirements in mine water treatment—A review of potential methods. Environ. Res. 2018, 167, 207–222. [Google Scholar]
- Chatla, A.; Almanassra, I.W.; Abushawish, A.; Laoui, T.; Alawadhi, H.; Atieh, M.A.; Ghaffour, N. Sulphate removal from aqueous solutions: State-of-the-art technologies and future research trends. Desalination 2023, 558, 116515. [Google Scholar] [CrossRef]
- Dabrowski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, Y.; Ekmeci, Z. Removal of sulfate ions from process water by ion exchange resins. Miner. Eng. 2020, 159, 106613. [Google Scholar] [CrossRef]
- Benalla, S.; Addar, F.Z.; Tahaikt, M.; Elmidaoui, A.; Taky, M. Heavy metals removal by ion-exchange resin: Experimentation and optimization by custom designs. Desalin. Water Treat. 2022, 262, 347–358. [Google Scholar] [CrossRef]
- Priyabrata, P.; Banat, F. Comparison of heavy metal ions removal from industrial lean amine solvent using ion exchange resins and sand coated with chitosan. J. Nat. Gas Sci. Eng. 2014, 18, 227–236. [Google Scholar] [CrossRef]
- Demcak, S.; Balintova, M.; Holub, M. The removal of sulphate ions from model solutions and their influence on ion exchange resins. Econ. Environ. 2020, 73, 59–70. [Google Scholar]



| Zn2+ (mg/L) | SO42− (mg/L) | ||
|---|---|---|---|
| Input | After 24 h | Input | After 24 h |
| 10 | 0.3 | 14.7 | 0.8 |
| 50 | 1.9 | 73.4 | 3.6 |
| 100 | 2.2 | 146.9 | 4.6 |
| 200 | 14.0 | 293.8 | 16.0 |
| 300 | 35.2 | 440.0 | 31.0 |
| Cu2+ (mg/L) | SO42− (mg/L) | ||
|---|---|---|---|
| Input | After 24 h | Input | After 24 h |
| 10 | <0.05 | 15.1 | 0.2 |
| 50 | <0.05 | 75.6 | 0.4 |
| 100 | 1.2 | 151.2 | 0.9 |
| 200 | 5.2 | 302.4 | 7.4 |
| 300 | 13.0 | 453.7 | 48.0 |
| Fe2+ (mg/L) | SO42− (mg/L) | ||
|---|---|---|---|
| Input | After 24 h | Input | After 24 h |
| 10 | 0.5 | 17.2 | 1.4 |
| 50 | 2.3 | 86.0 | 4.1 |
| 100 | 3.2 | 172.1 | 9.0 |
| 200 | 17.4 | 344.2 | 46.6 |
| 300 | 36.6 | 516.2 | 111.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balintova, M.; Junakova, N.; Luptakova, A.; Estokova, A. Removal of Zn(II), Cu(II), Fe(II), and Sulphate Ions from Model Solutions Using Ion Exchange Resins. Eng. Proc. 2025, 116, 24. https://doi.org/10.3390/engproc2025116024
Balintova M, Junakova N, Luptakova A, Estokova A. Removal of Zn(II), Cu(II), Fe(II), and Sulphate Ions from Model Solutions Using Ion Exchange Resins. Engineering Proceedings. 2025; 116(1):24. https://doi.org/10.3390/engproc2025116024
Chicago/Turabian StyleBalintova, Magdalena, Natalia Junakova, Alena Luptakova, and Adriana Estokova. 2025. "Removal of Zn(II), Cu(II), Fe(II), and Sulphate Ions from Model Solutions Using Ion Exchange Resins" Engineering Proceedings 116, no. 1: 24. https://doi.org/10.3390/engproc2025116024
APA StyleBalintova, M., Junakova, N., Luptakova, A., & Estokova, A. (2025). Removal of Zn(II), Cu(II), Fe(II), and Sulphate Ions from Model Solutions Using Ion Exchange Resins. Engineering Proceedings, 116(1), 24. https://doi.org/10.3390/engproc2025116024

