Abstract
The rising global prevalence of obesity and metabolic disorders calls for innovative dietary strategies that can modulate key enzymatic pathways involved in lipid and carbohydrate metabolism. This study uncovers the effects of sulforaphane (SFN)-rich broccoli-derived formulations—including liquid and lyophilised forms, as well as two commercial prototypes, Sulforaphan® BASIC and Sulforaphan® SMART, the latter being characterised by the inclusion of an enteric-coated myrosinase enzyme designed to enhance the in situ conversion of glucosinolates (GSL) into bioactive isothiocyanates (ITC)—on lipid and carbohydrate metabolism in 3T3-L1 adipocytes. Across the formulations, total GSL content ranged widely, with GS0 showing the highest levels. Functionally, all SFN-rich formulations significantly reduced intracellular triglyceride content, with the SMART formulation achieving the strongest reduction (11% compared with untreated controls). Across enzymatic assays, we recorded that every formulation inhibited lipoprotein lipase and α-glucosidase activities, with Sulforaphan® BASIC and Sulforaphan® SMART leading to moderate inhibition (40–50%). The potent effect of SMART formulation may be associated with the presence of enteric-coated myrosinase, which enhances the conversion of GSL into bioactive ITC. The gathered evidence provides further insights into the potential of bioactive compounds in cruciferous foods to modulate metabolic health, underscoring their potential role in complementary therapeutic strategies for obesity and its comorbidities.