Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (883)

Search Parameters:
Keywords = carbohydrate fermentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5769 KiB  
Article
Higher Winter Precipitation and Temperature Are Associated with Smaller Earlywood Vessel Size but Wider Latewood Width in Quercus faginea Lam.
by Ignacio García-González, Filipe Campelo, Joana Vieira and Cristina Nabais
Forests 2025, 16(8), 1252; https://doi.org/10.3390/f16081252 - 1 Aug 2025
Viewed by 45
Abstract
Quercus faginea Lam., a winter-deciduous oak native to the Iberian Peninsula, typically grows under a Mediterranean climate. To identify the main drivers influencing radial wood increment, we analyzed the climatic signals in tree-ring width and wood anatomical traits using increment cores. Winter conditions [...] Read more.
Quercus faginea Lam., a winter-deciduous oak native to the Iberian Peninsula, typically grows under a Mediterranean climate. To identify the main drivers influencing radial wood increment, we analyzed the climatic signals in tree-ring width and wood anatomical traits using increment cores. Winter conditions influenced both latewood width and earlywood vessel size in the first row. Latewood was positively correlated with precipitation and temperature, with the long-term positive effect of winter water supply supported by SPEI. In contrast, vessel size showed negative correlations, also reflecting a long-term negative effect of winter precipitation. Consequently, conditions that enhanced latewood width and overall tree-ring growth appear to be associated with the formation of smaller earlywood vessels. Although ample winter precipitation replenishes soil water reserves and supports prolonged wood formation, it may also induce anaerobic soil conditions that promote root fermentation, depleting carbohydrates needed for cell turgor and expansion, and ultimately regulating earlywood vessel size. This physiological decoupling may help explain the lack of a significant correlation between latewood width and earlywood vessel size, underscoring their independent responses to environmental influences. Our findings highlighted the complex interplay between various climatic conditions affecting Q. faginea, with implications for understanding its adaptive capacity in changing climates. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

22 pages, 1916 KiB  
Article
Freeze-Dried Probiotic Fermented Camel Milk Enriched with Ajwa Date Pulp: Evaluation of Functional Properties, Probiotic Viability, and In Vitro Antidiabetic and Anticancer Activities
by Sally S. Sakr and Hassan Barakat
Foods 2025, 14(15), 2698; https://doi.org/10.3390/foods14152698 (registering DOI) - 31 Jul 2025
Viewed by 221
Abstract
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve [...] Read more.
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve this target, six FCM formulations were prepared using ABT-5 starter culture (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Streptococcus thermophilus) with or without Lacticaseibacillus rhamnosus B-1937 and ADP (12% or 15%). The samples were freeze-dried, and their functional properties, such as water activity, dispersibility, water absorption capacity, water absorption index, water solubility index, insolubility index, and sedimentation, were assessed. Reconstitution properties such as density, flowability, air content, porosity, loose bulk density, packed bulk density, particle density, carrier index, Hausner ratio, porosity, and density were examined. In addition, color and probiotic survivability under simulated gastrointestinal conditions were analyzed. Also, antidiabetic potential was assessed via α-amylase and α-glucosidase inhibition assays, while cytotoxicity was evaluated using the MTT assay on Caco-2 cells. The results show that ADP supplementation significantly improved dispersibility (up to 72.73% in FCM15D+L). These improvements are attributed to changes in particle size distribution and increased carbohydrate and mineral content, which facilitate powder rehydration and reduce clumping. All FCM variants demonstrated low water activity (0.196–0.226), indicating good potential for shelf stability. The reconstitution properties revealed that FCM powders with ADP had higher bulk and packed densities but lower particle density and porosity than controls. Including ADP reduced interstitial air and increased occluded air within the powders, which may minimize oxidation risks and improve packaging efficiency. ADP incorporation resulted in a significant decrease in lightness (L*) and increases in redness (a*) and yellowness (b*), with greater pigment and phenolic content at higher ADP levels. These changes reflect the natural colorants and browning reactions associated with ADP, leading to a more intense and visually distinct product. Probiotic survivability was higher in ADP-fortified samples, with L. acidophilus and B. bifidum showing resilience in intestinal conditions. The FCM15D+L formulation exhibited potent antidiabetic effects, with IC50 values of 111.43 μg mL−1 for α-amylase and 77.21 μg mL−1 for α-glucosidase activities, though lower than control FCM (8.37 and 10.74 μg mL−1, respectively). Cytotoxicity against Caco-2 cells was most potent in non-ADP samples (IC50: 82.22 μg mL−1 for FCM), suggesting ADP and L. rhamnosus may reduce antiproliferative effects due to proteolytic activity. In conclusion, the study demonstrates that ADP-enriched FCM is a promising functional food with enhanced probiotic viability, antidiabetic potential, and desirable physical properties. This work highlights the potential of camel milk and date synergies in combating some NCDs in vitro, suggesting potential for functional food application. Full article
Show Figures

