Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (208)

Search Parameters:
Keywords = carrier transport and recombination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 2448 KiB  
Review
ZnO-Based Photocatalysts: Synergistic Effects of Material Modifications and Machine Learning Optimization
by Sanja J. Armaković, Stevan Armaković, Andrijana Bilić and Maria M. Savanović
Catalysts 2025, 15(8), 793; https://doi.org/10.3390/catal15080793 (registering DOI) - 20 Aug 2025
Abstract
ZnO-based photocatalysts have attracted significant attention for their potential use in advanced oxidation processes for environmental remediation. However, critical challenges, such as rapid charge carrier recombination and narrow light absorption, and poor long-term stability necessitate material modifications to enhance performance. This review provides [...] Read more.
ZnO-based photocatalysts have attracted significant attention for their potential use in advanced oxidation processes for environmental remediation. However, critical challenges, such as rapid charge carrier recombination and narrow light absorption, and poor long-term stability necessitate material modifications to enhance performance. This review provides a comprehensive and critical analysis of recent developments in ZnO-based photocatalysts, including heterojunctions with metal oxides, carbon-based hybrids, metal/non-metal doping, and metal–organic framework materials. Furthermore, emerging trends, such as the integration of atomistic calculations and machine learning (ML) techniques in material design, property prediction, and the optimization of photocatalytic performance, are critically examined. These modern computationally driven approaches provide new insights into band gap engineering, charge transport mechanisms, and the optimization of synthesis parameters, thereby accelerating the discovery of high-performance ZnO-based photocatalysts. However, their practical integration remains limited due to the availability of high-quality datasets and the lack of interdisciplinary methodologies. The review also discusses key research gaps, including emerging environmental applications, as well as stability and scalability challenges, providing a roadmap for future research in data-driven photocatalysis. By evaluating current research, this review aims to provide a foundation for the modification of next-generation ZnO-based photocatalysts for environmental applications. Full article
Show Figures

Figure 1

27 pages, 6670 KiB  
Article
One-Pot Synthesis of the MoVOx Mixed Oxide Nanobelts and Its Photoelectric Properties in the Broadband Light Spectrum Range Exhibiting Self-Powered Characteristics
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Inorganics 2025, 13(8), 273; https://doi.org/10.3390/inorganics13080273 - 18 Aug 2025
Abstract
To exploit the near-infrared (NIR) light of MoO3, the MoVOx mixed oxide was synthesized using a one-pot approach. The effects of different electrodes, V doping, and bias on the optoelectronic properties were investigated. The photoelectric responses to light sources with [...] Read more.
To exploit the near-infrared (NIR) light of MoO3, the MoVOx mixed oxide was synthesized using a one-pot approach. The effects of different electrodes, V doping, and bias on the optoelectronic properties were investigated. The photoelectric responses to light sources with wavelengths of 405, 532, 650, 780, 808, 980, and 1064 nm were studied using both Au and carbon electrodes with 6B pencil drawings. The results demonstrate that the MoVOx nanoblets exhibit photocurrent switching characteristics across the broadband region of the light spectrum. Even when zero bias was applied and the mixed oxide sample was stored at room temperature for over two years, a good photoelectric signal was still observed. This demonstrates that the MoVOx nanoblets present an interface where interfacial charge transfer forms a strong built-in electric field, promoting photogenerated charge separation and transfer while suppressing photogenerated carrier recombination, and exhibiting self-powered characteristics. Interestingly, reducing the power of the typical excitation light sources resulted in a transition from positive to negative photocurrent features. This reflects the result of an imbalance between the concentration of material defects and the concentration of photogenerated electrons. The MoVOx nanoblets not only enhance charge transport performance, but also significantly improve the exploitation of near-infrared light. Doping with V significantly improves the nanocomposites’ near-infrared (NIR) photoelectric sensitivity. This study demonstrates that heavily doping aliovalent ions during the in situ preparation of nanocomposites effectively enhances their photophysical properties. It provides a straightforward approach to narrowing the band gap of wide-bandgap oxides and effectively avoiding the recombination of photogenerated carriers. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Figure 1

