A Coffee-Based Bioadsorbent for CO2 Capture from Flue Gas Using VSA: TG-Vacuum Tests
Abstract
1. Introduction
2. Materials and Methods
2.1. Bioadsorbent Preparation Method
2.2. Material Characterization Methods
2.3. Adsorption Capacity Investigations
2.3.1. Isotherms of CO2, O2, and N2
2.3.2. Thermogravimetry CO2 Adsorption Tests Using Different Gas Mixtures
2.3.3. Cyclic Adsorption–Desorption Test
3. Results and Discussion
3.1. Physicochemical Properties of Bioadsorbent
3.2. CO2 Capture
3.2.1. Adsorption Isotherms of CO2, O2 and N2
3.2.2. Effect of Temperature and CO2 Concentration on Carbon Dioxide Adsorption Capacity of Bioadsorbent
3.2.3. VSA Process Simulation Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
a | Adsorption capacity, mgCO2 gA−1 |
ads I-IV | Adsorption steps |
AHRoCG | Activated highly roasted coffee grounds |
BET | Brunner–Emmett–Teller method |
CCO2 | Carbon dioxide concentration, % vol. |
CHRoCG | Carbonized highly roasted coffee grounds |
CCS | Carbon Capture and Storage |
CCU | Carbon Capture and Utilization |
des I-IV | Desorption steps |
HRoCG | Highly roasted coffee grounds |
IUPAC | International Union of Pure and Applied Chemistry |
m | Mass, mg |
Lo | Average pore width, nm |
MOFs | Metal–organic frameworks |
PSA | Pressure swing adsorption |
PTSA | Pressure temperature swing adsorption |
S | Selectivity coefficient |
SBET | Specific surface area calculated using the BET method, m2 g−1 |
SEM | Scanning electron microscope |
t | Time, min |
T | Temperature, °C |
TG | Thermogravimetry |
TSA | Temperature Swing Adsorption |
VSA | Vacuum swing adsorption |
Vp | Total pore volume, cm3 g−1 |
VPSA | Vacuum pressure swing adsorption |
VTSA | Vacuum temperature swing adsorption |
Wo | Micropore volume, cm3 g−1 |
x | Molar fraction of separated component in the adsorbed phase |
y | Molar fraction of component in the bulk phase |
Ir | Heating |
IIr | Baking |
IIIr | Cooling |
IVr | Vacuum degassing |
References
- Ghiat, I.; Al Ansari, T. A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. J. CO2 Util. 2021, 45, 101432. [Google Scholar] [CrossRef]
- Brown, T.; Gambhir, A.; Florin, L.; Fennel, P. Reducing of CO2 Emissions from Heavy Industry: A Review of Technologies and Considerations for Policy Makers. Ph.D. Thesis, Imperial College London, London, UK, 2012. Available online: https://www.imperial.ac.uk/media/imperial-college/grantham-institute/public/publications/briefing-papers/Reducing-CO2-emissions-from-heavy-industry---Grantham-BP-7.pdf (accessed on 19 May 2025).
