Improving the Recycling of Sugar Beet Top–Corncob Waste Through Ensiling with Lentilactobacillus buchneri and Cellulase
Abstract
1. Introduction
2. Materials and Methods
2.1. Fermentative Material Preparation
2.2. Chemical Composition and Fermentation Characteristics of Ensiled Samples
2.3. Microbial Diversity Analysis
2.4. In Vitro Fermentation Trial
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition and Fermentation Characteristics of Silages
3.2. Bacterial Community Sequencing Analysis
3.3. In Vitro Fermentation Trial of Silages
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
| Items | Treatments | p-Value | ||
|---|---|---|---|---|
| CK | LB | LBC | ||
| IVDMD (% DM) | 59.86 ± 0.77 b | 60.45 ± 0.30 b | 61.85 ± 0.57 a | 0.014 |
| GP48 (mL/g DM) | 127.33 ± 1.53 b | 129.67 ± 1.53 b | 141.00 ± 2.00 a | <0.001 |
| GP48 (mL/g DDM) | 212.71 ± 1.19 b | 214.50 ± 1.76 b | 227.99 ± 4.29 a | <0.001 |
| AGPR (mL/h) | 2.65 ± 0.03 b | 2.70 ± 0.03 b | 2.94 ± 0.04 a | <0.001 |
| CH4 (mL/g DDM) | 37.39 ± 0.10a | 36.78 ± 0.13 b | 36.39 ± 0.11 c | <0.001 |
| CO2 (mL/g DDM) | 150.41 ± 0.16 a | 150.24 ± 0.16 a | 149.19 ± 0.22 b | <0.001 |
References
- Zhang, X.; Zhang, H.; Wang, D.; Zhang, Y. From waste to value: Multi-omics reveal pomegranate peel addition improves corn silage antioxidant activity and reduces methane and nitrogen losses. Bioresour. Technol. 2025, 429, 132544. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBS). China Statistical Yearbook of 2019; China Statistics Press: Beijing, China, 2019.
- Xu, Q.; Zhang, T.; Niu, Y.; Mukherjee, S.; Abou-Elwafa, S.F.; Nguyen, N.S.H.; Al Aboud, N.M.; Wang, Y.; Pu, M.; Zhang, Y.; et al. A comprehensive review on agricultural waste utilization through sustainable conversion techniques, with a focus on the additives effect on the fate of phosphorus and toxic elements during composting process. Sci. Total Environ. 2024, 942, 173567. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef]
- Wang, L.L.; Li, Y.F.; Wu, L.Z.; Yu, Y.S.; Panyavong, X.; Kim, J.G. Effects of fruit and vegetable waste addition on corn stalk silage quality. Anim. Biosci. 2024, 37, 1595–1602. [Google Scholar] [CrossRef]
- Li, J.; Ma, D.; Tian, J.; Wang, R.; Bai, Y.; Zhang, J.; Shan, A. Citric acid-regulated consortia formation to bioaugment anaerobic fermentation of Chinese cabbage waste and wheat bran. J. Clean. Prod. 2025, 521, 146158. [Google Scholar] [CrossRef]
- Li, J.; Jia, S.; Ma, D.; Deng, X.; Tian, J.; Wang, R.; Li, J.; Shan, A. Effects of citric acid and heterofermentative inoculants on anaerobic co-fermentation of Chinese cabbage waste and wheat bran. Bioresour. Technol. 2023, 377, 128942. [Google Scholar] [CrossRef]
- Ren, H.; Feng, Y.; Liu, T.; Li, J.; Wang, Z.; Fu, S.; Zheng, Y.; Peng, Z. Effects of different simulated seasonal temperatures on the fermentation characteristics and microbial community diversities of the maize straw and cabbage waste co-ensiling system. Sci. Total Environ. 2020, 708, 135113. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of High Forage/Concentrate Diet on Volatile Fatty Acid Production and the Microorganisms Involved in VFA Production in Cow Rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.N.G.; Björnsson, L. Life cycle assessment of the production of beet sugar and its by-products. J. Clean. Prod. 2022, 346, 131211. [Google Scholar] [CrossRef]
- Mella, C.; Rojas, N.; Calderon-Bravo, H.; Muñoz, L.A. Evaluating Biocompounds in Discarded Beetroot (Beta vulgaris) Leaves and Stems for Sustainable Food Processing Solutions. Foods. 2024, 13, 2603. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.U.; Hjort-Gregersen, K.; Vazifehkhoran, A.H.; Triolo, J.M. Co-ensiling of straw with sugar beet leaves increases the methane yield from straw. Bioresour. Technol. 2017, 245 Pt A, 106–115. [Google Scholar] [CrossRef]
- Roshanzamir, H.; Rouzbehan, Y.; Aghashahi, A.; Rezaei, J. Effects of feeding different dietary rates of mixed fodder beet tops-wheat straw silage on the performance of Holstein lactating cows. J. Anim. Sci. 2024, 102, skae179. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAOSTAT. 2023. Available online: https://www.fao.org/faostat/zh/#rankings/countries_by_commodity (accessed on 20 October 2025).