20 pages, 5152 KiB  
Article
Grain Boundary Regulation in Aggregated States of MnOx Nanofibres and the Photoelectric Properties of Their Nanocomposites Across a Broadband Light Spectrum
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(8), 920; https://doi.org/10.3390/coatings15080920 - 6 Aug 2025
Viewed by 242
Abstract
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was [...] Read more.
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was prepared. The effects of GO content and bias on the optoelectronic properties were studied. Representative light sources at 405, 650, 780, 808, 980, and 1064 nm were used to examine the photoelectric signals. The results indicate that the MnOx/GO nanocomposites have photocurrent switching behaviours from the visible region to the NIR (near-infrared) when the amount of GO added is optimised. It was also found that even with zero bias and storage of the nanocomposite sample at room temperature for over 8 years, a good photoelectric signal could still be extracted. This demonstrates that the MnOx/GO nanocomposites present a strong built-in electric field that drives the directional motion of photogenerated carriers, avoids the photogenerated carrier recombination, and reflect a good photophysical stability. The strength of the built-in electric field is strongly affected by the component ratios of the resulting nanocomposite. The formation of the built-in electric field results from interfacial charge transfer in the nanocomposite. Modulating the charge behaviour of nanocomposites can significantly improve the physicochemical properties of materials when excited by light with different wavelengths and can be used in multidisciplinary applications. Since the recombination of photogenerated electron–hole pairs is the key bottleneck in multidisciplinary fields, this study provides a simple, low-cost method of tailoring defects at grain boundaries in the aggregated state of nanocomposites. These results can be used as a reference for multidisciplinary fields with low energy consumption. Full article
Show Figures

Figure 1

10 pages, 895 KiB  
Article
Investigation on the Carrier Dynamics in P-I-N Type Photovoltaic Devices with Different Step-Gradient Distribution of Indium Content in the Intrinsic Region
by Yifan Song, Wei Liu, Junjie Gao, Di Wang, Chengrui Yan, Bohan Shi, Linyuan Zhang, Xinnan Zhao and Zeyu Liu
Micromachines 2025, 16(7), 833; https://doi.org/10.3390/mi16070833 - 21 Jul 2025
Viewed by 277
Abstract
InGaN-based photovoltaic devices have attracted great attention due to their remarkable theoretical potential for high efficiency. In this paper, the influence of different distributions of step-gradient indium content within the intrinsic region on the photovoltaic performance of P-I-N type InGaN/GaN solar cells is [...] Read more.
InGaN-based photovoltaic devices have attracted great attention due to their remarkable theoretical potential for high efficiency. In this paper, the influence of different distributions of step-gradient indium content within the intrinsic region on the photovoltaic performance of P-I-N type InGaN/GaN solar cells is numerically investigated. Through the comprehensive analysis of carrier dynamics, it is found that for the device with the indium content decreasing stepwise from 50% at the top to 10% at the bottom in intrinsic region, the photovoltaic conversion efficiency is increased to 10.29%, which can be attributed to joint influence of enhanced photon absorption, reduced recombination rate, and optimized carrier transport process. Full article
Show Figures

Figure 1

13 pages, 2686 KiB  
Article
Synergistic Energy Level Alignment and Light-Trapping Engineering for Optimized Perovskite Solar Cells
by Li Liu, Wenfeng Liu, Qiyu Liu, Yongheng Chen, Xing Yang, Yong Zhang and Zao Yi
Coatings 2025, 15(7), 856; https://doi.org/10.3390/coatings15070856 - 20 Jul 2025
Cited by 2 | Viewed by 423
Abstract
Perovskite solar cells (PSCs) leverage the exceptional photoelectric properties of perovskite materials, yet interfacial energy level mismatches limit carrier extraction efficiency. In this work, energy level alignment was exploited to reduce the charge transport barrier, which can be conducive to the transmission of [...] Read more.
Perovskite solar cells (PSCs) leverage the exceptional photoelectric properties of perovskite materials, yet interfacial energy level mismatches limit carrier extraction efficiency. In this work, energy level alignment was exploited to reduce the charge transport barrier, which can be conducive to the transmission of photo-generated carriers and reduce the probability of electron–hole recombination. We designed a dual-transition perovskite solar cell (PSC) with the structure of FTO/TiO2/Nb2O5/CH3NH3PbI3/MoO3/Spiro-OMeTAD/Au by finite element analysis methods. Compared with the pristine device (FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au), the open-circuit voltage of the optimized cell increases from 0.98 V to 1.06 V. Furthermore, the design of a circular platform light-trapping structure makes up for the light loss caused by the transition at the interface. The short-circuit current density of the optimized device increases from 19.81 mA/cm2 to 20.36 mA/cm2, and the champion device’s power conversion efficiency (PCE) reaches 17.83%, which is an 18.47% improvement over the planar device. This model provides new insight for the optimization of perovskite devices. Full article
Show Figures

