Fruit Nutritional Composition and Seed Reserve Mobilization as Tools for Phenotypic Selection in Eugenia patrisii (Myrtaceae)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Proximate Composition of Fruits
2.3. Germination and Early Seedling Development Stages
2.4. Reserve Metabolism
2.5. Calculation of Metabolic Indices and Ratios for Primary Reserves
2.5.1. Metabolic Flux Index (MFI)
2.5.2. Net Accumulation Change (NAC)
2.6. Experimental Design and Statistical Analyses
3. Results
3.1. Nutritional Composition of the Fruits
3.2. Mobilization and Metabolism of Carbohydrate Reserves
3.2.1. Starch
3.2.2. Soluble Sugars
3.3. Proteins and Amino Acids
3.4. Total Metabolism
4. Discussion
4.1. Nutritional Composition of the Fruits
4.2. Reserve Mobilization During Germination
4.2.1. Mobilization and Metabolism of Carbohydrate Reserves
Starch
Soluble Sugars
4.2.2. Proteins
4.2.3. Total Metabolism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Dias-Audibert, F.L.; Delafiori, J.; de Souza, F.G.; Catharino, R.R.; do Sacramento, C.K.; Pastore, G.M. Chemical Characterization of Eugenia Stipitata: A Native Fruit from the Amazon Rich in Nutrients and Source of Bioactive Compounds. Food Res. Int. 2021, 139, 109904. [Google Scholar] [CrossRef]
- Rodrigues, G.A.G.; Mauve, C.; Gakiere, B.; Bailly, C.; Steiner, N. The Metabolic Profiles of Eugenia Astringens and E. Uniflora (Myrtaceae) Sensitive Seeds Affect Desiccation. Physiol Plant 2024, 176, e14220. [Google Scholar] [CrossRef]
- de Souza Lopes, I.; Juliato, R.A.; de Andrade, C.C.P.; Fiocco, A.C.T.R.; Borguini, R.G.; de Araújo Santiago, M.C.P.; Fasolin, L.H.; Picone, C.S.F. Uvaia (Eugenia pyriformis Cambess) Fruit: Exploring Its Antioxidant Potential through Pressurized Liquid Extraction. J. Supercrit. Fluids 2025, 218, 11. [Google Scholar] [CrossRef]
- Silva, J.D.R.; Arruda, H.S.; Andrade, A.C.; Berilli, P.; Borsoi, F.T.; Monroy, Y.M.; Rodrigues, M.V.N.; Sampaio, K.A.; Pastore, G.M.; Marostica Junior, M.R. Eugenia calycina and Eugenia stigmatosa as Promising Sources of Antioxidant Phenolic Compounds. Plants 2024, 13, 2039. [Google Scholar] [CrossRef] [PubMed]
- Neto, J.D.D.S.; dos Santos, E.K.; Lucas, E.; Vetö, N.M.; Barrientos-Diaz, O.; Staggemeier, V.G.; Vasconcelos, T.; Turchetto-Zolet, A.C. Review Advances and Perspectives on the Evolutionary History and Diversification of Neotropical Myrteae (Myrtaceae). Bot. J. Linn. Soc. 2022, 199, 173–195. [Google Scholar] [CrossRef]
- Chamorro, F.J.; Galetto, L.; Hilgert, N.I. Wild and Cultivated Edible Myrtaceae in the Atlantic Forest: An Ethnobotanical Review. In Biodiversity Management and Domestication in the Neotropics; Casas, A., Peroni, N., Parra-Rondinel, F., Lema, V., Aguirre-Dugua, X., Arévalo-Marín, E., Alvarado-Sizzo, H., Blancas, J., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 1–34. ISBN 978-3-031-64203-6. [Google Scholar]
- Fischer, T.E.; Detoni, E.; Sola, I.M.M.S.; Nunes, G.; Nogueira, A.; Alberti, A. Species of the Genus Eugenia: Bioactive Effects and Toxicity. Nutr. Rev. 2025, 83, 2159–2174. [Google Scholar] [CrossRef]
- de Amorim, M.S.; Verdan, M.H.; Oliveira, C.S.; Santos, A.D.C. Essential Oils of Neotropical Myrtaceae Species From 2011 Until 2023: An Update. Chem. Biodivers. 2025, 22, e202401503. [Google Scholar] [CrossRef]
