Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (448)

Search Parameters:
Keywords = carbohydrates conversion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 926 KB  
Review
Acrylamide in Food: From Maillard Reaction to Public Health Concern
by Gréta Törős, Walaa Alibrahem, Nihad Kharrat Helu, Szintia Jevcsák, Aya Ferroudj and József Prokisch
Toxics 2026, 14(2), 110; https://doi.org/10.3390/toxics14020110 - 23 Jan 2026
Abstract
Acrylamide is a heat-induced food contaminant that can be formed through the Maillard reaction between reducing sugars and asparagine in carbohydrate-rich foods. It is recognized as having carcinogenic, neurotoxic, and reproductive risks, prompting global regulatory and research attention. This review synthesizes recent advances [...] Read more.
Acrylamide is a heat-induced food contaminant that can be formed through the Maillard reaction between reducing sugars and asparagine in carbohydrate-rich foods. It is recognized as having carcinogenic, neurotoxic, and reproductive risks, prompting global regulatory and research attention. This review synthesizes recent advances (2013–2025) in understanding acrylamide’s formation mechanisms, detection methods, mitigation strategies, and health implications. Analytical innovations such as LC–MS/MS have enabled detection at trace levels (≤10 µg/kg), supporting process optimization and compliance monitoring. Effective mitigation strategies combine cooking adjustments, ingredient reformulation, and novel technologies, including vacuum frying, ohmic heating, and predictive modeling, which can achieve up to a 70% reduction in certain food categories. Dietary polyphenols and fibers also hold promise, lowering acrylamide formation and bioavailability through carbonyl trapping and enhanced detoxification. However, significant gaps remain in bioavailability assessment, analysis of metabolic fate (glycidamide conversion), and standardized global monitoring. This review emphasizes that a sustainable reduction in dietary acrylamide requires a multidisciplinary framework integrating mechanistic modeling, green processing, regulatory oversight, and consumer education. Bridging science, industry, and policy is essential to ensure safer food systems and minimize long-term public health risks. Full article
Show Figures

Graphical abstract

18 pages, 1465 KB  
Article
Growth Performances and Nutritional Values of Tenebrio molitor Larvae: Influence of Different Agro-Industrial By-Product Diets
by Giuseppe Serra, Francesco Corrias, Mattia Casula, Maria Leonarda Fadda, Stefano Arrizza, Massimo Milia, Nicola Arru and Alberto Angioni
Foods 2026, 15(2), 393; https://doi.org/10.3390/foods15020393 - 22 Jan 2026
Abstract
Intensive livestock and aquaculture systems require high-quality feeds with the correct nutritional composition. The decrease in wild fish proteins has led to demands within the feed supply chain for new alternatives to fulfil the growing demand for protein. In this context, edible insects [...] Read more.
Intensive livestock and aquaculture systems require high-quality feeds with the correct nutritional composition. The decrease in wild fish proteins has led to demands within the feed supply chain for new alternatives to fulfil the growing demand for protein. In this context, edible insects like the yellow mealworm (Tenebrio molitor) have the greatest potential to become a valid alternative source of proteins. This study evaluated the growth performance and nutritional profile of yellow mealworm larvae reared under laboratory conditions on eight different agro-industrial by-products: wheat middling, durum wheat bran, rice bran, hemp cake, thistle cake, dried brewer’s spent grains, dried tomato pomace, and dried distilled grape marc. The quantitative and qualitative impacts of rearing substrates on larvae were compared. The results showed that larvae adapt well to different substrates with different nutritional compositions, including the fibrous fraction. However, substrates affect larval growth feed conversion and larval macro composition. Hemp cake stood out for its superior nutritional value, as reflected by its high protein content and moderate NDF (Neutral Detergent Fiber) levels, which determine fast larval growth. On the contrary, imbalanced substrate lipid or carbohydrate content (rice bran), as well as the presence of potential antinutritional compounds (thistle cake), appeared to negatively affect growth performances. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