- Wang, X.; Liu, H.; Wang, Y.; Lin, Y.; Ni, K.; Yang, F. Effects of lactic acid bacteria and cellulase additives on the fermentation quality, antioxidant activity, and metabolic profile of oat silage. Bioresour. Bioprocess. 2024, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Tahir, M.; Wang, T.; Wang, Y.; Zhang, X.; Liu, S.; Teng, K.; Fu, Z.; Yun, F.; Wang, S.; et al. Lactobacillus cocktail and cellulase synergistically improve the fiber transformation rate in Sesbania cannabina and sweet sorghum mixed silage. Chem. Biol. Technol. Agric. 2024, 11, 81. [Google Scholar] [CrossRef]
- Li, Z.; Usman, S.; Zhang, J.; Zhang, Y.; Su, R.; Chen, H.; Li, Q.; Jia, M.; Amole, T.A.; Guo, X. Effects of bacteriocin-producing Lactiplantibacillus plantarum on bacterial community and fermentation profile of whole-plant corn silage and its in vitro ruminal fermentation, microbiota, and CH4 emissions. J. Anim. Sci. Biotechnol. 2024, 15, 107. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, J.; Chen, Z.; Chen, Y.; Wang, C.; Yu, H.; Zuo, F.; Huang, W. Probiotic-Enzyme Synergy Regulates Fermentation of Distiller’s Grains by Modifying Microbiome Structures and Symbiotic Relationships. J. Agric. Food Chem. 2025, 73, 5363–5375. [Google Scholar] [CrossRef]
- Du, S.; Xu, L.; Jiang, C.; Xiao, Y. Novel strategy to understand the bacteria-enzyme synergy action regulates the ensiling performance of wheat straw silage by multi-omics analysis. Int. J. Biol. Macromol. 2025, 289, 138864. [Google Scholar] [CrossRef]
- Jin, Y.; Yuan, B.; Li, F.; Du, J.; Yu, M.; Tang, H.; Zhang, L.; Wang, P. Fermentation characteristics, nutrient content, and microbial population of Silphium perfoliatum L. Silage produced with different lactic acid bacteria additives. Animals 2025, 15, 1955. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.P. A method for the extraction of plant samples and the determination of total soluble carbohydrates. J. Sci. Food Agric. 1958, 9, 714–717. [Google Scholar] [CrossRef]
- Song, C.; Li, J.; Xing, J.; Wang, C.; Li, J.; Shan, A. Effects of molasses interacting with formic acid on the fermentation characteristics, proteolysis and microbial community of seed-used pumpkin leaves silage. J. Clean. Prod. 2022, 380, 135186. [Google Scholar] [CrossRef]
- Zong, Y.; Zhou, K.; Duan, X.; Han, B.; Jiang, H.; He, C. Effects of whole-plant corn and hairy vetch (Vicia villosa Roth) mixture on silage quality and microbial communities. Anim Biosci. 2023, 36, 1842–1852. [Google Scholar] [CrossRef]
- Ding, W.R.; Long, R.J.; Guo, X.S. Effects of plant enzyme inactivation or sterilization on lipolysis and proteolysis in alfalfa silage. J. Dairy Sci. 2013, 96, 2536–2543. [Google Scholar] [CrossRef]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Xuan, T.; Zheng, T.; Li, T.; Wu, B.; Li, T.; Bao, W.; Qin, W. The Effects of different doses of 3-NOP on ruminal fermentation parameters, methane production, and the microbiota of lambs In Vitro. Fermentation 2024, 10, 440. [Google Scholar] [CrossRef]
- Kim, H.; Jung, E.; Lee, H.G.; Kim, B.; Cho, S.; Lee, S.; Kwon, I.; Seo, J. Essential oil mixture on rumen fermentation and microbial community—An in vitro study. Asian-Australas. J. Anim. Sci. 2019, 32, 808–814. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.V.; Hegarty, R.S.; Hegarty, J.; Godwin, I.R.; Woodgate, R. Effects of dietary nitrate on fermentation, methane production and digesta kinetics in sheep. Anim. Prod. Sci. 2010, 50, 801–806. [Google Scholar] [CrossRef]
