Organic/Perovskite Solar Cell

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Solar Energy and Solar Cells".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 4767

Special Issue Editors


E-Mail Website
Guest Editor
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing 100090, China
Interests: materials and devices for novel thin film solar cells (polymer solar cells, perovskite solar cells); materials and devices for novel light-emitting diodes (quantum dots light-emitting diodes, perovskite light-emitting diodes, carbon dots light-emitting diodes); materials and devices for energy storage (organic redox flow battery)
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Interests: material design and device engineering for novel thin-film solar cells (polymer solar cells, perovskite solar cells)
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Perovskite solar cells (PSCs) and organic solar cells (OSCs) have been well regarded as the most promising solar energy harvesting devices to compete with silicon solar cells, owing to their high absorption coefficients, solution-processability, and low manufacturing cost. Although PSCs and OSCs have successfully gained high power conversion efficiency, the short lifetime still limits their further commercialization. Therefore, further development of fundamental science and device engineering, including materials science, device fabrication technology, and theoretical study, is the key to achieving commercially feasible solar cells with a low cost, high efficiency, and long lifetime.

In this Special Issue, frontier research and studies, including the fundamentals for materials and device physics of PSCs and OSCs, are highlighted and discussed.

It is my pleasure to invite you to submit a manuscript for this Special Issue. Full papers, communications, and reviews are all welcome.

Prof. Dr. Zhan’ao Tan
Dr. Runnan Yu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • perovskite solar cells
  • organic solar cells
  • photovoltaic materials
  • material chemistry
  • device physics
  • device engineering
  • simulation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 5126 KiB  
Article
Integration of Conductive SnO2 in Binary Organic Solar Cells with Fine-Tuned Nanostructured D18:L8-BO with Low Energy Loss for Efficient and Stable Structure by Optoelectronic Simulation
by Mohamed El Amine Boudia and Cunlu Zhao
Nanomaterials 2025, 15(5), 368; https://doi.org/10.3390/nano15050368 - 27 Feb 2025
Viewed by 793
Abstract
Enhancing the performance of organic solar cells (OSCs) is essential for achieving sustainability in energy production. This study presents an innovative strategy that involves fine-tuning the thickness of the bulk heterojunction (BHJ) photoactive layer at the nanoscale to improve efficiency. The organic blend [...] Read more.
Enhancing the performance of organic solar cells (OSCs) is essential for achieving sustainability in energy production. This study presents an innovative strategy that involves fine-tuning the thickness of the bulk heterojunction (BHJ) photoactive layer at the nanoscale to improve efficiency. The organic blend D18:L8-BO is utilized to capture a wide range of photons while addressing the challenge of minimizing optical losses from low-energy photons. The research incorporates SnO2 and ZnO as electron transport layers (ETLs), with PMMA functioning as a hole transport layer (HTL). A comprehensive analysis of photon absorption, charge carrier generation, localized energy fluctuations, and thermal stability reveals their critical role in enhancing the efficiency of D18:L8-BO active films. Notably, introducing SnO2 as an ETL significantly decreased losses and modified localized energy, achieving an impressive efficiency of 19.85% at an optimized blend thickness of 50 nm with low voltage loss (ΔVoc) of 0.4 V within a Jsc of 28 mA cm−2 by performing an optoelectronic simulation employing “Oghma-Nano 8.1.015” software. In addition, the SnO2-based structure conserved 88% of the PCE at 350 K compared to room temperature PCE, which describes the high thermal stability of this structure. These results demonstrate the potential of this methodology in improving the performance of OSCs. Full article
(This article belongs to the Special Issue Organic/Perovskite Solar Cell)
Show Figures

Figure 1

13 pages, 10236 KiB  
Article
Controlling the Optical and Electrical Properties of Perovskite Films and Enhancing Solar Cell Performance Using the Photonic Curing Process
by Moulay Ahmed Slimani, Arjun Wadhwa, Luis Felipe Gerlein, Jaime A. Benavides-Guerrero, Mohamad Hassan Taherian, Ricardo Izquierdo and Sylvain G. Cloutier
Nanomaterials 2024, 14(23), 1975; https://doi.org/10.3390/nano14231975 - 9 Dec 2024
Cited by 1 | Viewed by 1112
Abstract
The most common method of processing metal oxide and perovskite thin films in the laboratory is thermal annealing (TA), which is a constraint for the commercialization of large-scale perovskite solar cells. Here, we present a photonic curing (PC) process to produce fully photonically [...] Read more.
The most common method of processing metal oxide and perovskite thin films in the laboratory is thermal annealing (TA), which is a constraint for the commercialization of large-scale perovskite solar cells. Here, we present a photonic curing (PC) process to produce fully photonically annealed perovskite cells—a fast process with well-controlled, short light pulses—to develop perovskite photovoltaic devices with high efficiency. We also demonstrate how to use the parameters of the photonic annealing system to control the optical, electrical, morphological, and structural properties of perovskite layers for photovoltaic device applications. The effect of PC treatment on the microstructure, granularity, and electronic properties was studied by scanning electron microscopy (SEM), photoluminescence (PL), and transient photocurrent (TPC). The degree of conversion of the perovskite precursor and its influence on the electronic structure have been identified. SnO2 and perovskite films were treated with a single pulse and produced PCE comparable to control samples treated by TA. Full article
(This article belongs to the Special Issue Organic/Perovskite Solar Cell)
Show Figures