17 pages, 1494 KB  
Article
Polysaccharide Utilization and Adhesion Enable the Genome-Streamlined Opacimonas immobilis to Adapt to the Diatom Phycosphere
by Xiaoyu Yang, Xuanru Lin, Jianmin Xie, Runlin Cai, Guanjing Cai and Hui Wang
Microorganisms 2026, 14(1), 139; https://doi.org/10.3390/microorganisms14010139 - 8 Jan 2026
Viewed by 241
Abstract
Heterotrophic bacteria and microalgae are key regulators of marine biogeochemical cycles. The phycosphere, a nutrient-rich microenvironment surrounding microalgae, serves as a crucial interface for bacterial–algal interactions. Our previous work identified Opacimonas immobilis LMIT016T, a phycosphere isolate from the diatom Actinocyclus curvatulus [...] Read more.
Heterotrophic bacteria and microalgae are key regulators of marine biogeochemical cycles. The phycosphere, a nutrient-rich microenvironment surrounding microalgae, serves as a crucial interface for bacterial–algal interactions. Our previous work identified Opacimonas immobilis LMIT016T, a phycosphere isolate from the diatom Actinocyclus curvatulus that possesses the smallest genome within the Alteromonadaceae family. However, its adaptation mechanisms to the phycosphere remain unclear, particularly given its extensive genome streamlining, a process involving the selective loss of non-essential and energetically costly genes to enhance fitness in nutrient-specific niches. Here, the co-cultivation experiments demonstrated significant mutual growth promotion between LMIT016T and its host microalgae, with the bacterium forming dense attachments on diatom surfaces. Genomic analysis revealed that in addition to loss of motility-related genes, the strain exhibits a substantial reduction in c-di-GMP signaling components, including both synthases and receptors. Conversely, LMIT016T harbors numerous genes essential for extracellular polysaccharide (EPS) biosynthesis and adhesion, supporting long-term attachment and biofilm formation. Other retained genes encode pathways for nutrient acquisition, stress response, and phosphate and nitrogen metabolism, reflecting its adaptations to the nutrient-rich phycosphere. Furthermore, the genome of LMIT016T encodes two polysaccharide utilization loci (PULs) targeting laminarin and α-1,4-glucans, whose functions were experimentally validated by the transcriptional induction of the corresponding carbohydrate-active enzyme genes. These findings indicate that this strain counterbalances genome reduction by enhancing its attachment capabilities and metabolic specialization on algal polysaccharides, potentially facilitating stable association with diatom cells. Our results suggest that genome streamlining may represent an alternative ecological strategy in the phycosphere, highlighting a potential evolutionary trade-off between metabolic efficiency and niche specialization. Full article
Show Figures

Figure 1

16 pages, 1739 KB  
Article
The Effect of Enzyme Synergism on Generation of Fermentable Sugars After Alkali Pretreatment of Wheat Straw, Assessed and Predicted Using Multivariate Analysis
by Yufa Gao, Zhe Li, Zhibin Li, Xitao Luo, Mohammad Ali Asadollahi, Safoora Mirmohamadsaghi, Guang Yu and Bin Li
Polymers 2026, 18(2), 157; https://doi.org/10.3390/polym18020157 - 7 Jan 2026
Viewed by 184
Abstract
Alkaline pretreatment of wheat straw could significantly augment enzymatic hydrolysis for producing fermentable sugars, which is a pivotal process for the conversion of lignocellulosic biomass into advanced biofuels, biomaterials, or biochemicals. Yet, the enzymatic conversion process system is complex and multivariate, and study [...] Read more.
Alkaline pretreatment of wheat straw could significantly augment enzymatic hydrolysis for producing fermentable sugars, which is a pivotal process for the conversion of lignocellulosic biomass into advanced biofuels, biomaterials, or biochemicals. Yet, the enzymatic conversion process system is complex and multivariate, and study on the interaction mechanism of the key parameters in enzymatic hydrolysis is still lacking. Therefore, in this work, multivariate data analysis (MDA) (i.e., principal component analysis (PCA) and partial least square (PLS)) was conducted to reveal the inherent relationship and the significance of these factors in a modified alkali pretreatment system. A robust model, developed from 140 enzymatic hydrolysis datasets, was validated with an additional 20 datasets, demonstrating the predictive prowess of the PLS model. MDA identified that cellulase dosage, mechanical refining, dye adsorption value, and solid content were paramount variables. The integration of cellulase and xylanase notably elevated sugar yields and the conversion rates of carbohydrates, surpassing those of single enzyme treatments. The model’s predictive accuracy, reflected in the close alignment between observed and predicted data, underscores its suitability for optimizing and controlling the enzymatic hydrolysis process. This study paves a way for data-driven strategies to enhance industrial bioprocessing of lignocellulosic feedstocks. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

