Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (251)

Search Parameters:
Keywords = carbon steel N80

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5464 KiB  
Article
A Coffee-Based Bioadsorbent for CO2 Capture from Flue Gas Using VSA: TG-Vacuum Tests
by Marcelina Sołtysik, Izabela Majchrzak-Kucęba and Dariusz Wawrzyńczak
Energies 2025, 18(15), 3965; https://doi.org/10.3390/en18153965 - 24 Jul 2025
Viewed by 302
Abstract
In the energy sector and in other types of industries (cement, iron/steel, chemical and petrochemical), highly roasted coffee ground residue can be used as a source material for producing bioadsorbents suitable for CO2 capture. In this study, a bioadsorbent was produced in [...] Read more.
In the energy sector and in other types of industries (cement, iron/steel, chemical and petrochemical), highly roasted coffee ground residue can be used as a source material for producing bioadsorbents suitable for CO2 capture. In this study, a bioadsorbent was produced in a two-step process involving biowaste carbonization and biocarbon activation within a KOH solution. The physicochemical properties of the bioadsorbent were assessed using LECO, TG, SEM, BET and FT-IR methods. Investigating the CO2, O2 and N2 equilibrium adsorption capacity using an IGA analyzer allowed us to calculate CO2 selectivity factors. We assessed the influence of exhaust gas carbon dioxide concentration (16%, 30%, 81.5% and 100% vol.) and adsorption step temperature (25 °C, 50 °C and 75 °C) on the CO2 adsorption capacity of the bioadsorbent. We also investigated its stability and regenerability in multi-step adsorption–desorption using a TG-Vacuum system, simulating the VSA process and applying different pressures in the regeneration step (30, 60 and 100 mbarabs). The tests conducted assessed the possibility of using a produced bioadsorbent for capturing CO2 using the VSA technique. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

17 pages, 6874 KiB  
Article
A Modified Fatigue Life Prediction Model for Cyclic Hardening/Softening Steel
by Zhibin Shen, Zhihui Cai, Hong Wang, Bo Xu, Linye Zhang, Yuxuan Song and Zengliang Gao
Materials 2025, 18(14), 3274; https://doi.org/10.3390/ma18143274 - 11 Jul 2025
Viewed by 333
Abstract
The accumulation of fatigue damage is primarily caused by cyclic plastic deformation. In low-cycle fatigue, cyclic plastic deformation is the dominant deformation mode. In high-cycle fatigue, although most deformation is elastic, plastic deformation may still occur in localized regions of stress concentration and [...] Read more.
The accumulation of fatigue damage is primarily caused by cyclic plastic deformation. In low-cycle fatigue, cyclic plastic deformation is the dominant deformation mode. In high-cycle fatigue, although most deformation is elastic, plastic deformation may still occur in localized regions of stress concentration and plays a critical role in the initiation of fatigue cracks. Considering that cyclic plastic deformation can be characterized by hysteresis loops, this study modifies the flow stress equation and the cyclic plastic deformation relationship based on stress–strain hysteresis loops at half-life cycles under different strain amplitudes. An improved model for life prediction that incorporates the effects of strain amplitude is proposed. The results of experiments on 310S stainless steel and 1045 carbon steel demonstrate that the model achieved prediction errors within a factor of two and provided reliable predictions for both high-cycle and low-cycle fatigue life across the entire ε-N curve. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