- Borsoi, F.T.; Possas, A.; Pastore, G.M.; Arruda, H.S. Essential Oils from Native Brazilian Plants of the Genus Eugenia as an Innovative and Sustainable Source of Active Ingredients for Food Systems and Human Health and Well-Being. Horticulturae 2024, 10, 768. [Google Scholar] [CrossRef]
- Pascoal, G.B.; Meza, S.L.R.; Tobaruela, E.C.; Franzon, R.C.; Massaretto, I.L.; Purgatto, E. Volatile and Non-Volatile Compounds Profiling of Brazilian Pitanga (Eugenia uniflora L.) Varieties During Ripening Using Gas Chromatography-Mass Spectrometry Approach. J. Braz. Chem. Soc. 2025, 36, e-20240196. [Google Scholar] [CrossRef]
- dos Santos, P.P.; de Carvalho, J.C.; Gonçalves, E.V.; da Costa, K.C.P.; Fernandes, A.V.; Pacheco, A.d.A.; dos Reis, A.A.; Gonçalves, K.D.; Santos, A.S.; Cavalcanti, J.H.F.; et al. Morphoanatomical and Physiological Indicators Revealed Distinct Intraspecific Phenotypes of Eugenia patrisii (Myrtaceae) during Germination and Post-Germination. Aust. J. Crop Sci. 2025, 19, 658–670. [Google Scholar] [CrossRef]
- Lopes Lemos, I.; Macedo, M.J.; Paula Da Fonseca Machado, A.; De Paula Do Nascimento, R.; Reguengo, L.M.; Helena, V.; Cagnon, A.; Roberto, M.; Junior, M. The Chemopreventive Effects of Native Brazilian Plants on Stomach Cancer: A Review of the Last 25 Years. Oncoscience 2025, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, J.C.; de Gonçalves, J.F.C.; Fernandes, A.V.; da Costa, K.C.P.; de Lima e Borges, E.E.; Araújo, W.L.; Nunes-Nesi, A.; Ramos, M.V.; Rathinasabapathi, B. Reserve Mobilization and the Role of Primary Metabolites during the Germination and Initial Seedling Growth of Rubber Tree Genotypes. Acta Physiol. Plant. 2022, 44, 80. [Google Scholar] [CrossRef]
- Gonçalves, E.; Carvalho, J.; Viana, C.; Santos, P.; Gonçalves, K.; Costa, K.; Martins, A.; Silva, S.; Lima, R.; Albuquerque, P.; et al. Metabolic Dynamics of Primary Reserves during Germination and Early Growth of Cultivated Brazil Nut Genotypes. Seeds 2025, 4, 60. [Google Scholar] [CrossRef]
- de Carvalho, J.C.; de Nascimento, G.O.; Fernandes, A.V.; Gonçalves, E.V.; dos Santos, P.P.; Santos, A.S.; de Gonçalves, J.F.C. Understanding the Role of Storage Reserve Mobilization during Seed Germination and Initial Seedling Growth in Species of the Genus Carapa. Botany 2024, 102, 268–281. [Google Scholar] [CrossRef]
- Latimer, G.W., Jr. (Ed.) Official Methods of Analysis of AOAC International; Oxford University Press: Oxford, UK, 2023; ISBN 9780197610138. [Google Scholar]
- Fernie, A.R.; Roscher, A.; Ratcliffe, R.G.; Kruger, N.J. Fructose 2,6-Bisphosphate Activates Pyrophosphate: Fructose-6-Phosphate 1-Phosphotransferase and Increases Triose Phosphate to Hexose Phosphate Cycling in Heterotrophic Cells. Planta 2001, 212, 250–263. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Yemm, E.W.; Cocking, E.C.; Ricketts, R.E. The Determination of Amino-Acids with Ninhydrin. Analyst 1955, 80, 209–214. [Google Scholar] [CrossRef]
- Yeo, I.; Johnson, R.A. A New Family of Power Transformations to Improve Normality or Symmetry. Biometrika 2000, 87, 954–959. [Google Scholar] [CrossRef]
- The Core Team. A Language and Environment for Statistical Computing. Version 4.5.2. Foundation for Statistical Computing. 2025. Available online: https://www.gnu.org/copyleft/gpl.html (accessed on 30 December 2025).