23 pages, 2691 KB  
Article
Fruit Nutritional Composition and Seed Reserve Mobilization as Tools for Phenotypic Selection in Eugenia patrisii (Myrtaceae)
by Pedro Paulo dos Santos, Elmer Viana Gonçalves, Josiane Celerino de Carvalho, Karen Cristina Pires da Costa, Acacio de Andrade Pacheco, Caris dos Santos Viana, Jaime Paiva Lopes Aguiar, Andreia Varmes Fernandes, Auxiliadora Oliveira Martins, Wagner Luiz Araújo and José Francisco de Carvalho Gonçalves
Foods 2026, 15(2), 188; https://doi.org/10.3390/foods15020188 - 6 Jan 2026
Viewed by 249
Abstract
Understanding the integration of metabolic fluxes in fruits and seeds is crucial for identifying key biochemical markers for phenotypic selection in tropical species. This study investigated the Amazonian fruit species Eugenia patrisii (Myrtaceae), known for its nutritional and biotechnological potential, to elucidate the [...] Read more.
Understanding the integration of metabolic fluxes in fruits and seeds is crucial for identifying key biochemical markers for phenotypic selection in tropical species. This study investigated the Amazonian fruit species Eugenia patrisii (Myrtaceae), known for its nutritional and biotechnological potential, to elucidate the link between fruit chemistry and primary reserve mobilization during germination and early seedling growth. Botanical material was collected from an experimental plantation in Maraba, Pará, Brazil. Three contrasting phenotypes (Ph2, Ph3, and Ph6) were analyzed for fruit proximate composition as well as the dynamics of carbohydrates and protein use over seven germination stages. Fruits predominantly contained carbohydrates (76.6–79.3 g/100 g) and proteins (12.7–17.5 g/100 g) and had low lipid content (<5 g/100 g), indicating high energy conversion efficiency. Phenotype Ph6 showed higher protein accumulation and intensive reserve metabolism in late development stages, while Ph2 featured greater soluble sugar content, indicating contrasting reserve allocation strategies. Principal component analysis (PCA) and the indices of integrated metabolic flux (MFI) and total activity (TAI) revealed distinct metabolic cost patterns and biochemical efficiency among phenotypes. Together, these results demonstrate that fruit nutritional attributes and seed metabolic behavior provide quantitative criteria for identifying superior phenotypes, with Ph3 and Ph6 emerging as promising candidates for domestication, breeding, and conservation programs. Full article
Show Figures

Figure 1

14 pages, 1065 KB  
Article
Application of Spirulina platensis and Chlorella vulgaris for Improved Growth and Bioactive Compound Accumulation in Achillea fragrantissima In Vitro
by Hind Salih Alrajeh, Fadia El Sherif and Salah Khattab
Phycology 2026, 6(1), 7; https://doi.org/10.3390/phycology6010007 - 1 Jan 2026
Viewed by 267
Abstract
Achillea fragrantissima is a medicinal herb valued for its essential oils and bioactive compounds. Microalgae, such as Spirulina platensis and Chlorella vulgaris, show considerable promise as natural biostimulants due to their high levels of protein, minerals, vitamins, and fatty acids. The individual [...] Read more.
Achillea fragrantissima is a medicinal herb valued for its essential oils and bioactive compounds. Microalgae, such as Spirulina platensis and Chlorella vulgaris, show considerable promise as natural biostimulants due to their high levels of protein, minerals, vitamins, and fatty acids. The individual or compound effects of S. platensis and C. vulgaris on the growth, photosynthetic pigments, and essential oil composition of A. fragrantissima in vitro were measured in this study. According to chemical analysis, S. platensis contains large amounts of protein and several minerals, including phosphorus, manganese, and iron. Conversely, C. vulgaris showed a higher percentage of carbohydrates, lipids, phytol, aldehydes, and fatty acid esters. The combination of 1.0 g·L−1 S. platensis and 0.5 g·L−1 C. vulgaris tended to stimulate callus formation. Meanwhile, the 0.5 g·L−1 C. vulgaris treatment enhanced shoot and leaf development and increased total photosynthetic pigment content. Analysis of essential oils from A. fragrantissima produced under different treatments demonstrated that combined treatments with S. platensis and C. vulgaris had greatly improved the valuable bioactive substances, such as phytol, oleic acid, 2H-pyran, and thymine. These results show the effectiveness of using S. platensis and C. vulgaris extracts as eco-friendly biostimulants. Full article
Show Figures

