Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (365)

Search Parameters:
Keywords = cathepsin b

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5701 KiB  
Article
Design of a Multi-Epitope Vaccine Based on Fasciola gigantica Cathepsin B and Evaluation of Immunological Responses in Mice
by Supanan Chansap, Werachon Cheukamud, Thitikul Suthisintong, Pornanan Kueakhai and Narin Changklungmoa
Int. J. Mol. Sci. 2025, 26(14), 6971; https://doi.org/10.3390/ijms26146971 - 20 Jul 2025
Viewed by 391
Abstract
Fasciola gigantica (F. gigantica) is a vital parasite that causes fasciolosis. Liver fluke infections affect livestock animals, and the Fasciola species (Fasciola spp.) vaccine has been tested for many types of these diseases. Currently, computer-based vaccine design represents an attractive [...] Read more.
Fasciola gigantica (F. gigantica) is a vital parasite that causes fasciolosis. Liver fluke infections affect livestock animals, and the Fasciola species (Fasciola spp.) vaccine has been tested for many types of these diseases. Currently, computer-based vaccine design represents an attractive alternative for constructing vaccines. Thus, this study aimed to design the epitopes of linear B-cells (BCL) and helper T lymphocytes (HTL) using an immunoinformatic approach and to investigate in silico and the mice’s immune response. A non-conserved host region, overlapping F. gigantica cathepsin B proteins (FgCatB), and the highest conserved residue percentages were the criteria used to construct epitopes. The GPGPG linker was used to link epitopes in the multi-epitope Fasciola gigantica cathepsin B (MeFgCatB) peptide. The MeFgCatB peptide has high antigenicity, non-allergenicity, non-toxicity, good solubility, and a high-quality structure. The molecular docking between the MeFgCatB peptide and Toll-like receptor 2 (TLR-2) was evaluated. The IgM, IgG1, and IgG2 levels were elevated in silico. In mice, the MeFgCatB peptide was synthesized and administered as an injection. The MeFgCatB-specific IgG1 and IgG2a levels were elevated after week 2, showing a predominance of IgG1. The rFgCatB1, rFgCatB2, and rFgCatB3 were detected using the MeFgCatB peptide-immunized sera. The MeFgCatB peptide-immunized sera were detected at approximately 28–34 kDa in the whole body. In addition, the MeFgCatB immunized sera can positively signal at the caecal epithelium in the NEJ, 4WKJ, and adult stages. In summary, the MeFgCatB peptide is able to induce mixed Th1/Th2 immune responses with Th2 dominating and to detect the native protein of F. gigantica. The MeFgCatB peptide should help against F. gigantica in future experiments. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

14 pages, 1777 KiB  
Article
The Seminal Role of the Proinflammatory Cytokine IL-1β and Its Signaling Cascade in Glioblastoma Pathogenesis and the Therapeutic Effect of Interleukin-1β Receptor Antagonist (IL-1RA) and Tolcapone
by Jagadeesh Narasimhappagari, Ling Liu, Meenakshisundaram Balasubramaniam, Srinivas Ayyadevara, Orwa Aboud and W. Sue T. Griffin
Int. J. Mol. Sci. 2025, 26(14), 6893; https://doi.org/10.3390/ijms26146893 - 18 Jul 2025
Viewed by 332
Abstract
Interleukin-1 beta(IL-1β) is the major driving force in neuroinflammation. Here, we report on (i) the role of (IL-1β) in activating a signaling cascade that leads to proliferation and metastasis in glioblastoma cancer pathogenesis as well as (ii) the therapeutic role for IL-1 Receptor [...] Read more.
Interleukin-1 beta(IL-1β) is the major driving force in neuroinflammation. Here, we report on (i) the role of (IL-1β) in activating a signaling cascade that leads to proliferation and metastasis in glioblastoma cancer pathogenesis as well as (ii) the therapeutic role for IL-1 Receptor Antagonist (IL-1RA) and Tolcapone against untoward aspects of tumor pathogenesis. Here, we report that IL-1β treatment at 50 ng/mL for 48 h increased proliferation and metastasis by 30-fold (p ≤ 0.05), leading to the formation of clones of rapidly dividing cancer cells, leading to the formation of organized glial fibrillary acid protein (GFAP)-immunoreactive, clone-like structures with protruding spikes. Further, IL-1β treatment significantly increased the expression of mRNA levels of the IL-1β-driven pathway TLR-MyD88-NF-κB-TNFα and IL-6 (p ≤ 0.05). IL-1β also increased autophagy via elevation of mRNA and protein levels of cathepsin B, LAMP-2, and LC3B. In contrast, IL-1RA and Tolcapone inhibited this proliferation and the expression of these mRNAs and proteins, inhibiting autophagy by downregulating these autophagy proteins and inducing apoptosis by upregulating the expression of pro-apoptotic proteins like caspase-8 and caspase-3. IL-1β and its receptor can be targeted for successful anticancer therapy, as shown here with the use of IL-1RA and/or Tolcapone. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