Figure 1

Review

Jump to: Research

28 pages, 7536 KiB  
Review
Recent Progress on High-Efficiency Perovskite/Organic Tandem Solar Cells
by Kelei Wang, Jiana Zheng, Runnan Yu and Zhan’ao Tan
Nanomaterials 2025, 15(10), 745; https://doi.org/10.3390/nano15100745 - 15 May 2025
Viewed by 178
Abstract
Perovskite/organic tandem solar cells, as a next-generation high-efficiency photovoltaic technology, integrate the tunable bandgap characteristics of perovskite materials with the broad spectral absorption advantages of organic semiconductors, demonstrating remarkable potential to surpass the theoretical efficiency limits of single-junction cells, enhance device stability, and [...] Read more.
Perovskite/organic tandem solar cells, as a next-generation high-efficiency photovoltaic technology, integrate the tunable bandgap characteristics of perovskite materials with the broad spectral absorption advantages of organic semiconductors, demonstrating remarkable potential to surpass the theoretical efficiency limits of single-junction cells, enhance device stability, and expand application scenarios. This architecture supports low-temperature solution processing and offers tunable bandgaps, lightweight flexibility, and ecofriendly advantages. This review systematically summarizes research progress in this field, with a primary focus on analyzing the working principles, performance optimization strategies, and key challenges of the technology. Firstly, the article discusses strategies such as defect passivation, crystallization control, and suppression of phase separation in wide-bandgap perovskite sub-cells, offering insights into mitigating open-circuit voltage losses. Secondly, for the narrow-bandgap organic sub-cells, this paper highlights the optimization strategies for both the active layer and interfacial layers, aiming to improve spectral utilization and enhance power conversion efficiency. Additionally, this paper emphasizes the optimization of optical transparency, electrical conductivity, and energy level alignment in the recombination layer, providing theoretical guidance for efficient current matching and carrier transport. Full article
(This article belongs to the Special Issue Organic/Perovskite Solar Cell)
Show Figures

Graphical abstract

47 pages, 15477 KiB  
Review
Chalcogenides in Perovskite Solar Cells with a Carbon Electrode: State of the Art and Future Prospects
by Maria Bidikoudi and Elias Stathatos
Nanomaterials 2024, 14(22), 1783; https://doi.org/10.3390/nano14221783 - 6 Nov 2024
Cited by 2 | Viewed by 2129
Abstract
Perovskite solar cells (PSCs) have been on the forefront of advanced research for over a decade, achieving constantly increasing power conversion efficiencies (PCEs), while their route towards commercialization is currently under intensive progress. Towards this target, there has been a turn to PSCs [...] Read more.
Perovskite solar cells (PSCs) have been on the forefront of advanced research for over a decade, achieving constantly increasing power conversion efficiencies (PCEs), while their route towards commercialization is currently under intensive progress. Towards this target, there has been a turn to PSCs that employ a carbon electrode (C-PSCs) for the elimination of metal back contacts, which increase the cost of corresponding devices while at the same time have a severe impact on their stability. Chalcogenides are chemical compounds that contain at least one chalcogen element, typically sulfur (S), selenium (Se), or tellurium (Te), combined with one metallic element. They possess semiconducting properties and have been proven to have beneficial effects when incorporated in a variety of solar cell types, including dye sensitized solar cells (DSSCs), quantum dot sensitized solar cells (QDSSCs), and Organic Solar Cells (OSCs), either as interlayers or added in the active layers. Currently, an increasing number of studies have highlighted their potential for achieving high-performing and stable PSCs. In this review, the most promising results of the latest studies regarding the implementation of chalcogenides in PSCs with a carbon electrode are presented and discussed, merging two research trends that are currently on the spotlight of solar cell technology. Full article
(This article belongs to the Special Issue Organic/Perovskite Solar Cell)
Show Figures

Figure 1

Back to TopTop