29 pages, 4869 KiB  
Article
A Dual-Mean Statistical and Multivariate Framework for Machinability Evaluation in CNC Turning: Gradient and Stiffness Analysis Across Five Materials
by Mohammad S. Alsoufi
Materials 2025, 18(13), 2952; https://doi.org/10.3390/ma18132952 - 22 Jun 2025
Viewed by 455
Abstract
This study proposes a dual-statistical and gradient-based framework to evaluate the machinability of five engineering alloys under CNC turning. Cutting force and surface deformation were measured across five machining zones. Finite difference-based gradients revealed spatial variations in material response. Stainless Steel 304 showed [...] Read more.
This study proposes a dual-statistical and gradient-based framework to evaluate the machinability of five engineering alloys under CNC turning. Cutting force and surface deformation were measured across five machining zones. Finite difference-based gradients revealed spatial variations in material response. Stainless Steel 304 showed the highest cutting force (328 N), while Aluminum 6061 had the highest deformation (0.0164 mm). Carbon Steel 1020 exhibited the highest force-to-deformation efficiency (>97,000 N/mm). Arithmetic and harmonic means highlighted statistical sensitivities, while principal component analysis (PCA) identified clustering among materials and reduced dimensionality. A composite machinability score, integrating stiffness variation, efficiency gradients, and multivariate features, ranked Aluminum 6061 highest, followed by Brass C26000 and Bronze C51000. This methodology enables interpretable benchmarking and informed material selection in precision manufacturing. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

21 pages, 4948 KiB  
Article
Kinetics Study of the Hydrogen Reduction of Limonite Ore Using an Unreacted Core Model for Flat-Plate Particles
by Jindi Huang, Tao Yi, Jing Li, Mingzhou Li, Fupeng Liu and Jinliang Wang
Metals 2025, 15(6), 678; https://doi.org/10.3390/met15060678 - 19 Jun 2025
Viewed by 315
Abstract
The iron and steel industry is a major emitter of carbon. In the context of China’s dual-carbon goals, hydrogen-based reduction ironmaking technology has garnered unprecedented attention. It is considered a crucial approach to reducing carbon dioxide emissions in the steel sector and facilitating [...] Read more.
The iron and steel industry is a major emitter of carbon. In the context of China’s dual-carbon goals, hydrogen-based reduction ironmaking technology has garnered unprecedented attention. It is considered a crucial approach to reducing carbon dioxide emissions in the steel sector and facilitating the realization of carbon neutrality. This work conducted isothermal thermogravimetric analysis on limonite ore in a N2/H2 atmosphere. The influences of reduction temperature, particle size, and hydrogen partial pressure on the hydrogen reduction reaction process of limonite were investigated. Based on the principles of isothermal thermal analysis kinetics and the unreacted core model for flat-plate particles, the mechanism function and kinetic parameters for the reduction of limonite particles were determined. The research results show that the hydrogen reduction process of limonite ore is influenced by multiple factors, including temperature, hydrogen partial pressure, and particle size. Increasing the reduction temperature and hydrogen partial pressure can significantly speed up the reduction reaction rate and enhance the degree of reduction. The kinetic parameters for the hydrogen reduction of limonite particles were obtained as follows: the reaction activation energy was 44.738 kJ·mol−1, the pre-exponential factor was 31.438 m·s−1, and the rate constant for the hydrogen reduction of limonite was k=31.438×e44.738×1000RTms1. In addition, contour maps were plotted to predict the reaction time and reaction temperature required for a complete reduction of limonite particles of different sizes to iron (Fe) particles under varying hydrogen partial pressures. The research findings can serve as a scientific basis for optimizing hydrogen-based reduction ironmaking technology in the iron and steel industry and achieving carbon neutrality goals. Full article
(This article belongs to the Special Issue Recent Developments in Ironmaking)
Show Figures