Figure 1

16 pages, 6885 KB  
Article
Distinct Rumen Microbial Features and Host Metabolic Responses in Three Cervid Species
by Yuhang Zhu, Yunfei Chai, Sibo Chen, Wenxi Qian, Huazhe Si and Zhipeng Li
Animals 2026, 16(1), 116; https://doi.org/10.3390/ani16010116 - 31 Dec 2025
Viewed by 368
Abstract
Rumen microbiota is pivotal for nutrient metabolism and physiological adaptation in ruminants. This study investigated the rumen microbial community, fermentation parameters, and serum biochemistry of three Cervid species—Sika deer (Cervus nippon), Reindeer (Rangifer tarandus), and Milu deer (Elaphurus [...] Read more.
Rumen microbiota is pivotal for nutrient metabolism and physiological adaptation in ruminants. This study investigated the rumen microbial community, fermentation parameters, and serum biochemistry of three Cervid species—Sika deer (Cervus nippon), Reindeer (Rangifer tarandus), and Milu deer (Elaphurus davidianus) (n = 5/group)—fed an identical diet. Using 16S rRNA sequencing and biochemical analyses, we found that while Bacteroidota, Firmicutes, and Proteobacteria were dominant phyla across species. Sika deer and Milu deer exhibited significantly higher microbial diversity and abundance of carbohydrate-digesting genera (e.g., Butyrivibrio, Saccharofermentans), and pathways of carbohydrate digestion and absorption, starch and sucrose metabolism compared to Reindeer. Conversely, Reindeer showed increased abundances of Lachnospiraceae ND3007 and butyrate metabolism pathway, and significantly elevated rumen volatile fatty acid concentrations, particularly acetate and butyrate. Serum profiling revealed that Milu deer had significantly higher lipid levels (CHO, TG, LDL-C) but lower total protein and AST levels compared to other species. Notably, WGCNA linked these blood lipid traits to host genes enriched in PI3K-Akt, MAPK, and bile secretion pathways. These findings demonstrate distinct species-specific rumen fermentation patterns and host metabolic adaptations, suggesting a coordinated regulation between the rumen microbiome and host genetics in Cervid. Full article
(This article belongs to the Special Issue Optimizing Rumen Functions for Digestive Efficiency)
Show Figures

Figure 1

13 pages, 623 KB  
Article
Enhanced Microbial Diversity Attained Under Short Retention and High Organic Loading Conditions Promotes High Volatile Fatty Acid Production Efficiency
by Claudia Chao-Reyes, Rudolphus Antonius Timmers, Ahmed Mahdy, Silvia Greses and Cristina González-Fernández
Molecules 2026, 31(1), 132; https://doi.org/10.3390/molecules31010132 - 30 Dec 2025
Viewed by 217
Abstract
The optimization of volatile fatty acid (VFA) production from complex wastes under anaerobic conditions remains constrained in terms of productivity by the common use of long hydraulic retention times (HRTs, 20–30 days). Extended HRTs can limit process productivity by reducing substrate turnover and [...] Read more.
The optimization of volatile fatty acid (VFA) production from complex wastes under anaerobic conditions remains constrained in terms of productivity by the common use of long hydraulic retention times (HRTs, 20–30 days). Extended HRTs can limit process productivity by reducing substrate turnover and reactor throughput, while promoting further conversion of VFAs into methane and other end products. Despite its importance, the combined influence of pH and HRT on VFA yields and process optimization has not been comprehensively evaluated. This study investigates the effects of pH and short HRT on VFA production, microbial community structure, and hydrolysis and acidification efficiency in continuous stirred-tank reactors (CSTRs) fed with carbohydrate-rich feedstock (carrot residue pulp). Operating at an HRT of 11 days and an organic loading rate (OLR) of 4.4 g COD·L−1·d−1 at 25 °C under pH 5.1 resulted in a VFA bioconversion efficiency of ~45% and an acidification efficiency of 84%, without compromising VFA profile or productivity compared to reactors operated at 14 days HRT and 3.3 g COD·L−1·d−1. The shorter HRT and higher OLR enhanced hydrolysis efficiency (60%) and promoted greater microbial diversity, supporting robust hydrolytic activity and stable production dominated by acetic and butyric acids. These findings challenge the conventional assumption that longer retention times inherently improve process stability and demonstrate that operational conditions might improve reactor space–time yield in VFA-oriented fermentations. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