- Gomes, W.D.; Barbedo, C.J. Storage Potential of Eugenia uniflora Lam. Seeds Incubated in Different Osmotic Solutions and Temperatures. J. Seed Sci. 2024, 46, e202446026. [Google Scholar] [CrossRef]
- Mello, J.I.d.O.; Barbedo, C.J.; Salatino, A.; Figueiredo-Ribeiro, R.d.C.L. Reserve Carbohydrates and Lipids from the Seeds of Four Tropical Tree Species with Different Sensitivity to Desiccation. Braz. Arch. Biol. Technol. 2010, 53, 889–899. [Google Scholar] [CrossRef]
- Cécel, A.T.; Barbedo, C.J. Storage of Recalcitrant Seeds of Eugenia brasiliensis Lam. under Control of Water Availability. J. Seed Sci. 2023, 45, e202345009. [Google Scholar] [CrossRef]
- Pereira, E.D.S.; Raphaelli, C.d.O.; Radünz, M.; Camargo, T.M.; Vizzotto, M. Biological Activity and Chemical Composition of Native Fruits a Review. Agrocienc. Urug. 2021, 25, e815. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-4692-7. [Google Scholar]
- Durán-Soria, S.; Pott, D.M.; Osorio, S.; Vallarino, J.G. Sugar Signaling During Fruit Ripening. Front. Plant Sci. 2020, 11, 564917. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Wang, Y.; Ji, S.; Kong, X.; Zhang, F.; Zhou, X.; Zhou, Q. Effect of Intermittent Warming on the Quality and Lipid Metabolism of Blueberry (Vaccinium corymbosum L., Cv. Duke) Fruit. Front. Plant Sci. 2021, 11, 590928. [Google Scholar] [CrossRef]
- Yi, K.; Yue, J.; Yang, S.; Jiang, Y.; Hong, L.; Zeng, H.; Wei, K.; Mao, P.; Sun, Y.; Dou, L.; et al. Germination of Aged Oat Seeds Associated with Changes in Antioxidant Enzyme Activity and Storage Compounds Mobilization. Physiol. Plant. 2023, 175, e14020. [Google Scholar] [CrossRef]
- Bera, I.; O’Sullivan, M.; Flynn, D.; Shields, D.C. Relationship between Protein Digestibility and the Proteolysis of Legume Proteins during Seed Germination. Molecules 2023, 28, 3204. [Google Scholar] [CrossRef]
- El-Maarouf-bouteau, H. The Seed and the Metabolism Regulation. Biology 2022, 11, 168. [Google Scholar] [CrossRef]
- Li, T.; Zeng, J.; Yang, X.; Garcia-Caparros, P.; Duan, X. The Role of Protein Post-Translational Modifications in Fruit Ripening. Horticulturae 2024, 10, 1042. [Google Scholar] [CrossRef]
- Carrera-Cevallos, J.; Muso, C.; Chacón Torres, J.C.; Salazar, D.; Pérez, L.; Landázuri, A.C.; León, M.; López, M.; Jara, O.; Coronel, M.; et al. Morphometric, Nutritional, and Phytochemical Characterization of Eugenia (Syzygium paniculatum Gaertn): A Berry with Under-Discovered Potential. Foods 2025, 14, 2633. [Google Scholar] [CrossRef]
- Santos, T.C.; Calixto Fonseca, H.; Durães, C.A.F.; Fonseca, R.S.; de Lima, J.P. Physicochemical Characterisation of a New Myrtaceae Fruit Native to Brazilian Cerrado. N. Z. J. Crop Hortic. Sci. 2025, 53, 1496–1509. [Google Scholar] [CrossRef]
- Mendes, A.M.D.S.; De Mendonça, M.S. Análise Anatômica e Histoquímica de Sementes Maduras de Eugenia stipitata SSP. sororia Mc Vaugh (Araçá-boi)—Myrtaceae. Braz. J. Dev. 2020, 6, 77510–77522. [Google Scholar] [CrossRef]
- Angermann, C.; Heinemann, B.; Hansen, J.; Töpfer, N.; Braun, H.P.; Hildebrandt, T.M. Proteome Reorganization and Amino Acid Metabolism during Germination and Seedling Establishment in Lupinus Albus. J. Exp. Bot. 2024, 75, 4891–4903. [Google Scholar] [CrossRef] [PubMed]