21 pages, 1384 KiB  
Article
Deep Proteomics Analysis Unravels the Molecular Signatures of Tonsillar B Cells in PFAPA and OSAS in the Pediatric Population
by Feras Kharrat, Nour Balasan, Blendi Ura, Valentina Golino, Pietro Campiglia, Giulia Peri, Erica Valencic, Mohammed Qaisiya, Ronald de Moura, Mariateresa Di Stazio, Barbara Bortot, Alberto Tommasini, Adamo Pio d’Adamo, Egidio Barbi and Domenico Leonardo Grasso
Int. J. Mol. Sci. 2025, 26(14), 6621; https://doi.org/10.3390/ijms26146621 - 10 Jul 2025
Viewed by 363
Abstract
Tonsils are secondary lymphoid organs that play a crucial role in the immunological response, with B cells being a major component involved in both innate and adaptive immunity. Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome and obstructive sleep apnea syndrome (OSAS) [...] Read more.
Tonsils are secondary lymphoid organs that play a crucial role in the immunological response, with B cells being a major component involved in both innate and adaptive immunity. Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome and obstructive sleep apnea syndrome (OSAS) are both common pediatric conditions involving tonsillar pathology. In both syndromes, the molecular pathways dysregulated in tonsillar B cells are still to be understood. The study aimed to unravel and compare the proteomic profiles of tonsillar CD19+ B cells isolated from pediatric patients with PFAPA (n = 6) and OSAS (n = 6) to identify disease-specific molecular signatures. B cells were isolated from the tonsillar tissue using magnetic microbeads (with a purity of 93.50%). Proteomic analysis was performed by nanoLC-MS/MS with both data-dependent (DDA) and data-independent acquisition (DIA) methods, followed by comprehensive bioinformatic analysis. By merging DDA and DIA datasets, a total of 18.078 unique proteins were identified. Differential expression analysis revealed 83 proteins increased and 49 proteins decreased in OSAS B cells compared to PFAPA B cells (fold change ≥ 1.5 or ≤0.6, p < 0.05). Distinct pathway enrichments were highlighted, including alterations in the regulation of PTEN gene transcription, circadian gene expression, inflammasome pathways (IPAF and AIM2), and the metabolism of angiotensinogen to angiotensin. Specific proteins such as p53, Hdac3, RPTOR, MED1, Caspase-1, Cathepsin D, Chymase, and TLR2 (validated by WB) were shown to be differentially expressed. These findings reveal distinct proteomic signatures in tonsillar B cells from patients with PFAPA and OSAS, offering novel insights into the pathophysiology and potential avenues for biomarker discovery. Full article
(This article belongs to the Special Issue Role of Proteomics in Human Diseases and Infections)
Show Figures

Figure 1

13 pages, 1295 KiB  
Article
Vaginal Clinical Isolates of Candida albicans Differentially Modulate Complosome Activation in Vaginal Epithelial Cells
by Samyr Kenno, Natalia Pedretti, Luca Spaggiari, Andrea Ardizzoni, Manola Comar, Wilfried Posch, Robert Treyde Wheeler, Samuele Peppoloni and Eva Pericolini
J. Fungi 2025, 11(7), 501; https://doi.org/10.3390/jof11070501 - 3 Jul 2025
Viewed by 498
Abstract
The complosome controls different activities in innate immune cells and epithelial cells; however, its role in the response of VECs to Candida remains untested. In this in vitro study, we compared two clinical vaginal strains of C. albicans, namely, a Colonizing strain [...] Read more.
The complosome controls different activities in innate immune cells and epithelial cells; however, its role in the response of VECs to Candida remains untested. In this in vitro study, we compared two clinical vaginal strains of C. albicans, namely, a Colonizing strain from a healthy woman and a strain from a patient with vulvovaginal candidiasis (VVC), for their ability to activate the complosome and release anaphylatoxins in vaginal epithelial cells (VECs). Our results show the following: (i) both strains triggered the cleavage of C3 into C3a and C3b within VECs, while infection with the Colonizing strain led to greater release of the anaphylatoxin C3a; (ii) infection with the VVC isolate led to a strong reduction in both C5 and C5a in VECs, while no increase in C5a release was observed after infection with either strain; (iii) cathepsin-family gene expression and cathepsin D activity were reduced in VECs infected with the VVC strain but not in those infected with the Colonizing strain; (iv) infection with the Colonizing strain induced a significant increase in intracellular C5aR1 while intracellular C3aR levels remained unchanged. Collectively, our data suggests the propensity of this VVC strain to inactivate the C5/C5aR1 axis and to reduce the C3/C3aR axis, dampening the activity of the complosome in VECs. These effects exerted by the VVC strain suggest a novel strategy of immune evasion by C. albicans and may open new perspectives for finding new therapeutic targets against vaginal fungal infections. Full article
(This article belongs to the Special Issue Fungi in Vulvovaginal Infections)
Show Figures