22 pages, 3776 KB  
Article
Nutritional Profiles of Plants Consumed by Military Macaw During the Breeding and Non-Breeding Seasons in the Alto Balsas Basin, Mexico
by Valeria López-Hernández, Leopoldo D. Vázquez-Reyes, Ana María Contreras-González, Victor H. Jiménez-Arcos, Jorge Tanit Rodríguez-Malacara, Megan P. Trejo-Boyso, Taisha Lara-Moreno, Jose Alfredo Rodriguez, Cesar Mateo Flores-Ortiz and Francisco Alberto Rivera-Ortiz
Birds 2026, 7(1), 2; https://doi.org/10.3390/birds7010002 - 25 Dec 2025
Viewed by 913
Abstract
The Military Macaw is a Neotropical psittacid that is endangered in Mexico. It faces significant threats due to habitat loss and the illegal pet trade. However, little is known about the nutritional characteristics of the plant resources available to this species throughout its [...] Read more.
The Military Macaw is a Neotropical psittacid that is endangered in Mexico. It faces significant threats due to habitat loss and the illegal pet trade. However, little is known about the nutritional characteristics of the plant resources available to this species throughout its annual cycle. This study aimed to characterize the nutritional profile of the fruits consumed by macaws in the Alto Balsas Basin, Mexico, and to infer potential seasonal patterns in the availability of the fruits they feed on in relation to the Macaws’ reproductive phenology. We identified 13 plant species that have been consistently reported as components of the diet of the macaws within the Alto Balsas Basin using a literature review, field observations, and local interviews. We conducted bromatological analyses to assess the content of moisture, protein, lipids, carbohydrates, and fiber for the pulp and seeds of all 13 identified plant species. Although we did not measure quantitative food intake, we integrated these data with reproductive phenology and resource availability to infer potential patterns of nutritional use. The results revealed significant differences in nutritional content among the different species, as well as seasonal variation in the nutritional profiles of available resources that coincide with the physiological demands of the macaw life cycle. During the non-breeding season, the availability of species whose fruits have high lipid and carbohydrate contents, such as Bursera spp., hackberry and madras thorn, may provide essential energy. Conversely, during the breeding season, resources with higher lipid and protein content (such as Mexican kapok tree and red mombin) could support the increased energetic investment associated with courtship, egg production, and chick provisioning. Although our study did not directly quantify the amount of each food item consumed, the integration of nutritional and ecological data provides a preliminary view of how resource quality may influence seasonal foraging patterns, offering valuable insights for the conservation and management of this species. Full article
Show Figures

Figure 1

21 pages, 3631 KB  
Article
Transcriptome and Metabolome Analyses Reveal the Accumulation Mechanism of Carbohydrates During Paeonia ostii Seed Development
by Zhen Li, Siyuan Lv, Yumeng Liu, Mengtian Cao, Hengjia Zhang and Qing Hao
Biomolecules 2026, 16(1), 17; https://doi.org/10.3390/biom16010017 - 22 Dec 2025
Viewed by 320
Abstract
Carbohydrate accumulation during seed development directly influences the oil yield and quality of oilseed plants. To clarify the metabolic and molecular mechanisms underlying this process, we examined seed morphology, metabolome, and transcriptome profiles of Paeonia ostii, a representative oil tree peony, using [...] Read more.
Carbohydrate accumulation during seed development directly influences the oil yield and quality of oilseed plants. To clarify the metabolic and molecular mechanisms underlying this process, we examined seed morphology, metabolome, and transcriptome profiles of Paeonia ostii, a representative oil tree peony, using molecular biology, bioinformatics, and GC-MS techniques. Seeds expanded rapidly and reached their maximum size at 60 days after pollination, coinciding with increased starch staining intensity. Carbohydrate metabolic patterns indicated the conversion of monosaccharides such as glucose, fructose, and inositol into disaccharides like sucrose and into polysaccharides, including starch, raffinose, cellulose, and hemicellulose. Differentially accumulated carbohydrates and associated genes were enriched in the starch and sucrose metabolism and ABC transporter pathways. We constructed a potential regulatory network comprising genes encoding sugar transporters (SWEET, SUS), glycosyl hydrolases, and transcription factors (NF-Y, MYB, LBD, Dof, and B3), which likely play essential roles in carbohydrate deposition and seed development. Therefore, this study clarifies the metabolic and molecular processes governing carbohydrate accumulation in developing seeds and provides a basis for breeding high-yield, high-quality oil tree peony varieties. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