Figure 1

25 pages, 4188 KiB  
Article
Enhanced Charge Transport in Inverted Perovskite Solar Cells via Electrodeposited La-Modified NiOx Layers
by Lina Aristizábal-Duarte, Martín González-Hernández, Sergio E. Reyes, J. A. Ramírez-Rincón, Pablo Ortiz and María T. Cortés
Energies 2025, 18(14), 3590; https://doi.org/10.3390/en18143590 - 8 Jul 2025
Viewed by 496
Abstract
This work explored an electrochemical approach for synthesizing lanthanum-modified nickel oxide (NiOx:La) as a hole transport layer (HTL) in inverted perovskite solar cells (IPSCs). By varying the La3+ concentration, the chemical, charge transport, structural, and morphological properties of the NiO [...] Read more.
This work explored an electrochemical approach for synthesizing lanthanum-modified nickel oxide (NiOx:La) as a hole transport layer (HTL) in inverted perovskite solar cells (IPSCs). By varying the La3+ concentration, the chemical, charge transport, structural, and morphological properties of the NiOx:La film and the HTL/PVK interface were evaluated to enhance photovoltaic performance. X-ray photoelectron spectroscopy (XPS) confirmed La3+ incorporation, a higher Ni3+/Ni3+ ratio, and a valence band shift, improving p-type conductivity. Electrochemical impedance spectroscopy and Mott–Schottky analyses indicated that NiOx:La 0.5% exhibited the lowest resistance and the highest carrier density, correlating with higher recombination resistance. The NiOx:La 0.5% based cell achieved a PCE of 20.08%. XRD and SEM confirmed no significant changes in PVK structure, while photoluminescence extinction demonstrated improved charge extraction. After 50 days, this cell retained 80% of its initial PCE, whereas a pristine NiOx device retained 75%. Hyperspectral imaging revealed lower optical absorption loss and better homogeneity. These results highlight NiOx:La as a promising HTL for efficient and stable IPSCs. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

15 pages, 2189 KiB  
Article
First-Principles Study of Halide Modulation on Deep-Level Traps in FAPbI3
by Jiaqi Dai, Wenchao Tang, Tingfeng Li, Cuiping Xu, Min Zhao, Peiqi Ji, Xiaolei Li, Fengming Zhang, Hongling Cai and Xiaoshan Wu
Nanomaterials 2025, 15(13), 981; https://doi.org/10.3390/nano15130981 - 24 Jun 2025
Cited by 1 | Viewed by 380
Abstract
In this study, we investigate the influence of the halogen elements bromine (Br) and chlorine (Cl) on iodine defect properties primarily in FAPbI3 through first-principles calculations, aiming to understand the effect of high defect densities on the efficiency of organic–inorganic hybrid perovskite [...] Read more.
In this study, we investigate the influence of the halogen elements bromine (Br) and chlorine (Cl) on iodine defect properties primarily in FAPbI3 through first-principles calculations, aiming to understand the effect of high defect densities on the efficiency of organic–inorganic hybrid perovskite cells. The results indicate that Br and Cl interstitials minimally alter the overall band structure of FAPbI3 but significantly modify the defect energy levels. Br and Cl interstitials, with defect states closer to the valence band and lower formation energies, effectively convert deep-level traps induced by iodine interstitials (Ii) into shallow-level traps. This conversion enhances carrier transport by reducing non-radiative recombination while preserving light absorption efficiency. Excess Br/Cl co-doping in FAPbI3 synthesis thereby suppresses non-radiative recombination and mitigates the detrimental effects of iodide-related defects. Full article
Show Figures