Figure 1

19 pages, 785 KiB  
Article
HE4 as a Prognostic Biomarker of Major Adverse Cardiovascular Events in Patients with Abdominal Aortic Aneurysm: A Canadian Prospective Observational Study
by Hamzah Khan, Abdelrahman Zamzam, Farah Shaikh, Muhammad Mamdani, Gustavo Saposnik and Mohammad Qadura
Biomedicines 2025, 13(7), 1562; https://doi.org/10.3390/biomedicines13071562 - 26 Jun 2025
Viewed by 451
Abstract
Background: Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease characterized by the proteolytic breakdown of the extracellular matrix. A clinical biomarker is needed for risk stratification and prognosis. Methods: In this single-center, 5-year observational study, 452 patients were enrolled: 343 with [...] Read more.
Background: Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease characterized by the proteolytic breakdown of the extracellular matrix. A clinical biomarker is needed for risk stratification and prognosis. Methods: In this single-center, 5-year observational study, 452 patients were enrolled: 343 with AAA (≥3 cm), and 109 controls (<3 cm). Plasma levels of six inflammatory proteins (human epididymis protein 4 (HE4), matrix metalloproteinase (MMP) 1 and 3, cathepsin S, chitinase 3 like-1, cathepsin S, and B-cell activating factor (BAFF)) were quantified at baseline. Patients were followed for a total of 5 years (60 months), and major adverse cardiovascular events (MACEs, defined as the composite of myocardial infarction, cerebrovascular attack, and cardiovascular-related death) were recorded. A Cox proportional hazard model was created using biomarker levels, age, sex, hypertension, hypercholesterolemia, diabetes mellitus, smoking status, and coronary artery disease to determine whether the baseline levels of these proteins were associated with MACEs over 5 years. Results: HE4, MMP-3, BAFF, and cathepsin S levels were significantly elevated in AAA patients compared to controls (all p < 0.05). HE4/WFDC2, MMP-3, and Chitinase 3-like 1 were significantly linearly associated with AAA diameter at baseline. With every normalized unit increase in HE4/WFDC2, MMP-3, and Chitinase 3-like 1, there was an increase in abdominal aortic diameter by 0.154 (95% CI: 0.032–0.276, p = 0.013), 0.186 (95% CI: 0.064–0.309, p = 0.003), and 0.231 (0.110–0.353, p < 0.001) centimeters, respectively. Among patients with AAA, elevated HE4 was associated with higher risk of MACEs (adjusted HR 1.249; 95% CI: 1.057–1.476; p = 0.009). Patients with high baseline HE4 (≥9.338 ng/mL) had significantly lower freedom from MACEs at 5 years (76.7% vs. 84.8%, p = 0.022). Conclusions: HE4 may be a potential prognostic biomarker that can be used to risk stratify patients with AAA to better personalize treatment strategies to reduce adverse events. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