- Kim, W.Y.; Hanigan, M.D.; Lee, S.J.; Lee, S.M.; Kim, D.H.; Hyun, J.H.; Yeo, J.M.; Lee, S.S. Effects of Cordyceps militaris on the growth of rumen microorganisms and in vitro rumen fermentation with respect to methane emissions. J. Dairy Sci. 2014, 97, 7065–7075. [Google Scholar] [CrossRef]
- Tanizawa, Y.; Tohno, M.; Kaminuma, E.; Nakamura, Y.; Arita, M. Complete genome sequence and analysis of Lactobacillus hokkaidonensis LOOC260T, a psychrotrophic lactic acid bacterium isolated from silage. BMC Genom. 2015, 16, 240. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Meng, Q.; Xing, J.; Wang, C.; Song, C.; Ma, D.; Shan, A. Citric acid enhances clean recycling of Chinese cabbage waste by anaerobic fermentation. J. Clean. Prod. 2022, 348, 131366. [Google Scholar] [CrossRef]
- Xu, D.; Ding, Z.; Bai, J.; Ke, W.; Zhang, Y.; Li, F.; Guo, X. Evaluation of the effect of feruloyl esterase-producing Lactobacillus plantarum and cellulase pretreatments on lignocellulosic degradation and cellulose conversion of co-ensiled corn stalk and potato pulp. Bioresour. Technol. 2020, 310, 123476. [Google Scholar]
- Li, P.; Zhao, W.; Yan, L.; Chen, L.; Chen, Y.; Gou, W.; You, M.; Cheng, Q.; Chen, C. Inclusion of abandoned rhubarb stalk enhanced anaerobic fermentation of alfalfa on the Qinghai Tibetan Plateau. Bioresour Technol. 2022, 347, 126347. [Google Scholar] [CrossRef]
- Yan, Y.; Zhao, M.; Sun, P.; Zhu, L.; Yan, X.; Hao, J.; Si, Q.; Wang, Z.; Jia, Y.; Wang, M.; et al. Effects of different additives on fermentation characteristics, nutrient composition and microbial communities of Leymus chinensis silage. BMC Microbiol. 2025, 25, 296. [Google Scholar] [CrossRef]
- Wang, S.; He, Z.; Jiang, H.; Sun, L.; Yang, G.; Jing, Y.; Gao, F. Assessing the impact of silage inoculants on the quality of adina alfalfa silage. Microorganisms 2025, 13, 841. [Google Scholar] [CrossRef]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, N.; Heron, S.; Henderson, A.R.; Heron, S.J.E. The Bio-Chemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991. [Google Scholar]
- Yu, Q.; Su, Y.; Xi, Y.; Rong, Y.; Long, Y.; Xie, Y.; Sun, H.; Dong, R.; Hao, J.; Yang, F.; et al. Comparison of the impacts of cellulase and laccase on fermentation quality, bacterial composition and in vitro degradability of anaerobic co-fermentation derived from Sudan grass with mulberry under Lactobacillus plantarum and different lignocellulolytic enzyme inoculation. Chem. Biol. Technol. Agric. 2025, 12, 41. [Google Scholar]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung Jr, L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Wang, T.; Zhang, J.; Xia, T.; Deng, X.; Cao, X.; Zhong, J. Compound lactic acid bacteria enhance the aerobic stability of Sesbania cannabina and corn mixed silage. BMC Microbiol. 2025, 25, 68. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Lin, L.; Lu, Y.; Weng, B.; Feng, Y.; Du, C.; Wei, C.; Gao, R.; Gan, S. The influence of silage additives supplementation on chemical composition, aerobic stability, and in vitro digestibility in silage mixed with Pennisetum giganteum and rice straw. Agriculture 2024, 14, 1953. [Google Scholar] [CrossRef]
- Li, S.; Ke, W.; Zhang, Q.; Undersander, D.; Zhang, G. Effects of Bacillus coagulans and Lactobacillus plantarum on the fermentation quality, aerobic stability and microbial community of triticale silage. Chem. Biol. Technol. Agric. 2023, 10, 79. [Google Scholar] [CrossRef]