Figure 1

43 pages, 9107 KiB  
Review
A Review on Pre-, In-Process, and Post-Synthetic Strategies to Break the Surface Area Barrier in g-C3N4 for Energy Conversion and Environmental Remediation
by Mingming Gao, Minghao Zhao, Qianqian Yang, Lan Bao, Liwei Chen, Wei Liu and Jing Feng
Nanomaterials 2025, 15(13), 956; https://doi.org/10.3390/nano15130956 - 20 Jun 2025
Viewed by 464
Abstract
Nanomaterials with large specific surface area (SSA) have emerged as pivotal platforms for energy storage and environmental remediation, primarily due to their enhanced active site exposure, improved mass transport capabilities, and superior interfacial reactivity. Among them, polymeric carbon nitride (g-C3N4 [...] Read more.
Nanomaterials with large specific surface area (SSA) have emerged as pivotal platforms for energy storage and environmental remediation, primarily due to their enhanced active site exposure, improved mass transport capabilities, and superior interfacial reactivity. Among them, polymeric carbon nitride (g-C3N4) has garnered significant attention in energy and environmental applications owing to its visible-light-responsive bandgap (~2.7 eV), exceptional thermal/chemical stability, and earth-abundant composition. However, the practical performance of g-C3N4 is fundamentally constrained by intrinsic limitations, including its inherently low SSA (<20 m2/g via conventional thermal polymerization), rapid recombination of photogenerated carriers, and inefficient charge transfer kinetics. Notably, the theoretical SSA of g-C3N4 reaches 2500 m2/g, yet achieving this value remains challenging due to strong interlayer van der Waals interactions and structural collapse during synthesis. Recent advances demonstrate that state-of-the-art strategies can elevate its SSA to 50–200 m2/g. To break this surface area barrier, advanced strategies achieve SSA enhancement through three primary pathways: pre-treatment (molecular and supramolecular precursor design), in process (templating and controlled polycondensation), and post-processing (chemical exfoliation and defect engineering). This review systematically examines controllable synthesis methodologies for high-SSA g-C3N4, analyzing how SSA amplification intrinsically modulates band structures, extends carrier lifetimes, and boosts catalytic efficiencies. Future research should prioritize synergistic multi-stage engineering to approach the theoretical SSA limit (2500 m2/g) while preserving robust optoelectronic properties. Full article
Show Figures

Graphical abstract

63 pages, 12842 KiB  
Review
Advances in One-Dimensional Metal Sulfide Nanostructure-Based Photodetectors with Different Compositions
by Jing Chen, Mingxuan Li, Haowei Lin, Chenchen Zhou, Wenbo Chen, Zhenling Wang and Huiying Li
J. Compos. Sci. 2025, 9(6), 262; https://doi.org/10.3390/jcs9060262 - 26 May 2025
Cited by 1 | Viewed by 1144
Abstract
One-dimensional (1D) nanomaterials have attracted considerable attention in the fabrication of nano-scale optoelectronic devices owing to their large specific surface areas, high surface-to-volume ratios, and directional electron transport channels. Compared to 1D metal oxide nanostructures, 1D metal sulfides have emerged as promising candidates [...] Read more.
One-dimensional (1D) nanomaterials have attracted considerable attention in the fabrication of nano-scale optoelectronic devices owing to their large specific surface areas, high surface-to-volume ratios, and directional electron transport channels. Compared to 1D metal oxide nanostructures, 1D metal sulfides have emerged as promising candidates for high-efficiency photodetectors due to their abundant surface vacancies and trap states, which facilitate oxygen adsorption and dissociation on their surfaces, thereby suppressing intrinsic carrier recombination while achieving enhanced optoelectronic performance. This review focuses on recent advancements in the performance of photodetectors fabricated using 1D binary metal sulfides as primary photosensitive layers, including nanowires, nanorods, nanotubes, and their heterostructures. Initially, the working principles of photodetectors are outlined, along with the key parameters and device types that influence their performance. Subsequently, the synthesis methods, device fabrication, and photoelectric properties of several extensively studied 1D metal sulfides and their composites, such as ZnS, CdS, SnS, Bi2S3, Sb2S3, WS2, and SnS2, are examined. Additionally, the current research status of 1D nanostructures of MoS2, TiS3, ReS2, and In2S3, which are predominantly utilized as 2D materials, is explored and summarized. For systematic performance evaluation, standardized metrics encompassing responsivity, detectivity, external quantum efficiency, and response speed are comprehensively tabulated in dedicated sub-sections. The review culminates in proposing targeted research trajectories for advancing photodetection systems employing 1D binary metal sulfides. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