22 pages, 3036 KiB  
Article
Synthesis and Characterization of Transferrin Receptor-Targeted Peptide Combination SN-38 and Rucaparib Conjugate for the Treatment of Glioblastoma
by Perpetue Bataille Backer and Simeon Kolawole Adesina
Pharmaceutics 2025, 17(6), 732; https://doi.org/10.3390/pharmaceutics17060732 - 2 Jun 2025
Viewed by 820
Abstract
Background/Objectives: Glioblastoma represents a particularly aggressive and fatal type of brain tumor. Peptide-drug conjugates, which offer the promise of traversing the blood-brain barrier to selectively accumulate in tumor tissues and precisely target cancer cells, are an active area of research. We present the [...] Read more.
Background/Objectives: Glioblastoma represents a particularly aggressive and fatal type of brain tumor. Peptide-drug conjugates, which offer the promise of traversing the blood-brain barrier to selectively accumulate in tumor tissues and precisely target cancer cells, are an active area of research. We present the synthesis and characterization of the T7 peptide (HAIYPRH) as a targeting ligand for the transferrin receptor, which is highly expressed on both the blood-brain barrier and glioma cells. Methods: Using the T7 peptide, the synthesis, characterization, and biological evaluation of a transferrin receptor-targeted, combination SN-38 and rucaparib peptide drug conjugate (T7-SN-38-rucaparib) are described. Results: The T7 peptide drug conjugate readily cleaved in the presence of exogenous cathepsin B, releasing the active drug payloads. In vitro experiments demonstrated potent cytotoxic effects of the T7 peptide drug conjugate on glioblastoma cells (IC50 = 22.27 nM), with reduced toxicity to non-cancerous HEK 293 cells (IC50 = 115.78 nM), indicating selective toxicity toward cancer cells. Further investigations revealed that blocking transferrin receptors with drug-free T7 peptide significantly reduced the conjugate’s cytotoxicity, an effect that could be reversed by introducing exogenous cathepsin B to the cells. Conclusions: These findings highlight the potential of glioblastoma-targeted delivery of SN-38 and rucaparib based on specific recognition of the transferrin receptor for transport across the blood-brain barrier, offering the prospect of reduced toxicity and selective killing of cancer cells. Additionally, since rucaparib does not cross the blood-brain barrier, this work is significant to facilitate the use of rucaparib for the treatment of brain tumors. Full article
(This article belongs to the Special Issue Combination Therapy Approaches for Cancer Treatment)
Show Figures

Figure 1

15 pages, 1975 KiB  
Article
Cathepsin B Levels Correlate with the Severity of Canine Myositis
by Valeria De Pasquale, Emanuela Vaccaro, Federica Rossin, Mariangela Ciampa, Melania Scarcella, Orlando Paciello and Simona Tafuri
Biomolecules 2025, 15(5), 743; https://doi.org/10.3390/biom15050743 - 21 May 2025
Cited by 1 | Viewed by 618
Abstract
Cathepsins are protease enzymes vital for normal physiological functions, such as digestion, coagulation, hormone secretion, bone resorption, apoptosis, autophagy, and both innate and adaptive immunity. Their altered expression and/or activity is associated with various pathological conditions, including inflammatory processes. In this study, we [...] Read more.
Cathepsins are protease enzymes vital for normal physiological functions, such as digestion, coagulation, hormone secretion, bone resorption, apoptosis, autophagy, and both innate and adaptive immunity. Their altered expression and/or activity is associated with various pathological conditions, including inflammatory processes. In this study, we investigated the expression levels of cathepsins in muscle specimens collected from dogs affected by inflammatory myopathy (IM) of variable severity established through histopathological analysis. Samples collected from dogs affected by IM at mild, moderate, and severe stages and from healthy (control) dogs were analyzed for the expression profile of 35 proteases using a proteome profiler array. Among the other proteases, cathepsin B was upregulated to an extent depending on disease progression. By exploring the molecular mechanisms underlying the impact of cathepsin B on the disease, we found that the upregulation of cathepsin B in diseased tissues correlates with increased TGFβ-1 expression levels and elevated phosphorylation levels of the TGFβ-1 signaling mediator SMAD2/3. These results suggest that cathepsin B might be involved in the onset and progression of fibrosis commonly occurring in IM diseased dogs. Overall, our findings reveal that modulating cathepsin B activity may hold therapeutic potential for IM. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