- Wawrzyńczak, D. Adsorption technology for CO2 capture. In The Carbon Chain in Carbon Dioxide Industrial Utilization Technologies: A Case Study, 1st ed.; Wawrzyńczak, D., Majchrzak-Kucęba, I., Pevida, C., Bonura, G., Nogueira, R., De Falco, M., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 37–62. [Google Scholar]
- Wawrzyńczak, D.; Majchrzak-Kucęba, I.; Srokosz, K.; Kozak, M.; Nowak, W.; Zdeb, J.; Smółka, W.; Zajchowski, A. The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas. Sep. Purif. Technol. 2019, 209, 560–570. [Google Scholar] [CrossRef]
- Majchrzak-Kucęba, I.; Wawrzyńczak, D.; Zdeb, J.; Smółka, W.; Zajchowski, A. Treatment of flue gas in a CO2 capture pilot plant for a commercial CFB boiler. Energies 2021, 14, 2458. [Google Scholar] [CrossRef]
- Ciora, R.J.; Sengupta, B.; Wang, F.; Li, S.; Yu, M. Direct modification of pelletized 13X zeolite by atomic layer deposition toward effective CO2 capture from flue gas. Chem. Eng. J. 2024, 497, 154733. [Google Scholar] [CrossRef]
- Kostkova, N.; Vorokhta, M.; Kormunda, M.; Pilar, R.; Sadovska, G.; Honcova, P.; Mikyskova, E.; Moravkova, J.; Sazama, P. Controlling the structure of nitrogen-doped zeolite-templated carbon for CO2 capture based on the synthesis conditions. Microporous Mesoporous Mater. 2024, 379, 113286. [Google Scholar] [CrossRef]
- Ramos, P.B.; Jerez, F.; Erans, M.; Mamaní, A.; Ponce, M.F.; Sardella, M.F.; Sanz-Pérez, E.S.; Sanz, R.; Arencibia, A.; Bavio, M.A. Environmentally valorization of olive tree pruning residue: Activated carbons for CO2 capture and energy storage in supercapacitors. Biomass Bioenergy 2025, 194, 107669. [Google Scholar] [CrossRef]
- Cen, Q.; Fang, M.; Wang, T.; Majchrzak-Kucęba, I.; Wawrzyńczak, D.; Luo, Z. Thermodynamics and regeneration studies of CO2 adsorption on activated carbon. Greenh. Gases Sci. Technol. 2016, 6, 787–796. [Google Scholar] [CrossRef]
- Majchrzak-Kucęba, I.; Ściubidło, A. Shaping metal-organic frameworks (MOFs) powder materials for CO2 capture applications—Thermogravimetric study. J. Therm. Anal. Calorim. 2019, 138, 4139–4144. [Google Scholar] [CrossRef]
- Dissanayake, P.D.; You, S.; Igalavithana, A.D.; Xia, Y.; Bhatnagar, A.; Gupta, S.; Kua, H.W.; Kim, S.; Kwon, J.-H.; Tsang, D.C.W.; et al. Biochar-based adsorbents for carbon dioxide capture: A critical review. Renew. Sustain. Energy Rev. 2020, 119, 109582. [Google Scholar] [CrossRef]
- Ochedi, F.O.; Liu, Y.; Adewuyi, Y.G. State-of-the-art review on capture of CO2 using adsorbents prepared from waste materials. Process. Saf. Environ. Prot. 2020, 139, 1–25. [Google Scholar] [CrossRef]
- Ghafar, N.A.; Harimisa, G.E.; Jusoh, N.W.C. Biowaste-based porous adsorbent for carbon dioxide adsorption. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1051, 012081. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Z.; Zhang, G.; Zhao, P. Excellent CO2 adsorption performance of nitrogen-doped waste biocarbon prepared with different activators. J. Clean. Prod. 2020, 264, 121645. [Google Scholar] [CrossRef]
- Singh, G.; Ruban, A.M.; Geng, X.; Vinu, A. Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation. Chem. Eng. J. 2023, 451, 139045. [Google Scholar] [CrossRef]
- Mallesh, D.; Anbarasan, J.; Kumar, P.M.; Upendar, K.; Chandrashekar, P.; Rao, B.V.S.K.; Lin-gaiah, N. Synthesis, characterization of carbon adsorbents derived from waste biomass and its ap-plication to CO2 capture. Appl. Surf. Sci. 2020, 530, 147226. [Google Scholar] [CrossRef]
- Sreńscek-Nazzal, J.; Kamińska, A.; Serafin, J.; Michalkiewicz, B. Chemical activation of banana peel waste-derived biochar using KOH and urea for CO2 capture. Materials 2024, 17, 872. [Google Scholar] [CrossRef] [PubMed]