13 pages, 2712 KiB  
Article
S-Doped FeOOH Layers as Efficient Hole Transport Channels for the Enhanced Photoelectrochemical Performance of Fe2O3
by Yanhong Zhou, Yiran Zhang, Boyang Jing, Xiaoyuan Liu and Debao Wang
Nanomaterials 2025, 15(10), 767; https://doi.org/10.3390/nano15100767 - 20 May 2025
Viewed by 408
Abstract
Hematite (Fe2O3) has been accepted as a promising and potential photo(electro)catalyst. However, its poor carrier separation and transfer efficiency has limited its application for photoelectrocatalytic (PEC) water oxidation. Herein, a S-doped FeOOH (S:FeOOH) layer was rationally designed and grown [...] Read more.
Hematite (Fe2O3) has been accepted as a promising and potential photo(electro)catalyst. However, its poor carrier separation and transfer efficiency has limited its application for photoelectrocatalytic (PEC) water oxidation. Herein, a S-doped FeOOH (S:FeOOH) layer was rationally designed and grown on Fe2O3 to construct a S:FeOOH/Fe2O3 composite photoanode. The obtained S:FeOOH/Fe2O3 photoanodes were fully characterized. The surface injection efficiency for Fe2O3 was then significantly increased with a high ηsurface value of 92.8%, which increases to 2.98 times for Fe2O3 and 2.16 times for FeOOH/Fe2O3, respectively. With 2.43 mA cm‒2 at 1.23 V, the optimized S:FeOOH/Fe2O3 photoanode was entrusted with a higher photocurrent density. The onset potential for S:FeOOH/Fe2O3 cathodically shifts 70 mV over Fe2O3. The improved PEC performance suggests that the S:FeOOH layer acts as ultrafast transport channels for holes at the photoanode/electrolyte interface, suppressing surface charge recombination. A Z-scheme band alignment between Fe2O3 and S:FeOOH was deduced from the UV–Vis and UPS spectra to promote charge transfer. This method provides an alternative for the construction of photoanodes with enhanced PEC water splitting performance. Full article
Show Figures

Graphical abstract

28 pages, 7536 KiB  
Review
Recent Progress on High-Efficiency Perovskite/Organic Tandem Solar Cells
by Kelei Wang, Jiana Zheng, Runnan Yu and Zhan’ao Tan
Nanomaterials 2025, 15(10), 745; https://doi.org/10.3390/nano15100745 - 15 May 2025
Viewed by 1148
Abstract
Perovskite/organic tandem solar cells, as a next-generation high-efficiency photovoltaic technology, integrate the tunable bandgap characteristics of perovskite materials with the broad spectral absorption advantages of organic semiconductors, demonstrating remarkable potential to surpass the theoretical efficiency limits of single-junction cells, enhance device stability, and [...] Read more.
Perovskite/organic tandem solar cells, as a next-generation high-efficiency photovoltaic technology, integrate the tunable bandgap characteristics of perovskite materials with the broad spectral absorption advantages of organic semiconductors, demonstrating remarkable potential to surpass the theoretical efficiency limits of single-junction cells, enhance device stability, and expand application scenarios. This architecture supports low-temperature solution processing and offers tunable bandgaps, lightweight flexibility, and ecofriendly advantages. This review systematically summarizes research progress in this field, with a primary focus on analyzing the working principles, performance optimization strategies, and key challenges of the technology. Firstly, the article discusses strategies such as defect passivation, crystallization control, and suppression of phase separation in wide-bandgap perovskite sub-cells, offering insights into mitigating open-circuit voltage losses. Secondly, for the narrow-bandgap organic sub-cells, this paper highlights the optimization strategies for both the active layer and interfacial layers, aiming to improve spectral utilization and enhance power conversion efficiency. Additionally, this paper emphasizes the optimization of optical transparency, electrical conductivity, and energy level alignment in the recombination layer, providing theoretical guidance for efficient current matching and carrier transport. Full article
(This article belongs to the Special Issue Organic/Perovskite Solar Cell)
Show Figures