- Yuan, X.; Guo, G.; Wen, A.; Desta, S.T.; Wang, J.; Wang, Y.; Shao, T. The effect of different additives on the fermentation quality, in vitro digestibility and aerobic stability of a total mixed ration silage. Anim. Feed Sci. Tech. 2015, 207, 41–50. [Google Scholar] [CrossRef]
- He, L.; Jiang, C.; Dong, H.; Wang, Y.; Tang, J.; Hu, M.; Luo, J.; Du, S.; Jia, Y.; Xiao, Y.; et al. Effects of cellulase or Lactobacillus plantarum on ensiling performance and bacterial community of sorghum straw. BMC Microbiol. 2025, 25, 300. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Wang, C.; He, L.; Zhou, W.; Yang, F.; Zhang, Q. The bacterial community and fermentation quality of mulberry (Morus alba) leaf silage with or without Lactobacillus casei and sucrose. Bioresour. Technol. 2019, 293, 122059. [Google Scholar] [CrossRef]
- Mu, L.; Xie, Z.; Hu, L.; Chen, G.; Zhang, Z. Cellulase interacts with Lactobacillus plantarum to affect chemical composition, bacterial communities, and aerobic stability in mixed silage of high-moisture amaranth and rice straw. Bioresour. Technol. 2020, 315, 123772. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, D.; Chen, Y.; Lei, Y.; Li, M.; Wang, J.; He, X.; Yang, Y.; Zhang, X.; Liu, S.; et al. Enhancing alfalfa and sorghum silage quality using agricultural wastes: Fermentation dynamics, microbial communities, and functional insights. BMC Plant Biol 2025, 25, 728, Erratum in BMC Plant Biol. 2025, 25, 785. [Google Scholar]
- Ogunade, I.M.; Jiang, Y.; Pech Cervantes, A.A.; Kim, D.H.; Oliveira, A.S.; Vyas, D.; Weinberg, Z.G.; Jeong, K.C.; Adesogan, A.T. Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157:H7 and silage additives. J. Dairy Sci. 2018, 101, 2048–2059. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Qiu, C.; Wang, Y.; Zhang, W.; He, L. Effect of tea polyphenols on the fermentation quality, protein preservation, antioxidant capacity and bacterial community of stylo silage. Front. Microbiol. 2022, 13, 993750. [Google Scholar] [CrossRef]
- Carr, N.G.; Whitton, B.A. The Biology of Cyanobacteria; Blackwell Scientific Publication: Oxford, UK, 1982. [Google Scholar]
- Sun, Z.; Li, Y.; Li, S.; Wang, S.; Li, S.; Ke, Y.; Gao, R.; Wang, L.; Zhou, Z.; Wu, Z.; et al. Pretreatment of sweet sorghum silages with Lactobacillus plantarum and cellulase with two different raw material characteristics: Fermentation profile, carbohydrate composition, in vitro rumen fermentation and microbiota communities. Chem. Biol. Technol. Agric. 2025, 12, 33. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, B.; Zhu, Y.; Xiong, H.; Guo, Y.; Liu, D.; Sun, B. Effects of different concentrations of Lactiplantibacillus plantarum and Bacillus licheniformis on silage fermentation parameter, chemical composition and microbial community of Pennisetum sinese. Front. Microbiol. 2025, 16, 1532060. [Google Scholar] [CrossRef]
- Stevenson, D.M.; Muck, R.E.; Shinners, K.J.; Weimer, P.J. Use of real time PCR to determine population profiles of individual species of lactic acid bacteria in alfalfa silage and stored corn stover. Appl. Microbiol. Biotechnol. 2006, 71, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Sun, L.; Hou, M.; Hao, J.; Lu, Q.; Liu, T.; Ren, X.; Jia, Y.; Wang, Z.; Ge, G. Effects of different harvest frequencies on microbial community and metabolomic properties of annual ryegrass silage. Front. Microbiol. 2022, 13, 971449. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, H.; Zhu, R.; Cheng, S.; Yu, Y.; Xiang, L.; Xiang, Z.; Guo, Z.; Wang, Y. Characterization and correlation analysis of microbial flora and flavor profile of stinky acid, a Chinese traditional fermented condiment. Food Chem. X 2024, 22, 101311. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, H.M.; Seo, H.J.; Yeon, J.; Park, A.R.; Yu, N.H.; Jeong, S.G.; Chang, J.Y.; Kim, J.C.; Park, H.W. Root-Knot Nematode (Meloidogyne incognita) Control Using a Combination of Lactiplantibacillus plantarum WiKim0090 and Copper Sulfate. J. Microbiol. Biotechn. 2022, 32, 960–966. [Google Scholar] [CrossRef]