Figure 1

21 pages, 719 KiB  
Article
Changes in Ruminal Dynamics and Microbial Populations Derived from Supplementation with a Protein Concentrate for Cattle with the Inclusion of Non-Conventional Feeding Sources
by Diana Sofía Torres-Velázquez, Daniel Francisco Ramos-Rosales, Manuel Murillo-Ortiz, Jesús Bernardo Páez-Lerma, Juan Antonio Rojas-Contreras, Karina Aide Araiza-Ponce and Damián Reyes-Jáquez
Fermentation 2025, 11(8), 438; https://doi.org/10.3390/fermentation11080438 - 30 Jul 2025
Viewed by 243
Abstract
Feed supplementation strategies are essential for optimizing cattle productivity, and the incorporation of non-conventional feed resources may reduce both production costs and environmental impact. This study evaluated the effects of pelletized protein concentrates (including Acacia farnesiana, A. schaffneri, and Agave duranguensis [...] Read more.
Feed supplementation strategies are essential for optimizing cattle productivity, and the incorporation of non-conventional feed resources may reduce both production costs and environmental impact. This study evaluated the effects of pelletized protein concentrates (including Acacia farnesiana, A. schaffneri, and Agave duranguensis bagasse) on rumen fermentation parameters, microbial communities, and gas emissions. Fistulated bullocks received the concentrate daily, and ruminal contents were collected and filtered before and after supplementation to assess in vitro gas and methane production, pH, and microbial composition using high-throughput sequencing of 16S rRNA and mcrA amplicons. In addition, in situ degradability was evaluated during and after the supplementation period. Supplementation led to a significant (p < 0.05) reduction in degradability parameters and methane production, along with a marked decrease in the abundance of Methanobrevibacter and an increase in succinate-producing taxa. These effects were attributed to the enhanced levels of non-fiber carbohydrates, hemicellulose, crude protein, and the presence of bioactive secondary metabolites and methanol. Rumen microbiota composition was consistent with previously described core communities, and mcrA-based sequencing proved to be a valuable tool for targeted methanogen detection. Overall, the inclusion of non-conventional ingredients in protein concentrates may improve ruminal fermentation efficiency and contribute to methane mitigation in ruminants, although further in vivo trials on a larger scale are recommended. Full article
Show Figures

Figure A1

21 pages, 1343 KiB  
Review
Autobrewery Syndrome and Endogenous Ethanol Production in Patients with MASLD: A Perspective from Chronic Liver Disease
by Silvia Andaloro, Valeria De Gaetano, Ferdinando Cardone, Gianluca Ianiro, Lucia Cerrito, Maria Pallozzi, Leonardo Stella, Antonio Gasbarrini and Francesca Romana Ponziani
Int. J. Mol. Sci. 2025, 26(15), 7345; https://doi.org/10.3390/ijms26157345 - 30 Jul 2025
Viewed by 252
Abstract
Autobrewery syndrome is a rare condition characterized by the endogenous fermentation of carbohydrates by gut microbiota, which exceeds the liver’s detoxification capacity and leads to signs and symptoms of acute alcohol intoxication. This condition has significant clinical, social, and legal implications. Beyond the [...] Read more.
Autobrewery syndrome is a rare condition characterized by the endogenous fermentation of carbohydrates by gut microbiota, which exceeds the liver’s detoxification capacity and leads to signs and symptoms of acute alcohol intoxication. This condition has significant clinical, social, and legal implications. Beyond the acute effects, the role of excessive endogenous ethanol production in the progression of chronic diseases—particularly liver disease—is still under investigation. In this review, we aim to describe the key clinical features of autobrewery syndrome, identify the main microbial pathogens involved, and explore the potential impact of endogenous ethanol production on the development and progression of chronic liver disease. Although robust data and standardized treatment protocols are currently lacking, we discuss the general principles of management and outline possible therapeutic strategies and future perspectives. Full article
(This article belongs to the Special Issue Gut Microbiota in Human Disease and Health)
Show Figures