- Adan-Mas, A.; Alcaraz, L.; Arévalo-Cid, P.; López-Gómez, F.A.; Montemor, F. Coffee-derived activated carbon from second biowaste for supercapacitor applications. Waste Manag. 2021, 120, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Borugadda, V.B.; Dynes, J.J.; Niu, C.; Dalai, A.K. Carbon dioxide capture from flue gas in biochar produced from spent coffee grounds: Effect of surface chemistry and porous structure. J. Environ. Chem. Eng. 2021, 9, 106049. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Choi, S.W.; Dissanayake, P.D.; Shang, J.; Wang, C.-H.; Yang, X.; Kim, S.; Tsang, D.C.; Lee, K.B.; Ok, Y.S. Gasification biochar from biowaste (food waste and wood waste) for effective CO2 adsorption. J. Hazard. Mater. 2020, 391, 121147. [Google Scholar] [CrossRef] [PubMed]
- Querejeta, N.; Gil, M.V.; Rubiera, F.; Pevida, C.; Wawrzyńczak, D.; Panowski, M.; Majchrzak-Kucęba, I. Bio-engineering of carbon adsorbents to capture CO2 from industrial sources: The cement case. Sep. Purif. Technol. 2024, 330, 125407. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, Y.; Balasubramanian, R. Synthesis of biowaste-derived carbon foam for CO2 capture. Resour. Conserv. Recycl. 2022, 185, 106453. [Google Scholar] [CrossRef]
- Kourmentza, C.; Economou, C.N.; Tsafrakidou, P.; Kornaros, M. Spent coffee grounds make much more than waste: Exploring recent advances and future exploitation strategies for the valorization of an emerging food waste stream. J. Clean. Prod. 2018, 172, 980–992. [Google Scholar] [CrossRef]
- Travis, W.; Gadipelli, S.; Guo, Z. Superior CO2 adsorption from waste coffee ground derived carbons. RSC Adv. 2015, 5, 29558–29562. [Google Scholar] [CrossRef]
- Liu, S.H.; Huang, Y.Y. Valorization of coffee grounds to biochar-derived adsorbents for CO2 adsorption. J. Clean. Prod. 2018, 175, 354–360. [Google Scholar] [CrossRef]
- Plaza, M.G.; González, A.Z.; Pevida, C.; Rubiera, F. Green coffee based CO2 adsorbent with high performance in post-combustion conditions. Fuel 2015, 140, 633–648. [Google Scholar] [CrossRef]
- Plaza, M.G.; González, A.; Pevida, C.; Pis, J.J.; Rubiera, F. Valorization of spent coffee grounds as CO2 adsorbents for post- combustion capture applications. Appl. Energy 2012, 99, 272–279. [Google Scholar] [CrossRef]
- González, A.S.; Plaza, M.G.; Pis, J.J.; Rubiera, F.; Pevida, C. Post-combustion CO2 capture adsorbents from spent coffee grounds. Energy Procedia 2013, 37, 134–141. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Cui, Z.; Fu, Z.; Yang, L.; Liu, G.; Li, M. Coffee grounds derived N enriched microporous activated carbons: Efficient adsorbent for post-combustion CO2 capture and conversion. J. Colloid Interface Sci. 2000, 578, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Querejeta, N.; Gil, M.V.; Rubiera, F.; Pevida, C. Sustainable coffee-based CO2 adsorbents: Toward a greener production via hydrothermal carbonization. Greenh. Gases Sci. Technol. 2018, 8, 309–323. [Google Scholar] [CrossRef]
- Kim, M.J.; Choi, S.W.; Kim, H.; Mun, S.; Lee, K.B. Simple synthesis of spent coffee ground-based microporous carbons using K2CO3 as an activation agent and their application to CO2 capture. Chem. Eng. J. 2020, 397, 125404. [Google Scholar] [CrossRef]
- Boonchuay, A.; Worathanakul, P. The diffusion behavior of CO2 adsorption from a CO2/N2 gas mixture on zeolite 5A in a fixed-bed column. Atmosphere 2022, 13, 513. [Google Scholar] [CrossRef]
- Zhao, N.; Liu, Z.; Yu, T.; Yan, F. Spent coffee grounds: Present and future of environmentally friendly applications on industries-A review. Trends Food Sci. Technol. 2024, 143, 104312. [Google Scholar] [CrossRef]
- Mcenanev, B. Estimation of the dimensions of micropores in active carbons using the Dubinin—Radushkevich equation. Carbon 1987, 25, 69–75. [Google Scholar] [CrossRef]
- Carrott, P.J.M.; Carrott, M.R. Evaluation of the Stoeckli method for the estimation of micropore size distributions of activated charcoal cloths. Carbon 1999, 37, 647–656. [Google Scholar] [CrossRef]
- Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity, 2nd ed.; Academic Press: London, UK, 1982. [Google Scholar]
- Coffee Report and Outlook. International Coffee Organization. December 2023. Available online: https://icocoffee.org/documents/cy2023-24/Coffee_Report_and_Outlook_December_2023_ICO.pdf (accessed on 23 June 2025).