17 pages, 2946 KB  
Article
Glucosinolate–Myrosinase Formulations for Adult Obesity: Towards Next Generation of Bioactive Therapies
by Concepción Medrano-Padial, Cassidy Bo Harris, Verónica Mellado-Romero, Raúl Domínguez-Perles and Diego A. Moreno
Foods 2026, 15(1), 13; https://doi.org/10.3390/foods15010013 - 19 Dec 2025
Viewed by 596
Abstract
The rising global prevalence of obesity and metabolic disorders calls for innovative dietary strategies that can modulate key enzymatic pathways involved in lipid and carbohydrate metabolism. This study uncovers the effects of sulforaphane (SFN)-rich broccoli-derived formulations—including liquid and lyophilised forms, as well as [...] Read more.
The rising global prevalence of obesity and metabolic disorders calls for innovative dietary strategies that can modulate key enzymatic pathways involved in lipid and carbohydrate metabolism. This study uncovers the effects of sulforaphane (SFN)-rich broccoli-derived formulations—including liquid and lyophilised forms, as well as two commercial prototypes, Sulforaphan® BASIC and Sulforaphan® SMART, the latter being characterised by the inclusion of an enteric-coated myrosinase enzyme designed to enhance the in situ conversion of glucosinolates (GSL) into bioactive isothiocyanates (ITC)—on lipid and carbohydrate metabolism in 3T3-L1 adipocytes. Across the formulations, total GSL content ranged widely, with GS0 showing the highest levels. Functionally, all SFN-rich formulations significantly reduced intracellular triglyceride content, with the SMART formulation achieving the strongest reduction (11% compared with untreated controls). Across enzymatic assays, we recorded that every formulation inhibited lipoprotein lipase and α-glucosidase activities, with Sulforaphan® BASIC and Sulforaphan® SMART leading to moderate inhibition (40–50%). The potent effect of SMART formulation may be associated with the presence of enteric-coated myrosinase, which enhances the conversion of GSL into bioactive ITC. The gathered evidence provides further insights into the potential of bioactive compounds in cruciferous foods to modulate metabolic health, underscoring their potential role in complementary therapeutic strategies for obesity and its comorbidities. Full article
Show Figures