- Wang, Y.; He, L.; Xing, Y.; Zheng, Y.; Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. Dynamics of bacterial community and fermentation quality during ensiling of wilted and unwilted moringa oleifera leaf silage with or without lactic acid bacterial inoculants. mSphere 2019, 4, e00341-19. [Google Scholar] [CrossRef]
- Yang, W.Z.; Beauchemin, K.A.; Rode, L.M. Effects of grain processing, forage to concentrate ratio, and forage particle size on rumen pH and digestion by dairy cows. J. Dairy Sci. 2001, 84, 2203–2216. [Google Scholar] [CrossRef]
- Hoover, W.H.; Stokes, S.R. Balancing carbohydrates and proteins for optimum rumen microbial yield. J. Dairy Sci. 1991, 74, 3630–3644. [Google Scholar] [CrossRef]
- Wu, Y.; Jiao, C.; Diao, Q.; Tu, Y. Effect of dietary and age changes on ruminal microbial diversity in holstein calves. Microorganisms 2023, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gong, X.; Yang, T.; Jiang, M.; Wang, L.; Zhan, K.; Lin, M.; Zhao, G.; Ginkgo Biloba, L. Residues partially replacing alfalfa hay pellet in pelleted total mixed ration on growth performance, serum biochemical parameters, rumen fermentation, immune function and meat quality in finishing Haimen white goats. Animals 2021, 11, 3046. [Google Scholar] [CrossRef]
- Zhao, M.; Bao, J.; Wang, Z.; Sun, P.; Liu, J.; Yan, Y.; Ge, G. Utilisation of Lactiplantibacillus plantarum and propionic acid to improve silage quality of amaranth before and after wilting: Fermentation quality, microbial communities, and their metabolic pathway. Front. Microbiol. 2024, 15, 1415290, Erratum in Front. Microbiol. 2024, 15, 1469591. [Google Scholar] [CrossRef]
- Rehemujiang, H.; Yusuf, H.A.; Ma, T.; Diao, Q.; Kong, L.; Kang, L.; Tu, Y. Fermented cottonseed and rapeseed meals outperform soybean meal in improving performance, rumen fermentation, and bacterial composition in Hu sheep. Front. Microbiol. 2023, 14, 1119887. [Google Scholar] [CrossRef]
- Hackmann, T.J.; Firkins, J.L. Maximizing efficiency of rumen microbial protein production. Front. Microbiol. 2015, 6, 465. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, L.; Li, W.; Xu, S.; Bao, J.; Deng, J.; Wu, Z.; Yu, Z. Fermentation quality, in vitro digestibility, and aerobic stability of total mixed ration silage in response to varying proportion alfalfa silage. Animals 2022, 12, 1039. [Google Scholar] [CrossRef]
- Filya, I. The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. J. Dairy Sci. 2003, 86, 3575–3581. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. The sustainable mitigation of ruminal methane and carbon dioxide emissions by co-ensiling corn stalk with Neolamarckia cadamba leaves for cleaner livestock production. J. Clean. Prod. 2021, 311, 127680. [Google Scholar] [CrossRef]
- Azizi, A.; Sharifi, H.; Fazaeli, A.; Azarfar, A.; Jonker, A.; Kiani, A. Effect of transferring lignocellulose-degrading bacteria from termite to rumen fluid of sheep on in vitro gas production, fermentation parameters, microbial populations and enzyme activity. J. Integr. Agric. 2020, 19, 1323–1331. [Google Scholar] [CrossRef]