- Pontes, C.A.; Borges, E.E.d.L.e.; Borges, R.d.C.G.; Soares, C.P.B. Mobilização de Reservas em Sementes de Apuleia Leiocarpa (Vogel) J.F. Macbr. (garapa) Durante a Embebição. Rev. Arvore 2002, 26, 593–601. [Google Scholar] [CrossRef]
- Dai, X.; Kong, W.; Wu, F.; Pan, Z.; Gao, L.; Mo, B.; Yu, Y.; Luo, W. OsNUDX23 Regulates Early Seed Germination by Modulating ROS Balance and Starch Metabolism in Rice. Front. Plant Sci. 2025, 16, 1581800. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, K.; Li, X.; Chen, X.; Liu, W.; Wang, J. Factors Affecting Seed Germination and Emergence of Aegilops Tauschii. Weed Res. 2020, 60, 171–181. [Google Scholar] [CrossRef]
- Tognacca, R.S.; Botto, J.F. Post-Transcriptional Regulation of Seed Dormancy and Germination: Current Understanding and Future Directions. Plant Commun. 2021, 2, 100169. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Wu, Y.; Shen, Y. Hormonal and Storage Metabolic Regulation of Germination in Toona Sinensis. Horticulturae 2025, 11, 685. [Google Scholar] [CrossRef]
- Dong, N.; Jiao, G.; Cao, R.; Li, S.; Zhao, S.; Duan, Y.; Ma, L.; Li, X.; Lu, F.; Wang, H.; et al. OsLESV and OsESV1 Promote Transitory and Storage Starch Biosynthesis to Determine Rice Grain Quality and Yield. Plant Commun. 2024, 5, 100893. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Sun, L.; Qin, Q.; Yang, S.; Wang, J.; Sun, Y.; Xue, Y. Physiological and Transcriptome Analysis Provide Insights into the Effects of Low and High Selenium on Methionine and Starch Metabolism in Rice Seedlings. Int. J. Mol. Sci. 2025, 26, 1596. [Google Scholar] [CrossRef]
- Umnajkitikorn, K.; Boonchuen, P.; Senavongse, R.; Tongta, S.; Tian, Y.; Hu, Y.; Petersen, B.L.; Blennow, A. Transcriptomics and Starch Biosynthesis Analysis in Leaves and Developing Seeds of Mung Bean Provide a Basis for Genetic Engineering of Starch Composition and Seed Quality. Front. Plant Sci. 2024, 15, 1332150. [Google Scholar] [CrossRef]
- Shi, Z.; Liang, G.; Li, S.; Liu, W. Adequate Water Supply Enhances Seedling Growth and Metabolism in Festuca Kryloviana: Insights from Physiological and Transcriptomic Analys. BMC Plant Biol. 2024, 24, 714. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Ma, W.; Shen, S.; Gu, A. Underlying Biochemical and Molecular Mechanisms for Seed Germination. Int. J. Mol. Sci. 2022, 23, 8502. [Google Scholar] [CrossRef] [PubMed]
- Araldi, C.G.; Coelho, C.M.M. Reserve Metabolism of Stored and Germinated Araucaria Angustifolia Seeds. Acta Sci. Agron. 2019, 41, e42707. [Google Scholar] [CrossRef]
- Shaik, S.S.; Carciofi, M.; Martens, H.J.; Hebelstrup, K.H.; Blennow, A. Starch Bioengineering Affects Cereal Grain Germination and Seedling Establishment. J. Exp. Bot. 2014, 65, 2257–2270. [Google Scholar] [CrossRef]