Graphical abstract

13 pages, 3330 KiB  
Article
Super Hydrophobic UHMWPE/PTFE/PVA Composites with Low Friction: Preparation and Wear Mechanism
by Hai Wang, Zhiwei Shao, Kuiyuan Shen, Buhe Bateer, Fushen Ren and Xiaowen Qi
Polymers 2025, 17(12), 1664; https://doi.org/10.3390/polym17121664 - 16 Jun 2025
Viewed by 436
Abstract
This study develops novel superhydrophobic UHMWPE/PTFE/PVA composites via hot-pressing sintering to achieve ultra-low friction and enhanced wear resistance. The ternary system synergistically combines UHMWPE’s mechanical stability, PTFE’s lubricity, and PVA’s dispersion/binding capability. Results show PTFE disrupts UHMWPE crystallization, reducing melting temperature by 2.77 [...] Read more.
This study develops novel superhydrophobic UHMWPE/PTFE/PVA composites via hot-pressing sintering to achieve ultra-low friction and enhanced wear resistance. The ternary system synergistically combines UHMWPE’s mechanical stability, PTFE’s lubricity, and PVA’s dispersion/binding capability. Results show PTFE disrupts UHMWPE crystallization, reducing melting temperature by 2.77 °C and enabling energy dissipation. All composites exhibit hydrophobicity, with optimal formulations (UPP3/UPP4) reaching superhydrophobicity. Tribological testing under varied loads and frequencies reveals low friction, where UPP1 achieves a COF of 0.043 and wear rate below 1.5 × 10−5 mm3/(N·m) under low-load conditions. UHMWPE oxidative degradation forming carboxylic acids at the interface (C=O at 289 eV, C–O at 286 eV). Formation of tungsten oxides (WO3/WO2), carbides (WC), and transfer films on steel counterparts. A four-step tribochemical reaction pathway is established. PVA promotes uniform transfer films, while PTFE lamellar peeling and UHMWPE chain stability enable sustained lubrication. Carbon-rich stratified accumulations under high-load/speed increase COF via abrasive effects. The composites demonstrate exceptional biocompatibility and provide a scalable solution for biomedical and industrial tribological applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 6070 KiB  
Article
A Non-Vacuum Coating Process That Fully Achieves Technical Goals of Bipolar Plates via Synergistic Control of Multiple Layer-by-Layer Strategy
by Qiaoling Liu, Xiaole Chen, Menghan Wu, Weihao Wang, Yinru Lin, Zilong Chen, Shuhan Yang, Yuhui Zheng and Qianming Wang
Molecules 2025, 30(12), 2543; https://doi.org/10.3390/molecules30122543 - 11 Jun 2025
Viewed by 450
Abstract
The primary challenge associated with stainless steel in fuel cell operation is its susceptibility to corrosion, which leads to increased contact resistance and subsequent degradation of electrochemical performance. In general, the protective layers have been loaded onto the metal surface by widely used [...] Read more.
The primary challenge associated with stainless steel in fuel cell operation is its susceptibility to corrosion, which leads to increased contact resistance and subsequent degradation of electrochemical performance. In general, the protective layers have been loaded onto the metal surface by widely used traditional techniques such as physical vapor deposition (PVD), or cathode arc ion plating. However, the above sputtering and evaporation ways require a high-vacuum condition, complicated experimental setups, higher costs, and an elevated temperature. Therefore, herein the achievement for uniform coatings over a large surface area has been realized by using a cost-effective strategy through a complete wet chemical process. The synergistic regulation of two conductive components and a plastic additive has been employed together with the entrapment of a surfactant to optimize the microstructure of the coating surface. The assembly of layered graphite and a polystyrene sphere could maintain both the high corrosion resistance feature and excellent electrical conductivity. In particular, the intrinsic vacant space in the above physical barriers has been filled with fine powders of indium tin oxide (ITO) due to its small size, and the interconnected conductive network with vertical/horizontal directions would be formed. All the key technical targets based on the U.S. Department of Energy (DOE) have been achieved under the simulated operating environments of a proton exchange membrane fuel cell. The corrosion current density has been measured as low as 0.52 μA/cm2 (for the sample of graphite/mixed layer) over the applied potentials from −0.6 V to 1.2 V and its protective efficiency is evaluated to be 99.8%. The interfacial contact resistance between the sample and the carbon paper is much less than 10 mΩ·cm2 (3.4 mΩ·cm2) under a contact pressure of 165 N/cm2. The wettability has been investigated and its contact angle has been evolved from 48° (uncoated sample) to even 110°, providing superior hydrophobicity to prevent water penetration. Such an innovative approach opens up new possibilities for improving the durability and reducing the costs of carbon-based coatings. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