- FAO. Global Livestock Environmental Assessment Model; Food and Agriculture Organization: Rome, Italy, 2022. [Google Scholar]
- Xie, X.; Cao, Y.; Li, Q.; Li, Q.; Yang, X.; Wang, R.; Zhang, X.; Tan, Z.; Lin, B.; Wang, M. Mitigating enteric methane emissions: An overview of methanogenesis, inhibitors and future prospects. Anim. Nutr. 2025, 21, 84–96. [Google Scholar] [CrossRef]
- Sagala, Y.G.; Andadari, L.; Handayani, T.H.; Sholikin, M.M.; Fitri, A.; Fidriyanto, R.; Rohmatussolihat, R.; Ridwan, R.; Astuti, W.D.; Widyastuti, Y.; et al. The effect of silkworms (Bombyx mori) chitosan on rumen fermentation, methanogenesis, and microbial population in vitro. Vet. World. 2024, 17, 1216–1226. [Google Scholar] [CrossRef]
- Sari, N.F.; Ray, P.; Rymer, C.; Kliem, K.E.; Stergiadis, S. Garlic and Its Bioactive Compounds: Implications for Methane Emissions and Ruminant Nutrition. Animals 2022, 12, 2998. [Google Scholar] [CrossRef]
- Sezmis, G.; Kaya, A.; Kaya, H.; Macit, M.; Erten, K.; Palangi, V.; Lackner, M. Comparison of black tea waste and Legume roughages: Methane mitigation and rumen fermentation parameters. Metabolites 2023, 13, 731. [Google Scholar] [CrossRef]




| Items | Sugar Beet Tops | Corncobs (Air-Dried) | Sugar Beet Top–Corncob |
|---|---|---|---|
| DM (g/kg FM) | 168.17 ± 4.12 | 907.40 ± 4.81 | 243.61 ± 3.63 |
| CP (g/kg DM) | 161.03 ± 7.51 | 46.73 ± 1.01 | 146.23 ± 2.15 |
| NDF (g/kg DM) | 226.21 ± 5.31 | 629.73 ± 10.29 | 442.13 ± 3.19 |
| ADF (g/kg DM) | 159.69 ± 6.80 | 339.52 ± 9.31 | 261.47 ± 2.90 |
| WSC (g/kg DM) | 193.54 ± 8.38 | 96.92 ± 7.13 | 83.31 ± 1.08 |
| Items | Treatments | p-Value | ||
|---|---|---|---|---|
| CK | LB | LBC | ||
| DM (g/kg FM) | 230.50 ± 9.47 | 229.57 ± 5.48 | 238.40 ± 4.77 | 0.298 |
| CP (g/kg DM) | 108.43 ± 2.46 c | 112.50 ± 0.95 b | 120.03 ± 0.98 a | <0.001 |
| NDF (g/kg DM) | 409.00 ± 8.20 a | 394.80 ± 1.20 b | 338.83 ± 7.27 c | <0.001 |
| ADF (g/kg DM) | 233.43 ± 10.32 a | 212.77 ± 7.27 b | 182.63 ± 5.06 c | <0.001 |
| WSC (g/kg DM) | 21.83 ± 0.55 c | 24.17 ± 0.25 b | 30.67 ± 0.50 a | <0.001 |
| Items | Treatments | p-Value | ||
|---|---|---|---|---|
| CK | LB | LBC | ||
| pH | 3.95 ± 0.03 a | 3.89 ± 0.02 b | 3.85 ± 0.02 c | 0.004 |
| NH3-N (%) | 1.55 ± 0.04 a | 1.08 ± 0.02 b | 1.01 ± 0.03 c | <0.001 |
| LA (g/kg DM) | 43.94 ± 1.93 c | 57.68 ± 2.63 b | 64.04 ± 0.97 a | <0.001 |
| AA (g/kg DM) | 6.81 ± 0.19 c | 10.90 ± 0.53 b | 12.13 ± 0.33 a | <0.001 |
| BA (g/kg DM) | ND | ND | ND | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Li, J.; Xu, J.; Wu, B.; Hu, Z.; Niu, H. Improving the Recycling of Sugar Beet Top–Corncob Waste Through Ensiling with Lentilactobacillus buchneri and Cellulase. Microorganisms 2025, 13, 2761. https://doi.org/10.3390/microorganisms13122761
Lin H, Li J, Xu J, Wu B, Hu Z, Niu H. Improving the Recycling of Sugar Beet Top–Corncob Waste Through Ensiling with Lentilactobacillus buchneri and Cellulase. Microorganisms. 2025; 13(12):2761. https://doi.org/10.3390/microorganisms13122761
Chicago/Turabian StyleLin, Huiling, Jiaxin Li, Junzhao Xu, Baiyila Wu, Zongfu Hu, and Huaxin Niu. 2025. "Improving the Recycling of Sugar Beet Top–Corncob Waste Through Ensiling with Lentilactobacillus buchneri and Cellulase" Microorganisms 13, no. 12: 2761. https://doi.org/10.3390/microorganisms13122761
APA StyleLin, H., Li, J., Xu, J., Wu, B., Hu, Z., & Niu, H. (2025). Improving the Recycling of Sugar Beet Top–Corncob Waste Through Ensiling with Lentilactobacillus buchneri and Cellulase. Microorganisms, 13(12), 2761. https://doi.org/10.3390/microorganisms13122761