Figure 1

16 pages, 2615 KiB  
Article
The Prebiotic Potential of Porphyra-Derived Polysaccharides and Their Utilization by Lactic Acid Bacteria Fermentation
by Yu-Jyun Wei, Hong-Ting Victor Lin, Chorng-Liang Pan and Chung-Hsiung Huang
Fermentation 2025, 11(8), 435; https://doi.org/10.3390/fermentation11080435 - 29 Jul 2025
Viewed by 343
Abstract
Porphyra-derived polysaccharides (PPs) are promising prebiotic candidates due to their capacity to modulate gut microbiota and promote host health. However, their interactions with and utilization by probiotic microorganisms remain unclear. In this study, the fermentability of PPs by murine-derived lactic acid bacteria [...] Read more.
Porphyra-derived polysaccharides (PPs) are promising prebiotic candidates due to their capacity to modulate gut microbiota and promote host health. However, their interactions with and utilization by probiotic microorganisms remain unclear. In this study, the fermentability of PPs by murine-derived lactic acid bacteria (LAB) strains was investigated, with particular attention to strain-specific metabolic activity, carbohydrate utilization, and potential exopolysaccharide (EPS) production. All tested strains were capable of utilizing PPs to varying extents, with strain A10 exhibiting the highest level of carbohydrate consumption. Notably, strain A5 showed increased mannose concentrations following fermentation, suggesting the biosynthesis of mannose-rich EPSs. HPLC analysis confirmed the presence of high-molecular-weight polysaccharides ranging from 2.6 to 8.1 × 105 Da, indicative of EPS production. FT-IR spectroscopy further revealed spectral features consistent with EPS structures. The antibacterial activity of postbiotic compounds produced by LAB strains fermenting PPs against Escherichia coli and Staphylococcus aureus was observed. These findings demonstrate distinct metabolic adaptations of LAB strains to PPs and emphasize their potential as prebiotic substrates. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

15 pages, 5467 KiB  
Article
Comparative Genomic Analysis of Lactiplantibacillus plantarum: Insights into Its Genetic Diversity, Metabolic Function, and Antibiotic Resistance
by Ruiqi Li and Chongpeng Bi
Genes 2025, 16(8), 869; https://doi.org/10.3390/genes16080869 - 24 Jul 2025
Viewed by 179
Abstract
Background/Objectives: Lactiplantibacillus plantarum is widely utilized in the fermentation industry and offers potential health benefits. However, large-scale comparative genomic analyses aimed at exploring its metabolic functions and conducting safety assessments are still lacking. Methods: In this study, we performed a comparative [...] Read more.
Background/Objectives: Lactiplantibacillus plantarum is widely utilized in the fermentation industry and offers potential health benefits. However, large-scale comparative genomic analyses aimed at exploring its metabolic functions and conducting safety assessments are still lacking. Methods: In this study, we performed a comparative genomic analysis of 324 L. plantarum strains sourced from various origins and geographical locations. Results: The results revealed that L. plantarum possesses a total of 2403 core genes, of which 12.3% have an unknown function. The phylogenetic analysis revealed a mixed distribution from various origins, suggesting complex transmission pathways. The metabolic analysis demonstrated that L. plantarum strains can produce several beneficial metabolites, including lysine, acetate, and riboflavin. Furthermore, L. plantarum is highly capable of degrading various carbohydrates and proteins, increasing its adaptability. Further, we profiled the antimicrobial peptides (AMPs) in the genomes of L. plantarum. We identified a widely distributed AMP and its variants, presenting in a total of 280 genomes. In our biosafety assessment of L. plantarum, we identified several antibiotic resistance genes, such as Tet(M), ANT(6)-Ia, and mdeA, which may have potential for horizontal gene transfer within the Lactobacillaceae family. Conclusions: This study provides genomic insights into the genetic diversity, metabolic functions, antimicrobial properties, and biosafety of L. plantarum, underscoring its potential applications in biotechnology and environmental adaptation. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