16 pages, 11068 KiB  
Article
Effect of Interlayers on Microstructure and Corrosion Resistance of 304/45 Stainless Steel Cladding Plate
by Yongtong Chen and Yi Ding
Materials 2025, 18(11), 2473; https://doi.org/10.3390/ma18112473 - 24 May 2025
Viewed by 551
Abstract
During the high-temperature preparation of stainless steel cladding plate, carbon atoms from carbon steel diffused into stainless steel. When temperatures were within 450–850 °C, carbides precipitated at grain boundaries, which initiated intergranular sensitization and thereby reduced the corrosion resistance of stainless steel. This [...] Read more.
During the high-temperature preparation of stainless steel cladding plate, carbon atoms from carbon steel diffused into stainless steel. When temperatures were within 450–850 °C, carbides precipitated at grain boundaries, which initiated intergranular sensitization and thereby reduced the corrosion resistance of stainless steel. This study designed NiP and NiCuP interlayer alloys to effectively block carbon diffusion in stainless steel cladding plates. The effect of adding interlayers on the microstructure of stainless steel cladding plate was studied by using optical microscopy and scanning electron microscopy. Electrochemical tests were subsequently conducted to evaluate the impact of interlayer incorporation on the corrosion resistance of stainless steel cladding. The results demonstrated that 304/45 specimens exhibited severe carbon diffusion, resulting in the poorest corrosion resistance. The addition of interlayers improved the corrosion resistance of stainless steel cladding to varying degrees. Among these, the 304/NiCuP/45 specimen showed the best performance. It had an intergranular corrosion susceptibility of only 0.25% and pitting potential as high as 0.336 V, which indicated its superior corrosion resistance. The passive film of stainless steel cladding exhibited n-type semiconductor characteristics. And 304/NiCuP/45 specimen demonstrated the lowest carrier density of 3.02 × 1018 cm−3, which indicated the formation of the densest passive film. Full article
Show Figures

Figure 1

16 pages, 5435 KiB  
Article
Structural Properties of Wire-Mesh-Reinforced Straw Concrete Sandwich Panels for Sustainable Construction
by Guoliang Guo, Chun Lv, Jie Liu and Yu Zhang
Buildings 2025, 15(10), 1632; https://doi.org/10.3390/buildings15101632 - 13 May 2025
Viewed by 485
Abstract
Straw as a building material alternative is in line with sustainable development goals. To make effective use of straw resources such as rice and corn stalks in rural areas, a kind of steel wire mesh-reinforced straw concrete sandwich panel (SCSP) was developed. The [...] Read more.
Straw as a building material alternative is in line with sustainable development goals. To make effective use of straw resources such as rice and corn stalks in rural areas, a kind of steel wire mesh-reinforced straw concrete sandwich panel (SCSP) was developed. The SCSP was composed of cold-drawn low-carbon steel-wire mesh (SWM), fine gravel concrete (FGC), and straw. The used type of FGC was shotcrete. A cold-drawn low-carbon SWM was arranged on the upper and lower sides of the SCSP, and a vertical wire tie was arranged between the upper and lower cold-drawn low-carbon SWMs. The FGC was sprayed on the SWM to make the SCSP layer work together. The loading process of the SCSP could be divided into three stages: elastic working state, cracking state, and failure state. The results of the four-point loading test show that the maximum flexural moment of the SCSP can be up to 7.5 kN·m in the elastic range. The ultimate bearing capacity of SCSP reaches 10.9 kN·m, and the maximum crack width can reach 3~4 mm. At the same time, based on the assumption of the flexural section of SCSP, two simplified calculation models of SCSP bearing capacity were established. The average error was 2.99% and 9.41%, respectively, by comparing the experimental values with the two calculated values. The results obtained by using the two models were in good agreement with the experimental results. Full article
Show Figures