22 pages, 6051 KiB  
Article
Identification, Expression Profiling, Microbial Binding, and Agglutination Analyses of Two Cathepsin B Genes in Black Rockfish (Sebastes schlegelii)
by Xinghua Zhuang, Xingchun Li, Wenpeng Li, Xuan Xu, Fengjun Lin, Yiying Liu, Chonghui Chen, Xiaoxu Zhang, Pei Zhang, Chao Li and Qiang Fu
Mar. Drugs 2025, 23(5), 213; https://doi.org/10.3390/md23050213 - 18 May 2025
Viewed by 534
Abstract
As a lysosomal cysteine protease of the papain subfamily, cathepsin B (CTSB) is characterized by its innate immune functions and hydrolytic activity. However, the functions of CTSB in the immune responses of teleosts remain to be clarified. In this study, two CTSB genes [...] Read more.
As a lysosomal cysteine protease of the papain subfamily, cathepsin B (CTSB) is characterized by its innate immune functions and hydrolytic activity. However, the functions of CTSB in the immune responses of teleosts remain to be clarified. In this study, two CTSB genes in S. schlegelii, SsCTSBa and SsCTSBb, were identified. Both SsCTSBa and SsCTSBb are composed of a 993 bp ORF encoding 330 amino acids. It was found in a phylogeny analysis that both genes form monophyletic clades with their orthologous counterparts of Honeycomb rockfish (Sebastes umbrosus). A synteny analysis indicated that the CTSB homologues were comparatively conserved during vertebrate evolution. Additionally, quantitative real-time PCR revealed the ubiquitous mRNA expression of SsCTSBa and SsCTSBb in all of the examined tissues, and substantially differential expression patterns could be observed following Aeromonas salmonicida infection. A subcellular localization analysis demonstrated that the distribution of SsCTSBa and SsCTSBb was mainly in the cytoplasm. Moreover, rSsCTSBa and rSsCTSBb showed strong binding to Poly(I:C) and exhibited diverse agglutination effects on different bacteria. Overall, these findings suggest that the CTSB genes in black rockfish might show essential functions in the host defense of teleosts against bacterial infections, providing valuable insights for further investigations into the immune mechanism of teleost CTSB. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Figure 1

19 pages, 14450 KiB  
Article
Human and Mouse Bone Marrow CD45+ Erythroid Cells Have a Constitutive Expression of Antibacterial Immune Response Signature Genes
by Roman Perik-Zavodskii, Olga Perik-Zavodskaia, Julia Shevchenko, Kirill Nazarov, Anastasia Gizbrekht, Saleh Alrhmoun, Vera Denisova and Sergey Sennikov
Biomedicines 2025, 13(5), 1218; https://doi.org/10.3390/biomedicines13051218 - 17 May 2025
Viewed by 547
Abstract
Introduction: Recent studies have shown that Erythroid progenitor cells exhibit a distinct immunosuppressive and immunoregulatory phenotype associated with the response to bacteria. Methods: The objective of this study was to comprehensively explore the traits of human bone marrow Erythroid cells through [...] Read more.
Introduction: Recent studies have shown that Erythroid progenitor cells exhibit a distinct immunosuppressive and immunoregulatory phenotype associated with the response to bacteria. Methods: The objective of this study was to comprehensively explore the traits of human bone marrow Erythroid cells through protein–protein interaction network analysis using cytokine secretion analysis, and single-cell immunoproteomic analysis using flow cytometry, as well as the re-analysis of publicly available human and mouse bone marrow Erythroid-cell transcriptomic data. Results: Our protein–protein interaction network analysis of human bone marrow Erythroid-cell protein-coding genes identified enrichment in the immune response to lipopolysaccharide, with Calprotectin and Cathepsin G being the main factors. We then mapped the Calprotectin to the CD45+ Erythroid cells of both humans and mice via the analysis of the publicly available scRNA-seq data. Additionally, we observed that human bone marrow Erythroid cells secrete cytokines and chemokines, such as IL-1b, IL-8, and IL-18, which are also mainly involved in the immune response to lipopolysaccharide. We also found that human and mouse bone marrow Erythroid-cell conditional media inhibit bacterial growth in vitro. Discussion: These findings suggest that both human and mouse bone marrow CD45+ Erythroid cells possess the potential to combat pathogenic microbes and thus play a role in innate antimicrobial immunity. Conclusions: CD45+ Erythroid cells are a potent immunoregulatory cell population in both humans and mice. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