Graphical abstract

15 pages, 626 KB  
Article
Effects of Microalgae Biomass (Nannochloropsis gaditana and Thalassiosira sp.) on Wheat Seed Germination at High Temperature
by Liliana Guadalupe Alfaro Sifuentes, Gabriel Iván Romero Villegas, Alberto Sánchez Estrada, Luis Alberto Cira Chávez, Brisia Lizbeth Puente Padilla, Francisco Gabriel Acién Fernández and María Isabel Estrada Alvarado
Agronomy 2025, 15(12), 2917; https://doi.org/10.3390/agronomy15122917 - 18 Dec 2025
Viewed by 428
Abstract
Agricultural inputs based on microalgae have been successfully tested at different stages of the crop cycle, from sowing to harvest, to enhance crop performance. In this study, biomass from Nannochloropsis gaditana and Thalassiosira sp. was obtained to evaluate its effect on wheat seed [...] Read more.
Agricultural inputs based on microalgae have been successfully tested at different stages of the crop cycle, from sowing to harvest, to enhance crop performance. In this study, biomass from Nannochloropsis gaditana and Thalassiosira sp. was obtained to evaluate its effect on wheat seed germination under two temperature conditions. Microalgal biomass was produced under controlled conditions (neutral pH, air flow of 1 L·min−1, and a dilution rate of 0.2 day−1). The biomass was characterized for its lipid, carbohydrate, protein, and ash content. Subsequently, its effect on germination, as well as on glucose and amylose content in wheat seedlings, was assessed. Four biomass concentrations were tested (0.0 [distilled water], 0.5, 1.0, and 1.5 g·L−1) at two incubation temperatures (25 and 35 °C). Results showed that Thalassiosira sp. lightly promoted the germination rate more than N. gaditana. Germination parameters were negatively affected by high temperature, but treatments with Thalassiosira sp. alleviated this effect, showing values comparable to those obtained at the optimal temperature. Vigor parameters were improved compared with the control in both temperatures. Glucose and amylose contents exhibited irregular but consistent patterns. However, at a temperature of 35 °C, a slight conversion of starch to glucose could be observed. Overall, microalgal biomass did not significantly improve germination or its time variables, but it could exert a protective effect against high-temperature stress, particularly in the case of Thalassiosira sp. Full article
(This article belongs to the Collection Crop Physiology and Stress)
Show Figures

Graphical abstract

20 pages, 2939 KB  
Article
Caproate Production from Yellow Water Fermentation: The Decisive Roles of Electron Donors
by Kai Shen, Xing Chen, Jiasheng Shi, Xuedong Zhang, Yaya Sun, He Liu, Salma Tabassum and Hongbo Liu
Fermentation 2025, 11(12), 689; https://doi.org/10.3390/fermentation11120689 - 12 Dec 2025
Viewed by 466
Abstract
Caproate is a valuable medium-chain fatty acid (MCFA) that is found to be extensively used in biofuel production, food preservation, and the pharmaceutical industries. Short-chain fatty acids (SCFAs) from waste streams can be upgraded sustainably through their biological synthesis via anaerobic chain elongation. [...] Read more.
Caproate is a valuable medium-chain fatty acid (MCFA) that is found to be extensively used in biofuel production, food preservation, and the pharmaceutical industries. Short-chain fatty acids (SCFAs) from waste streams can be upgraded sustainably through their biological synthesis via anaerobic chain elongation. However, caproate production is frequently limited in real-world systems due to low carbon conversion efficiency and a lack of electron donors. In this study, we developed a two-stage fermentation strategy employing yellow water—a high-strength organic wastewater from liquor manufacturing—as a novel substrate. During primary fermentation, Lactobacillus provided endogenous electron donors by converting the residual carbohydrates in the yellow water into lactic acid. Nano zero-valent iron (NZVI) was introduced to the secondary fermentation to enhance power reduction and electron flow, further promoting caproate biosynthesis. The caproate production increased significantly due to the synergistic action of lactic acid and NZVI, reaching a maximum concentration of 20.41 g·L−1 and a conversion efficiency of 69.50%. This strategy enhances carbon recovery and electron transport kinetics while lowering dependency on expensive external donors like hydrogen or ethanol. Microbial community analysis using 16S rRNA sequencing revealed enrichment of chain-elongating bacteria such as Clostridium kluyveri. These findings demonstrate the feasibility of employing an integrated fermentation–electron management technique to valorize industrial yellow water into compounds with added value. This study offers a scalable and environmentally sound pathway for MCFA production from waste-derived resources. Full article
Show Figures