Figure 1

26 pages, 8292 KiB  
Article
Low-Carbon Hybrid Constructed Wetland System for Rural Domestic Sewage: Substrate–Plant–Microbe Synergy and Annual Performance
by Jiawei Wang, Gang Zhang, Dejian Wang, Yuting Zhao, Lingyu Wu, Yunwen Zheng and Qin Liu
Water 2025, 17(10), 1421; https://doi.org/10.3390/w17101421 - 9 May 2025
Viewed by 708
Abstract
An integrated hybrid system was developed, incorporating sedimentation, anaerobic digestion, biological filtration, and a two-stage hybrid subsurface flow constructed wetland, horizontal subsurface flow constructed wetland (HSSFCW) and vertical subsurface flow constructed wetland (VSSFCW), to treat rural sewage in southern Jiangsu. To optimize nitrogen [...] Read more.
An integrated hybrid system was developed, incorporating sedimentation, anaerobic digestion, biological filtration, and a two-stage hybrid subsurface flow constructed wetland, horizontal subsurface flow constructed wetland (HSSFCW) and vertical subsurface flow constructed wetland (VSSFCW), to treat rural sewage in southern Jiangsu. To optimize nitrogen and phosphorus removal, the potential of six readily accessible industrial and agricultural waste byproducts—including plastic fiber (PF), hollow brick crumbs (BC), blast furnace steel slag (BFS), a zeolite–blast furnace steel slag composite (ZBFS), zeolite (Zeo), and soil—was systematically evaluated individually as substrates in vertical subsurface flow constructed wetlands (VSSFCWs) under varying hydraulic retention times (HRTs, 0–120 h). The synergy among substrates, plants, and microbes, coupled with the effects of hydraulic retention time (HRT) on pollutant degradation performance, was clarified. Results showed BFS achieved optimal comprehensive pollutant removal efficiencies (97.1% NH4+-N, 76.6% TN, 89.7% TP, 71.0% COD) at HRT = 12 h, while zeolite excelled in NH4+-N/TP removal (99.5%/94.5%) and zeolite–BFS specializing in COD reduction (80.6%). System-wide microbial analysis revealed organic load (sludges from the sedimentation tank [ST] and anaerobic tanks [ATs]), substrate type, and rhizosphere effects critically shaped community structure, driving specialized pathways like sulfur autotrophic denitrification (Nitrospira) and iron-mediated phosphorus removal. Annual engineering validation demonstrated that the optimized strategy of “pretreatment unit for phosphorus control—vertical wetland for enhanced nitrogen removal” achieved stable effluent quality compliance with Grade 1-A standard for rural domestic sewage discharge after treatment facilities, without the addition of external carbon sources or exogenous microbial inoculants. This low-carbon operation and long-term stability position it as an alternative to energy-intensive activated sludge or membrane-based systems in resource-limited settings. Full article
(This article belongs to the Special Issue Constructed Wetlands: Enhancing Contaminant Removal and Remediation)
Show Figures