Graphical abstract

16 pages, 6706 KiB  
Article
Enhanced Efficiency and Stability of Perovskite Solar Cells Through Neodymium-Doped Upconversion Nanoparticles with TiO2 Coating
by Masfer Alkahtani, Bayan Alshehri, Hadeel Alrashood, Latifa Alshehri, Yahya A. Alzahrani, Sultan Alenzi, Ibtisam S. Almalki, Ghazal S. Yafi, Abdulmalik M. Alessa, Faisal S. Alghannam, Abdulaziz Aljuwayr, Nouf K. AL-Saleem, Anwar Alanazi and Masud Almalki
Molecules 2025, 30(10), 2166; https://doi.org/10.3390/molecules30102166 - 14 May 2025
Viewed by 845
Abstract
This study presents an effective strategy to enhance the efficiency and stability of perovskite solar cells (PSCs) by integrating neodymium-doped upconversion nanoparticles (UCNPs) coated with a TiO2 shell into the mesoporous electron transport layer. The incorporation of neodymium (Nd3+) as [...] Read more.
This study presents an effective strategy to enhance the efficiency and stability of perovskite solar cells (PSCs) by integrating neodymium-doped upconversion nanoparticles (UCNPs) coated with a TiO2 shell into the mesoporous electron transport layer. The incorporation of neodymium (Nd3+) as a novel sensitizer shifts the near-infrared (NIR) absorption band away from the water vapor absorption region in the solar spectrum. This modification enables UCNPs to efficiently convert NIR light into ultraviolet (UV) and blue wavelengths, which are readily absorbed by TiO2, generating additional charge carriers and improving photovoltaic performance. The optimized PSCs, fabricated by blending 30% UCNPs@TiO2 with commercial TiO2 paste, achieved a peak power conversion efficiency (PCE) of 21.71%, representing a 20.4% improvement over the control (18.04%). This enhancement included a 0.9% increase in the open-circuit voltage (Voc), a 6.6% rise in the short-circuit current density (Jsc), and an 11.9% boost in the fill factor (FF). Additionally, the optimized PSCs exhibited remarkable stability, retaining over 90% of their initial PCE after 900 h in humid conditions, compared to only 70% for the control. These improvements result from enhanced light absorption, reduced moisture infiltration, and lower defect-related recombination. This approach provides a promising pathway for developing highly efficient and durable PSCs. Full article
(This article belongs to the Special Issue 5th Anniversary of Applied Chemistry Section)
Show Figures

Figure 1

25 pages, 8659 KiB  
Review
Investigation on the Interfaces in Organic Devices by Photoemission Spectroscopy
by Haipeng Xie, Xianjun Cheng and Han Huang
Nanomaterials 2025, 15(9), 680; https://doi.org/10.3390/nano15090680 - 30 Apr 2025
Viewed by 901
Abstract
Organic semiconductors have garnered significant interest owing to their low cost, flexibility, and suitability for large-area electronics, making them vital for burgeoning fields such as flexible electronics, wearable devices, and green energy technologies. The performance of organic electronic devices is crucially determined by [...] Read more.
Organic semiconductors have garnered significant interest owing to their low cost, flexibility, and suitability for large-area electronics, making them vital for burgeoning fields such as flexible electronics, wearable devices, and green energy technologies. The performance of organic electronic devices is crucially determined by their interfacial electronic structure. Specifically, interfacial phenomena such as band bending significantly influence carrier injection, transport, and recombination, making their control paramount for enhancing device performance. This review investigates the interplay among molecular orientation, interfacial charge transfer, and interfacial chemical reactions as the primary drivers of interface band bending. Furthermore, it critically examines effective strategies for optimizing interfacial properties via interface engineering, focusing on interlayer insertion and template layer methods. The review concludes with a summary and outlook, emphasizing the integration of interface design with material development and device architecture to realize next-generation, high-performance organic electronic devices exhibiting improved efficiency and stability. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