- Damaris, R.N.; Lin, Z.; Yang, P.; He, D. The Rice Alpha-Amylase, Conserved Regulator of Seed Maturation and Germination. Int. J. Mol. Sci. 2019, 20, 450. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, H.; Yan, H.; Qiu, L.; Baskin, C.C. Mobilization and Role of Starch, Protein, and Fat Reserves during Seed Germination of Six Wild Grassland Species. Front. Plant Sci. 2018, 9, 234. [Google Scholar] [CrossRef]
- Sun, H.; Li, J.; Song, H.; Yang, D.; Deng, X.; Liu, J.; Wang, Y.; Ma, J.; Xiong, Y.; Liu, Y.; et al. Comprehensive Analysis of AGPase Genes Uncovers Their Potential Roles in Starch Biosynthesis in Lotus Seed. BMC Plant Biol. 2020, 20, 457. [Google Scholar] [CrossRef]
- Melo, Z.d.O.; Gonçalves, J.d.C.; Mazzafera, P.; dos Santos, D. Mobilization of Seed Reserves during Germination of Four Tropical Species of the Amazon Rainforest. Seed Sci. Technol. 2009, 37, 597–607. [Google Scholar] [CrossRef]
- Parihar, P.; Jaiswal, J.P.; Verma, A.K.; Kumar, A. Sucrose Synthase Dynamics and Its Potential Role in Heat Stress Tolerance in Cereals. Front. Plant Sci. 2025, 16, 1652076. [Google Scholar] [CrossRef]
- Szablińska-Piernik, J.; Lahuta, L.B. Changes in Polar Metabolites during Seed Germination and Early Seedling Development of Pea, Cucumber, and Wheat. Agriculture 2023, 13, 2278. [Google Scholar] [CrossRef]
- Silva, A.T.; Ligterink, W.; Hilhorst, H.W.M. Metabolite Profiling and Associated Gene Expression Reveal Two Metabolic Shifts during the Seed-to-Seedling Transition in Arabidopsis Thaliana. Plant Mol. Biol. 2017, 95, 481–496. [Google Scholar] [CrossRef]
- Thakur, M.; Sharma, P.; Anand, A.; Pandita, V.K.; Bhatia, A.; Pushkar, S. Raffinose and Hexose Sugar Content During Germination Are Related to Infrared Thermal Fingerprints of Primed Onion (Allium cepa L.) Seeds. Front. Plant Sci. 2020, 11, 579037. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhao, Y.; Wang, X.; Zeng, Q.; Zhang, X.; Wang, B.; He, L.; Jian, X. Regulatory Roles of GA and Sugar Metabolism Genes with Metabolomic Profiling during Seed Dormancy Release in Gleditsia sinensis. BMC Plant Biol. 2025, 25, 1231. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.A.R.; Oliveira, L.M.; Rocha, E.C. Composição Química e Mobilização de Reservas Em Sementes de Psidium Cattleianum Sabine (Myrtaceae). Evidência—Ciência E Biotecnol. 2018, 18, 199–212. [Google Scholar] [CrossRef]
- Ehrhardt-Brocardo, N.C.M.; Coelho, C.M.M. Mobilization of Seed Storage Proteins Is Crucial to High Vigor in Common Bean Seeds. Ciência Rural 2022, 52, e20200894. [Google Scholar] [CrossRef]
- Erbaş, S.; Tonguç, M.; Karakurt, Y.; Şanli, A. Mobilization of Seed Reserves during Germination and Early Seedling Growth of Two Sunflower Cultivars. J. Appl. Bot. Food Qual. 2016, 89, 217–222. [Google Scholar] [CrossRef]
- Zhang, F.; Kim, H.; Suonan, Z.; Kim, S.H.; Jeong, H.S.; Lee, K.S. Variation in Seed Germination and Early Seedling Development of Zostera Marina across Source Populations and Environmental Conditions. Glob. Ecol. Conserv. 2025, 62, e03762. [Google Scholar] [CrossRef]
- Guo, H.; Lyv, Y.; Zheng, W.; Yang, C.; Li, Y.; Wang, X.; Chen, R.; Wang, C.; Luo, J.; Qu, L. Comparative Metabolomics Reveals Two Metabolic Modules Affecting Seed Germination in Rice (Oryza sativa). Metabolites 2021, 11, 880. [Google Scholar] [CrossRef]