Figure 1

26 pages, 10141 KiB  
Article
Study of Novel Geopolymer Concrete Prepared with Slate Stone Cutting Sludge, Chamotte, Steel Slag and Activated with Olive Stone Bottom Ash
by Raul Carrillo Beltran, Elena Picazo Camilo, Griselda Perea Toledo and Francisco Antonio Corpas Iglesias
Materials 2025, 18(9), 1974; https://doi.org/10.3390/ma18091974 - 26 Apr 2025
Cited by 2 | Viewed by 660
Abstract
The expansion of the construction sector has contributed to the depletion of raw materials and an increased demand for resources; therefore, sustainable approaches are required to satisfy the construction demand. The present study explores the development of geopolymers by utilizing industrial by-products from [...] Read more.
The expansion of the construction sector has contributed to the depletion of raw materials and an increased demand for resources; therefore, sustainable approaches are required to satisfy the construction demand. The present study explores the development of geopolymers by utilizing industrial by-products from mining, ceramics, olive oil production, and steel manufacturing. Specifically, slate stone cutting sludge (SSCS) and chamotte (CH) are used as aluminosilicate precursors, with olive biomass bottom ash (OSBA) acting as an alkaline activator, along with sodium silicate, and steel granulated slag (SGS) incorporated as an aggregate. Novel geopolymers were prepared with consistent proportions of SSCS and OSBA while varying the CH content from 10 to 2 wt.%. The SGS proportion was adjusted from 35 to 50 wt.%, and different Na2SiO3/OSBA ratios (0.35, 0.31, 0.19, and 0.08) were examined. To identify the optimal mix, a series of physical and mechanical tests was conducted, complemented by FTIR and SEM analysis to evaluate the chemical and microstructural changes. The best-performing formulation achieved a compressive strength of 42.8 MPa after 28 days of curing. FTIR analysis identified quartz and carbonate phases, suggesting that quartz did not fully dissolve and that carbonates formed during the heating process. SEM examination of the optimal mixture indicated that the incorporation of SGS (up to 45 wt.%) facilitated the creation of a compact, low-porosity structure. EDX results revealed the presence of Ca-, Na-, Si-, Al-, and K-enriched phases, supporting the formation of (N, C)-A-S-H gel networks. These results demonstrate the potential of utilizing SSCS, CH, OSBA, and SGS to create geopolymer concretes, showcasing the viability of using industrial by-products as eco-friendly substitutes for traditional construction materials. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials)
Show Figures

Figure 1

13 pages, 2998 KiB  
Article
Study of Surface Treatment by Ionic Plasma and Self-Protective Pastes of AISI 304 and 316L Stainless Steels: Chemical, Microstructural, and Nanohardness Evaluation
by Francisco Martínez-Baltodano, Juan C. Díaz-Guillén, Lizsandra López-Ojeda, Gregorio Vargas-Gutiérrez and Wilian Pech-Rodríguez
Lubricants 2025, 13(5), 195; https://doi.org/10.3390/lubricants13050195 - 24 Apr 2025
Viewed by 569
Abstract
This work studied the effect of self-protective paste nitriding (SPN) and ion plasma nitriding (IPN) on the surface chemistry, microstructure, and nanohardness of AISI 304 and 316L stainless steels, with both treated at 440 °C for 5 h. Surface modifications analyzed using SEM [...] Read more.
This work studied the effect of self-protective paste nitriding (SPN) and ion plasma nitriding (IPN) on the surface chemistry, microstructure, and nanohardness of AISI 304 and 316L stainless steels, with both treated at 440 °C for 5 h. Surface modifications analyzed using SEM and nanoindentation revealed distinct outcomes. SPN induced an oxynitriding effect due to the oxidation properties of the pastes, forming Fe3O4 and FexC phases, while IPN produced an expanded austenite layer. Both methods enhanced surface nanohardness, but SPN showed superior results. For 316L SS, SPN increased nanohardness by 367.81% (6.83 GPa) compared to a 133.5% increase (3.41 GPa) with IPN. For 304 SS, SPN improved nanohardness by 26% (2.23 GPa), whereas IPN reduced it by 48% (0.92 GPa). These findings highlight SPN’s potential as an effective anti-wear treatment, particularly for 316L SS. The SPN process utilized a eutectic mixture of sodium cyanate and sodium carbonate, while IPN employed a N2:H2 (1:1) gas mixture. SEM analyses confirmed the formation of γ-Fe(N) phases, indicating dispersed iron nitrides (FeN, Fe3N, Fe4N). SPN’s simultaneous oxidation and nitrocarburization led to an oxide layer above the nitride diffusion layer, enhancing mechanical properties through iron oxides (Fe3O4) and carbides (FexC). Comparative analysis showed that AISI 316L exhibited better performance than AISI 304, underscoring SPN’s effectiveness for surface modification. Full article
(This article belongs to the Special Issue Structural Evolution and Wear of Steels)
Show Figures