19 pages, 15026 KiB  
Article
Proteomics-Based Exploration of the Hepatoprotective Mechanism of α-Lipoic Acid in Rats with Iron Overload-Induced Liver Injury
by Shuxia Jiang, Yujia Shu, Shihui Guo, Yingdong Ni, Ruqian Zhao, Hongli Shan and Wenqiang Ma
Int. J. Mol. Sci. 2025, 26(10), 4774; https://doi.org/10.3390/ijms26104774 - 16 May 2025
Viewed by 595
Abstract
Excessive iron accumulation poses a significant threat to liver health, primarily through oxidative stress and autophagy dysregulation. α-Lipoic acid (ALA), a natural antioxidant with hepatoprotective properties, may alleviate iron-induced liver damage, but its underlying mechanisms are not fully understood. This study utilized male [...] Read more.
Excessive iron accumulation poses a significant threat to liver health, primarily through oxidative stress and autophagy dysregulation. α-Lipoic acid (ALA), a natural antioxidant with hepatoprotective properties, may alleviate iron-induced liver damage, but its underlying mechanisms are not fully understood. This study utilized male Sprague Dawley rats and BRL-3A cells to explore the protective effects of ALA against iron overload in vivo and in vitro, respectively. ALA treatment significantly reduced hepatic iron accumulation, improved liver morphology, and alleviated iron-induced ultrastructural damage in rats. ALA also improved liver function markers in plasma, including alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), total bilirubin (TBIL), and the AST/ALT ratio. Furthermore, ALA mitigated iron-induced oxidative stress by lowering hepatic reactive oxygen species (ROS) and malondialdehyde (MDA), while increasing the antioxidant enzyme activities of glutathione peroxidase (GSH-Px) and catalase (CAT). In BRL-3A cells, ALA improved cell viability, decreased intracellular ROS, and reduced iron levels. Proteomics analysis indicates that NAD(P)H: quinone oxidoreductase 1 (NQO1) may play a critical role in the protective effects of ALA against iron overload-induced hepatic damage in rats. Mechanistically, ALA upregulated NQO1 expression while downregulating autophagy-related proteins, including light chain 3B (LC3B), lysosomal-associated membrane protein 1 (LAMP1), and cathepsin D (CTSD). Inhibition or knockdown of NQO1 abolished ALA’s protective effects, confirming its role in reducing oxidative stress and excessive autophagy. These findings highlight the potential of ALA as a therapeutic agent for managing hepatic iron toxicity through iron chelation and activation of NQO1. Full article
(This article belongs to the Special Issue New Advances in Proteomics in Disease)
Show Figures

Figure 1

16 pages, 3480 KiB  
Article
Identification of a Papain-like Cysteine Protease Functioning as an Avirulence Factor in Striga–Cowpea Interactions
by Danhua Zhang and Michael P. Timko
Plants 2025, 14(10), 1427; https://doi.org/10.3390/plants14101427 - 9 May 2025
Viewed by 418
Abstract
While most cowpea cultivars are susceptible to parasitism by the root parasitic weed Striga gesnerioides (Willd.) Vatke, cultivar B301 is resistant to all Striga races except for SG4z. Resistance to Striga parasitism is manifested by the elicitation of a hypersensitive response (HR) at [...] Read more.
While most cowpea cultivars are susceptible to parasitism by the root parasitic weed Striga gesnerioides (Willd.) Vatke, cultivar B301 is resistant to all Striga races except for SG4z. Resistance to Striga parasitism is manifested by the elicitation of a hypersensitive response (HR) at the site of parasite attachment on the host root followed by rapid death of the attached parasite. We isolated a papain-like cysteine protease (PLCP) designated SGCP1 that is highly expressed in the haustoria of S. gesnerioides race SG3 at the time of parasite attachment to the host root. SGCP1 contains an apoplast-targeting signal peptide, a Cathepsin pro-peptide inhibitory domain, a papain family cysteine protease domain, and a granulin domain. Full-length SGCP1 and a variant lacking the signal peptide (SGCP∆SP) were expressed in the roots of composite B301 plants. Expression of SGCP1 and SGCP∆SP resulted in activation of host innate immune responses exemplified by increased frequency of HR and decreased levels of parasite cotyledon expansion (CE), indicative of successful host parasitism, in transgenic compared to wild-type B301 roots parasitized by SG4z. These data indicate that SGCP1 functions as an avirulence factor capable of activating host innate immunity and furthers our understanding of how compatible and incompatible host–parasite interactions are controlled. Full article
(This article belongs to the Special Issue Molecular Biology and Genomics of Plant-Pathogen Interactions)
Show Figures