Samples | SBET | Vp | W0 | L0 |
---|---|---|---|---|
m2 g−1 | cm3 g−1 | cm3 g−1 | nm | |
HRoCG | 0.21 | 0.00006 | n/a | 1.54 |
CHRoCG | 18 | 0.008 | 0.004 | 1.36 |
AHRoCG | 1580 | 0.84 | 0.5 | 0.96 |
Gas Mixture | ||
---|---|---|
16.0% CO2; 3.5% O2; 80.5% N2 | 12.7 | 22.3 |
30% CO2; 10% O2; 60% N2 | 7.2 | 42.7 |
81.5% CO2; 4.0% O2; 14.5% N2 | 27.1 | 491.9 |
Bioadsorbent | Porous Structure Parameters | CO2 Sorption | Literature |
---|---|---|---|
SBET, m2 g−1 Vp, cm3 g−1 W0, cm3 g−1 | a, mgCO2 gA−1 (25 °C, 1 bar) | ||
CG 400 2-1; CG 400 4-1; CG 700 2-1; CG 700 4-1 | 1624–2785 0.66–1.36 0.59–0.79 | 123.6–194.5 | [24] |
NCLK1; NCLK2; NCLK3; NCLK4; NCLK3b; NCHA29; NCHA36; NCHA41 | 568–1082 0.24–0.51 0.22–0.41 | 92.4–132.0 | [27] |
CACs-1–800; CACs-2–800; CACs-3–800; CACs-4–800; CACs-2–700; CACs-2–900 | 654–1931 0.32–1.31 - | 106.5–168.1 | [29] |
CG600-1; CG600-5; CG700-1; CG700-5; CG800-1; CG800-5 | 645–2337 0.26–1.15 - | 151.8–199.8 | [31] |
AHRoCG | 1580 0.84 0.5 | 123.6 | this study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sołtysik, M.; Majchrzak-Kucęba, I.; Wawrzyńczak, D. A Coffee-Based Bioadsorbent for CO2 Capture from Flue Gas Using VSA: TG-Vacuum Tests. Energies 2025, 18, 3965. https://doi.org/10.3390/en18153965
Sołtysik M, Majchrzak-Kucęba I, Wawrzyńczak D. A Coffee-Based Bioadsorbent for CO2 Capture from Flue Gas Using VSA: TG-Vacuum Tests. Energies. 2025; 18(15):3965. https://doi.org/10.3390/en18153965
Chicago/Turabian StyleSołtysik, Marcelina, Izabela Majchrzak-Kucęba, and Dariusz Wawrzyńczak. 2025. "A Coffee-Based Bioadsorbent for CO2 Capture from Flue Gas Using VSA: TG-Vacuum Tests" Energies 18, no. 15: 3965. https://doi.org/10.3390/en18153965
APA StyleSołtysik, M., Majchrzak-Kucęba, I., & Wawrzyńczak, D. (2025). A Coffee-Based Bioadsorbent for CO2 Capture from Flue Gas Using VSA: TG-Vacuum Tests. Energies, 18(15), 3965. https://doi.org/10.3390/en18153965