Figure 1

21 pages, 78310 KiB  
Article
Effect of Laser Power on Formation and Joining Strength of DP980-CFRP Joint Fabricated by Laser Circle Welding
by Sendong Ren, Yihao Shen, Taowei Wang, Hao Chen, Ninshu Ma and Jianguo Yang
Polymers 2025, 17(7), 997; https://doi.org/10.3390/polym17070997 - 7 Apr 2025
Viewed by 493
Abstract
In the present research, laser circle welding (LCW) was proposed to join dual-phase steel (DP980) and carbon fiber-reinforced plastic (CFRP). The welding appearance, cross-section of the welded joint and fracture surfaces were subjected to multi-scale characterizations. Joining strength was evaluated by the single-lap [...] Read more.
In the present research, laser circle welding (LCW) was proposed to join dual-phase steel (DP980) and carbon fiber-reinforced plastic (CFRP). The welding appearance, cross-section of the welded joint and fracture surfaces were subjected to multi-scale characterizations. Joining strength was evaluated by the single-lap shear test. Moreover, a numerical model was established based on the in-house finite element (FE) code JWRIAN-Hybrid to reproduce the thermal process of LCW. The results showed that successful bonding was achieved with a laser power higher than 300 W. The largest joining strength increased to about 1353.2 N (12.2 MPa) with 450 W laser power and then decreased under higher heat input. While the welded joint always presented brittle fracture, the joining zone could be divided into a squeezed zone (SZ), molten zone (MZ) and decomposition zone (DZ). The morphology of CFRP and chemical bonding information were distinct in each subregion. The chemical reaction between the O-C=O bond on the CFRP surface and the -OH bond on the DP980 sheet provided the joining force between dissimilar materials. Additionally, the developed FE model was effective in predicting the interfacial maximum temperature distribution of LCW. The influence of laser power on the joining strength of LCW joints was dualistic in character. The joining strength variation reflected the competitive result between joining zone expansion and local bonding quality change. Full article
(This article belongs to the Special Issue Advanced Joining Technologies for Polymers and Polymer Composites)
Show Figures

Figure 1

13 pages, 14903 KiB  
Article
Al2O3/ZnO Multilayer Coatings for Improvement in Functional Properties of Surgical Scalpel Blades
by Magdalena Monika Szindler, Marek Szindler, Jakub Bicz and Krzysztof Matus
Coatings 2025, 15(4), 436; https://doi.org/10.3390/coatings15040436 - 7 Apr 2025
Cited by 2 | Viewed by 571
Abstract
This work aimed to investigate the structure and corrosion resistance of Al2O3/ZnO multilayer coatings deposited by ALD on the standard surgical scalpel blades made of carbon steel. The surface topography of the coatings was examined using a scanning electron [...] Read more.
This work aimed to investigate the structure and corrosion resistance of Al2O3/ZnO multilayer coatings deposited by ALD on the standard surgical scalpel blades made of carbon steel. The surface topography of the coatings was examined using a scanning electron microscope (SEM), revealing the significant effect of the number of deposited Al2O3/ZnO bilayers on the morphology of the multilayer coatings. The XRD method was used for the phase analysis, allowing to confirm the presence of ZnO and ZnAl2O4 phases. The presence of the ZnAl2O4 structure was also confirmed using a Raman spectrometer. A qualitative analysis of the chemical composition of the obtained coatings was performed using the energy dispersive spectrometry (EDX) method. In order to determine the corrosion resistance, potentiodynamic tests were performed using Ringer’s solution at a temperature of 37 °C. The beneficial effect of increasing the number of deposited Al2O3/ZnO bilayers on the corrosion resistance was confirmed, with the lowest corrosion current density value of 2.05 μA/cm2 and the highest polarization resistance of 12.15 kΩ obtained in the case of the N72 coating. Full article
(This article belongs to the Special Issue Advances in Corrosion Behaviors and Protection of Coatings)
Show Figures