Figure 1

11 pages, 810 KiB  
Article
Cathepsin B: Plasma Expression and Concentration in Non-Hodgkin Lymphoma Patients
by Zana Radic Savic, Natasa Bogavac-Stanojevic, Dragana Malcic-Zanic, Sinisa Stankovic, Natasa Egeljic-Mihailovic, Đorđe Stojisavljević, Miron Sopić and Bosa Mirjanic-Azaric
Hemato 2025, 6(2), 13; https://doi.org/10.3390/hemato6020013 - 6 May 2025
Viewed by 859
Abstract
Numerous studies point to the significance of cathepsin B (CTSB) in the development of carcinoma. Therefore, the aim of this pilot study was to investigate the levels of cathepsin B (CTSB) and the expression of CTSB mRNA in the plasma of non-Hodgkin lymphoma [...] Read more.
Numerous studies point to the significance of cathepsin B (CTSB) in the development of carcinoma. Therefore, the aim of this pilot study was to investigate the levels of cathepsin B (CTSB) and the expression of CTSB mRNA in the plasma of non-Hodgkin lymphoma (NHL) patients. Methods: The study included 44 newly diagnosed NHL patients and 35 healthy volunteers comprising the control group. CTSB in the plasma samples were detected using the enzyme-linked immunosorbent assay (ELISA). Results: The level of CTSB was significantly higher in NHL patients compared to control subjects: 15.28 (11.68–17.23) versus 11.57 (10.12–13.41), p = 0.003. In addition, a positive correlation between plasma CTSB mRNA and CTSB after therapy was observed (rho = 0.591, p = 0.026). Regarding redox parameters, we found a negative correlation between CTSB and the total antioxidant status (TAS) (rho = −0.499, p = 0.035), as well as a positive correlation with the total oxidant status (TOS) (rho = 0.576, p = 0.012). Conclusions: Targeting CTSB might have significant clinical relevance in the diagnostics of NHL. Full article
(This article belongs to the Section Lymphomas)
Show Figures

Figure 1

20 pages, 6781 KiB  
Article
A Novel Cystatin Gene from Sea Cucumber (Apostichopus japonicus): Characterization and Comparative Expression with Cathepsin L During Early Stage of Hypoxic Exposure-Induced Autolysis
by Siyu Yao, Rui Zhang, Siyuan Ma, Ting Zhao, Qinhao Liu, Lin Zhu, Chang Liu, Liming Sun and Ming Du
Foods 2025, 14(8), 1404; https://doi.org/10.3390/foods14081404 - 18 Apr 2025
Viewed by 407
Abstract
Autolysis in sea cucumber has long been a threat to raw material storage and product processing. The involvement of endogenous cysteine protease in sea cucumber autolysis has been proved extendedly. However, as an essential part of the mechanism of autolysis, the role of [...] Read more.
Autolysis in sea cucumber has long been a threat to raw material storage and product processing. The involvement of endogenous cysteine protease in sea cucumber autolysis has been proved extendedly. However, as an essential part of the mechanism of autolysis, the role of its endogenous inhibitor has seldom been reported. To investigate the role of cysteine protease inhibitors in the early stage of hypoxic exposure-induced autolysis, a novel cystatin gene (SjCyt) belonging to the subfamily of cystatin C was cloned from Apostichopus japonicus by homology cloning and rapid amplification of cDNA ends. The affinity of SjCyt to cysteine protease (cathepsin L and cathepsin B) was investigated by molecular dynamics simulations. Pertinent metrics, including the root mean square deviation, radius of gyration, Gibbs free energy, binding free energy, and bond-forming frequency, showed that the conformation of SjCyt–SjCL was more stable and confirmed a stronger interaction of SjCyt with cathepsin L than with cathepsin B. Thus, cathepsin L (SjCL) was selected to further study its co-expression with SjCyt over a period of 9 h at an early stage of hypoxic exposure. Quantitative RT-qPCR revealed a ubiquitous transcriptional profile of SjCyt and SjCL in all the tested tissues, with the highest abundance in the dorsal epidermis, tube feet, and coelomocytes. Temporal transcription of them showed an overall up-regulated co-expression in the dorsal epidermis and tube feet. However, up-regulated SjCyt and down-regulated SjCL were observed at the protein level. Further immunofluorescence double labeling also found increased staining of SjCyt and SjCyt–SjCL complexes and decreased SjCL. Additionally, recombinant SjCyt was prepared and demonstrated an evident autolysis-inhibiting effect. The results of this study indicated that the anti-autolytic regulation of SjCyt functions at the very early stage of hypoxic exposure, exerting effects at both the transcriptional and translational levels. The above finding offers new insights into the mechanisms of sea cucumber autolysis. Full article
(This article belongs to the Special Issue Mechanism and Control of Quality Changes in Aquatic Products)
Show Figures