12 pages, 6465 KiB  
Article
Graphene-Based Organic Semiconductor Film for Highly Selective Photocatalytic CO2 Reduction
by Yanghong Xu, Haopeng Tang, Yifei Wang, Xiaofeng Zhu and Long Yang
Nanomaterials 2025, 15(9), 677; https://doi.org/10.3390/nano15090677 - 29 Apr 2025
Cited by 1 | Viewed by 588
Abstract
Mimicking artificial photosynthesis utilizing solar energy for the production of high-value chemicals is a sustainable strategy to tackle the fossil fuel-based energy crisis and mitigate the greenhouse effect. In this study, we developed a two-dimensional (2D) graphene oxide (GO)–diketopyrrolopyrrole (DPP) film photocatalyst. GO [...] Read more.
Mimicking artificial photosynthesis utilizing solar energy for the production of high-value chemicals is a sustainable strategy to tackle the fossil fuel-based energy crisis and mitigate the greenhouse effect. In this study, we developed a two-dimensional (2D) graphene oxide (GO)–diketopyrrolopyrrole (DPP) film photocatalyst. GO nanosheets facilitate the uniform dispersion of DPP nanoparticles (~5 nm) while simultaneously constructing an efficient charge transport network to mitigate carrier recombination. Under visible-light irradiation in an aqueous solution without sacrificial agents, the optimized GO–DPP50 film catalyst exhibited exceptional performance, achieving a CO production rate of 32.62 μmol·g⁻1·h⁻1 with nearly 100% selectivity. This represents 2.77-fold and 3.28-fold enhancements over pristine GO (8.65 μmol·g−1·h−1) and bare DPP (7.62 μmol·g−1·h−1), respectively. Mechanistic analysis reveals a synergistic mechanism. The 2D GO framework not only serves as a high-surface-area substrate for DPP anchoring, but also substantially suppresses charge recombination through rapid electron transport channels. Concurrently, the uniformly distributed DPP nanoparticles improve visible-light absorption efficiency and facilitate effective photogenerated carrier excitation. This work establishes a novel paradigm for the synergistic integration of 2D nanomaterials with organic semiconductors, providing critical design principles for developing high-performance film-based photocatalysts and selectivity control in CO2 reduction applications. Full article
Show Figures

Graphical abstract

22 pages, 10318 KiB  
Article
Enhanced Efficiency of Polycrystalline Silicon Solar Cells Using ZnO-Based Nanostructured Layers
by Mihai Oproescu, Adriana-Gabriela Schiopu, Valentin-Marian Calinescu and Janusz D. Fidelus
Crystals 2025, 15(5), 398; https://doi.org/10.3390/cryst15050398 - 24 Apr 2025
Viewed by 656
Abstract
In the context of the global energy transition, enhancing the efficiency of polycrystalline silicon-based solar cells remains a critical research priority. This study investigates the integration of ZnO-based nanostructured layers. ZnO and Al-doped ZnO nanoparticles, synthesized via hydrothermal methods and concentrated solar power [...] Read more.
In the context of the global energy transition, enhancing the efficiency of polycrystalline silicon-based solar cells remains a critical research priority. This study investigates the integration of ZnO-based nanostructured layers. ZnO and Al-doped ZnO nanoparticles, synthesized via hydrothermal methods and concentrated solar power (CSP) vapor condensation, exhibiting diverse morphologies—nanorods, spheres, and whisker structures—were deposited onto commercial solar cells using the spin coating technique. Structural, morphological, and spectroscopic analyses confirmed the formation of crystalline layers with high active surface areas and controlled morphology. Photovoltaic performance was assessed using a dedicated hardware–software system under real sunlight conditions. The results demonstrate a significant increase in energy efficiency, reaching up to 10.97%, compared with 1.51% for polycrystalline silicon cells without any supplementary layers. This improvement is attributed to enhanced light absorption, reduced carrier recombination, and more efficient charge transport, driven by nanoscale design and doping. This study underscores the importance of sustainable synthesis and morphological control in the development of high-performance and cost-effective solar technologies. Full article
Show Figures

Figure 1

Back to TopTop