Figure 1

25 pages, 6987 KiB  
Article
Feasibility and Mechanical Performance of 3D-Printed Polymer Composite External Fixators for Tibial Fractures
by Ion Badea, Tudor-George Alexandru and Diana Popescu
Appl. Sci. 2025, 15(7), 4007; https://doi.org/10.3390/app15074007 - 5 Apr 2025
Cited by 1 | Viewed by 518
Abstract
This study evaluates the feasibility of 3D-printed polymer composite external fixator (EF) rings as a cost-effective alternative to stainless steel fixators, focusing on hybrid fixators for complex tibial fractures. Mechanical performance was assessed in three stages: (1) evaluating the initial EF–tibia configuration under [...] Read more.
This study evaluates the feasibility of 3D-printed polymer composite external fixator (EF) rings as a cost-effective alternative to stainless steel fixators, focusing on hybrid fixators for complex tibial fractures. Mechanical performance was assessed in three stages: (1) evaluating the initial EF–tibia configuration under axial loading and wire pre-tension conditions; (2) analyzing the stiffness evolution and weight-bearing capacity during early healing with progressive callus formation; and (3) optimizing ring designs through numerical analysis to improve structural performance under increased pre-tension. The results showed that, for the metallic EF, the axial displacement under one-leg stance reached 8.41 mm without pre-tension, reducing to 6.83 mm at 500 N pre-tension, though transverse displacement remained significant, suggesting the need for higher wire tension. Callus formation enhanced the load-bearing capacity, as expected. However, excessive displacements persisted under the one-leg stance, indicating that full weight-bearing should be delayed beyond two weeks for a fracture gap of 3 mm. A ring design assessment showed that full-ring configurations with two wires per ring improved performance. The 3D-printed full-ring design made of carbon-fiber-reinforced polylactic acid (PLA-CF) reduced stress by 85% at 500 N pre-tension compared to the initial configuration, remaining within allowable limits. While confirming feasibility, the study highlights the need for geometric refinements to accommodate higher preloads and improve transverse stiffness. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

16 pages, 18153 KiB  
Article
Effect of Mo and B on Microstructure and Impact Toughness of Coarse Grain Heat-Affected Zone in Low-Carbon V-Ti-N Micro-Alloyed Steel
by Mingliang Qiao, Huibing Fan, Shibiao Wang, Yixin Huang, Qingfeng Wang and Riping Liu
Materials 2025, 18(7), 1667; https://doi.org/10.3390/ma18071667 - 4 Apr 2025
Viewed by 494
Abstract
This study investigates the effects of molybdenum (Mo) and boron (B) on the microstructures and impact properties in the coarse grain heat-affected zone (CGHAZ) of a low-carbon V-Ti-N steel. The results demonstrate that, at a heat input of up to 75 kJ/cm, the [...] Read more.
This study investigates the effects of molybdenum (Mo) and boron (B) on the microstructures and impact properties in the coarse grain heat-affected zone (CGHAZ) of a low-carbon V-Ti-N steel. The results demonstrate that, at a heat input of up to 75 kJ/cm, the addition of Mo alters the microstructure of the CGHAZ, transforming it from a polygonal ferrite (PF) + degraded pearlite (DP) composition to a granular bainite (GB) + a small amount of acicular ferrite (AF). This transformation increases the impact energy from 20 J to 35 J. Furthermore, with the Mo/B composite addition, the CGHAZ microstructure was refined due to the formation of a large number of acicular ferrites, and the mean equivalent diameter (MEDMTA≥15°) decreased from 7.9 μm to 4.2 μm. Consequently, the impact toughness of the CGHAZ increased from 35 J to 111 J. The correlation between the Mo/B elements, microstructure and impact toughness was investigated in detail. The findings of this study have the potential to generate novel ideas for the advancement of steel materials in the context of high heat input welding. Full article
Show Figures

Figure 1

Back to TopTop