- Lee, J.S.; Shin, Y.; Kim, Y.J.; Park, S.U.; Ha, S.H.; Lee, H.G.; Ra, J.E.; Kwon, H.W.; Seo, W.D.; Kim, J.K. Temporal Metabolomics of Pea Seedlings Reveals Primary and Secondary Metabolism Dynamics under Varying Light Intensity. Chem. Biol. Technol. Agric. 2025, 12, 91. [Google Scholar] [CrossRef]
- Kang, Z.; Tao, L.; Guo, G.; Geng, J.; Zeng, H.; Song, X.; Tu, X.; Wang, W. Metabolomic and Transcriptomic Analyses Reveal the Response Mechanism of Seed Germination in Macadamia. Horticulturae 2025, 11, 519. [Google Scholar] [CrossRef]
- Zhu, M.; Zang, Y.; Zhang, X.; Shang, S.; Xue, S.; Chen, J.; Tang, X. Insights into the Regulation of Energy Metabolism during the Seed-to-Seedling Transition in Marine Angiosperm Zostera marina L.: Integrated Metabolomic and Transcriptomic Analysis. Front. Plant Sci. 2023, 14, 1130292. [Google Scholar] [CrossRef]
- Gerna, D.; Clara, D.; Antonielli, L.; Mitter, B.; Roach, T. Seed Imbibition and Metabolism Contribute Differentially to Initial Assembly of the Soybean Holobiont. Phytobiomes J. 2024, 8, 21–33. [Google Scholar] [CrossRef]
- Padilha, M.S.; Coelho, C.M.M.; De Andrade, G.C. Seed Reserve Mobilization Evaluation for Selection of High-Vigor Common Bean Cultivars. Rev. Caatinga 2020, 33, 927–935. [Google Scholar] [CrossRef]
- Shen, S.; Zhan, C.; Yang, C.; Fernie, A.R.; Luo, J. Metabolomics-Centered Mining of Plant Metabolic Diversity and Function: Past Decade and Future Perspectives. Mol. Plant 2023, 16, 43–63. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Santos, P.P.d.; Gonçalves, E.V.; de Carvalho, J.C.; Costa, K.C.P.d.; Pacheco, A.d.A.; Viana, C.d.S.; Aguiar, J.P.L.; Fernandes, A.V.; Martins, A.O.; Araújo, W.L.; et al. Fruit Nutritional Composition and Seed Reserve Mobilization as Tools for Phenotypic Selection in Eugenia patrisii (Myrtaceae). Foods 2026, 15, 188. https://doi.org/10.3390/foods15020188
Santos PPd, Gonçalves EV, de Carvalho JC, Costa KCPd, Pacheco AdA, Viana CdS, Aguiar JPL, Fernandes AV, Martins AO, Araújo WL, et al. Fruit Nutritional Composition and Seed Reserve Mobilization as Tools for Phenotypic Selection in Eugenia patrisii (Myrtaceae). Foods. 2026; 15(2):188. https://doi.org/10.3390/foods15020188
Chicago/Turabian StyleSantos, Pedro Paulo dos, Elmer Viana Gonçalves, Josiane Celerino de Carvalho, Karen Cristina Pires da Costa, Acacio de Andrade Pacheco, Caris dos Santos Viana, Jaime Paiva Lopes Aguiar, Andreia Varmes Fernandes, Auxiliadora Oliveira Martins, Wagner Luiz Araújo, and et al. 2026. "Fruit Nutritional Composition and Seed Reserve Mobilization as Tools for Phenotypic Selection in Eugenia patrisii (Myrtaceae)" Foods 15, no. 2: 188. https://doi.org/10.3390/foods15020188
APA StyleSantos, P. P. d., Gonçalves, E. V., de Carvalho, J. C., Costa, K. C. P. d., Pacheco, A. d. A., Viana, C. d. S., Aguiar, J. P. L., Fernandes, A. V., Martins, A. O., Araújo, W. L., & Gonçalves, J. F. d. C. (2026). Fruit Nutritional Composition and Seed Reserve Mobilization as Tools for Phenotypic Selection in Eugenia patrisii (Myrtaceae). Foods, 15(2), 188. https://doi.org/10.3390/foods15020188