Figure 1

16 pages, 6463 KiB  
Article
Decaying Oscillating Pulsed Magnetic Field Induces Lysosome-Dependent Cell Death in A375 Melanoma via Magneto-Mechanical Force
by Yan Mi, Jianli Wang, Sifan Tang, Chi Ma, Wei Zheng and Jiayu Chen
Magnetochemistry 2025, 11(4), 33; https://doi.org/10.3390/magnetochemistry11040033 - 14 Apr 2025
Viewed by 972
Abstract
The synergistic application of magnetic fields and iron oxide nanorod particles (IONPs) presents a novel therapeutic approach for inducing lysosome-dependent cell death (LDCL) via magneto-mechanical force (MMF). This study demonstrates the efficacy of decaying oscillating pulsed magnetic fields (DOPMFs) to propel IONPs to [...] Read more.
The synergistic application of magnetic fields and iron oxide nanorod particles (IONPs) presents a novel therapeutic approach for inducing lysosome-dependent cell death (LDCL) via magneto-mechanical force (MMF). This study demonstrates the efficacy of decaying oscillating pulsed magnetic fields (DOPMFs) to propel IONPs to induce rapid tumor regression via lysosomal membrane permeabilization (LMP). The systematic evaluation of dose-dependent parameters revealed that DOPMF intensity and pulse number critically determine A375 melanoma cell viability reduction. Mechanistic investigations identified two hallmark biomarkers of LMP: increased cytosolic cathepsin B activity and downregulated LAMP-2 expression. Crucially, in vivo experiments using A375 melanoma-bearing mouse models corroborated the therapeutic potential of this approach, showing significant tumor growth inhibition without systemic toxicity or invasive procedures. Collectively, our findings demonstrate that MMF by IONPs under DOPMF stimulation exhibits significant efficacy in suppressing melanoma proliferation, offering a non-invasive, targeted approach for oncological intervention. Full article
(This article belongs to the Section Applications of Magnetism and Magnetic Materials)
Show Figures

Figure 1

17 pages, 5533 KiB  
Article
Identification of Potential Roles of Cathepsin B-like in the Response to Alkali Treatment in Macrobrachium nipponense
by Mingjia Xu, Wenyi Zhang, Yiwei Xiong, Hongtuo Fu, Hui Qiao, Sufei Jiang and Shubo Jin
Int. J. Mol. Sci. 2025, 26(7), 3361; https://doi.org/10.3390/ijms26073361 - 3 Apr 2025
Viewed by 530
Abstract
Cathepsin B is a member of the cysteine protease family and plays an important role in the innate immunity of aquatic invertebrates. A previous study identified that Cathepsin B-like (CTSB-l) may be involved in the response of alkali treatment in Macrobrachium [...] Read more.
Cathepsin B is a member of the cysteine protease family and plays an important role in the innate immunity of aquatic invertebrates. A previous study identified that Cathepsin B-like (CTSB-l) may be involved in the response of alkali treatment in Macrobrachium nipponense. The present study aims to identify the potential regulatory roles of CTSB-l in the response of alkali treatment in M. nipponense through performing the quantitative real-time PCR analysis (qPCR), in situ hybridization (ISH) analysis, and RNA interference (RNAi) analysis. The full length of the MnCTSB-l cDNA was 1272 bp with an open reading frame of 987 bp, encoding 328 amino acids. Phylogenetic tree analysis indicated that the amino acid sequence of MnCTSB-l is highly homologous to those of crustacean cathepsin B-like. qPCR analysis showed that MnCTSB-l mRNA is expressed in all tested tissues with the highest level of expression in hepatopancreas in both male and female prawns. The expressions of MnCTSB-l were significantly stimulated in gills under the alkali concentration of both 5 mmol/L and 10 mmol/L, predicting that this gene may be involved in the response of alkali treatment in M. nipponense, which was consistent with the previous study. ISH showed that MnCTSB-l signals were mainly observed in the hemolymph vessels and membranes of gills, as well as in the basement membranes of hepatopancreas, in both male and female prawns. RNAi analysis revealed that the injection of double-stranded RNA of CTSB (dsCTSB) resulted in a significant decrease in MnCTSB-l expressions. In addition, prawn cumulative mortality was significantly higher in the dsCTSB-injected group, compared to that of dsGFP-injected group, under alkali treatments of both 5 mmol/L and 10 mmol/L, indicating CTSB-l plays an essential role in regulating alkalinity acclimation in M. nipponense. The present study identifies the regulatory functions of CTSB-l in the response of alkali treatment in M. nipponense, promoting the survival rate and aquaculture of this species in a water environment with high alkalinity. Full article
Show Figures

Figure 1

Back to TopTop