Graphical abstract

12 pages, 2401 KB  
Article
Kinetic Analysis and Products Characterization of Hydrothermal Liquefaction of Tetra Pak Waste for Bio-Oil Production
by Yuzhen Wang, Ao Lu, Zhuan Liu, Yu Feng, Di Shan and Changqing Fang
Polymers 2025, 17(24), 3246; https://doi.org/10.3390/polym17243246 - 5 Dec 2025
Viewed by 565
Abstract
Hydrothermal liquefaction (HTL) of Tetra Pak waste was investigated at 320–440 °C for 10–50 min to produce bio-crude oil. Bio-oil yield increased with temperature and time, reaching about 43 wt% at 40–50 min, while solid residue decreased and stabilized. Boiling point analysis indicated [...] Read more.
Hydrothermal liquefaction (HTL) of Tetra Pak waste was investigated at 320–440 °C for 10–50 min to produce bio-crude oil. Bio-oil yield increased with temperature and time, reaching about 43 wt% at 40–50 min, while solid residue decreased and stabilized. Boiling point analysis indicated diesel- and kerosene-range fractions as dominant components. FT-IR results showed enhanced aromatic and carbonyl groups with reaction time, suggesting secondary condensation. A modified first-order kinetic model described the conversion of carbohydrates and polyethylene, with activation energies of 25.8–49.0 and 54.9–78.3 kJ mol−1, respectively. The intermediate aqueous/gaseous pathway exhibited a lower activation energy (30.1 kJ mol−1), highlighting its vital role in oil formation. This study advances understanding of Tetra Pak liquefaction and provides guidance for efficient composite waste valorization. Full article
(This article belongs to the Special Issue Thermochemical Conversion of Polymer Waste)
Show Figures

Figure 1

17 pages, 1796 KB  
Article
Improving the Recycling of Sugar Beet Top–Corncob Waste Through Ensiling with Lentilactobacillus buchneri and Cellulase
by Huiling Lin, Jiaxin Li, Junzhao Xu, Baiyila Wu, Zongfu Hu and Huaxin Niu
Microorganisms 2025, 13(12), 2761; https://doi.org/10.3390/microorganisms13122761 - 4 Dec 2025
Viewed by 460
Abstract
Agricultural wastes such as sugar beet byproducts and corncobs face challenges including high fiber content and low microbe–substrate interaction efficiency during their storage and conversion into animal feed resources. This study evaluated the effects of Lentilactobacillus buchneri and cellulase supplementation on fermentation quality, [...] Read more.
Agricultural wastes such as sugar beet byproducts and corncobs face challenges including high fiber content and low microbe–substrate interaction efficiency during their storage and conversion into animal feed resources. This study evaluated the effects of Lentilactobacillus buchneri and cellulase supplementation on fermentation quality, microbial community structure, and the in vitro fermentation rate of mixed silage containing sugar beet tops and corncobs (air-dried). Sugar beet tops and corncobs were mixed at a fresh weight ratio of 9:1 and divided into three treatments—no additives (CK), Lentilactobacillus buchneri (LB, 1 × 106 CFU·g−1 Lentilactobacillus buchneri), Lentilactobacillus buchneri and cellulase (LBC, 1 × 106 CFU·g−1 Lentilactobacillus buchneri and 0.1 g kg−1 cellulase)—and subjected to anaerobic fermentation for 60 days. The results showed that LB and LBC treatments reduced the losses of crude protein (CP) and water-soluble carbohydrate (WSC) (p < 0.05) and decreased the contents of neutral detergent fiber (NDF) and acid detergent fiber (ADF) (p < 0.05). Furthermore, LB and LBC treatments significantly increased the yields of lactic acid (by 31% and 46%, respectively) and acetic acid (by 60% and 78%, respectively) after anaerobic fermentation. Microbial community analysis revealed that Lactiplantibacillus (79~85%) was the dominant genus in both LB and LBC treatments, followed by Levilactobacillus (9~15%); however, principal coordinate analysis (PcoA) showed significant differences in bacterial communities between the LB and LBC treatment. The LBC treatment significantly enriched Levilactobacillus, which exhibited significant positive or negative correlations with multiple fermentation indicators. In addition, in vitro fermentation trial demonstrated that the silage treated with LBC showed higher in vitro dry matter digestibility (IVDMD) and better fermentation characteristics during in vitro fermentation (p < 0.05), with significantly increased total volatile fatty acids (TVFA) and butyric acid (BA) contents, and a decreased acetic acid content (p < 0.05). During in vitro fermentation, the LBC treatment had higher total gas production, as well as lower methane and carbon dioxide emissions (p < 0.05). Under the synergistic effect of Lentilactobacillus buchneri and cellulase, the fermentation quality and microbial community of sugar beet top–corncob silage are improved, thereby enhancing in vitro fermentation characteristics and providing insights for the recycling of agricultural wastes. Full article
(This article belongs to the Special Issue Microorganisms in Silage)
Show Figures

Figure 1

Back to TopTop