19 pages, 4928 KiB  
Article
Microbial and Metabolomic Insights into Lactic Acid Bacteria Co-Inoculation for Dough-Stage Triticale Fermentation
by Yujie Niu, Xiaoling Ma, Chuying Wang, Peng Zhang, Qicheng Lu, Rui Long, Yanyan Wu and Wenju Zhang
Microorganisms 2025, 13(8), 1723; https://doi.org/10.3390/microorganisms13081723 - 23 Jul 2025
Viewed by 211
Abstract
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that [...] Read more.
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that may impair silage quality. This study aimed to investigate the effects of lactic acid bacteria inoculation on the fermentation quality, bacterial community, and metabolome of whole-plant triticale silage at the dough stage. Fresh triticale was ensiled for 30 days without or with an inoculant containing Lactiplantibacillus plantarum and Streptococcus bovis. Fermentation quality, bacterial succession, and metabolic profiles were analyzed at multiple time points. Inoculation significantly improved fermentation quality, characterized by a rapid pH drop, increased lactic acid production, and better preservation of fiber components. Microbial analysis revealed that inoculation successfully established Lactobacillus as the dominant genus while suppressing spoilage bacteria like Enterobacter and Clostridium. Metabolomic analysis on day 30 identified numerous differential metabolites, indicating that inoculation primarily altered pathways related to amino acid and purine metabolism. In conclusion, inoculating dough-stage triticale with this LAB combination effectively directs the fermentation trajectory. It enhances silage quality not only by optimizing organic acid profiles and microbial succession but also by modulating key metabolic pathways, ultimately leading to improved nutrient preservation. Full article
(This article belongs to the Special Issue Beneficial Microorganisms and Antimicrobials: 2nd Edition)
Show Figures

Figure 1

14 pages, 1604 KiB  
Article
Elicitation-Induced Enhancement of Lovastatin and Pigment Production in Monascus purpureus C322
by Sirisha Yerramalli, Stephen J. Getting, Godfrey Kyazze and Tajalli Keshavarz
Fermentation 2025, 11(8), 422; https://doi.org/10.3390/fermentation11080422 - 22 Jul 2025
Viewed by 469
Abstract
Monascus purpureus is a filamentous fungus renowned for producing bioactive secondary metabolites, including lovastatin and azaphilone pigments. Lovastatin is valued for its cholesterol-lowering properties and cardiovascular benefits, while Monascus pigments exhibit anti-cancer, anti-inflammatory, and antimicrobial activities, underscoring their pharmaceutical and biotechnological relevance. This [...] Read more.
Monascus purpureus is a filamentous fungus renowned for producing bioactive secondary metabolites, including lovastatin and azaphilone pigments. Lovastatin is valued for its cholesterol-lowering properties and cardiovascular benefits, while Monascus pigments exhibit anti-cancer, anti-inflammatory, and antimicrobial activities, underscoring their pharmaceutical and biotechnological relevance. This study evaluated the impact of carbohydrate-derived elicitors—mannan oligosaccharides, oligoguluronate, and oligomannuronate—on the enhancement of pigment and lovastatin production in M. purpureus C322 under submerged fermentation. Elicitors were added at 48 h in shake flasks and 24 h in 2.5 L stirred-tank fermenters. All treatments increased the production of yellow, orange, and red pigments and lovastatin compared to the control, with higher titres upon scale-up. OG led to the highest orange pigment yield (1.2 AU/g CDW in flasks; 1.67 AU/g CDW in fermenters), representing 2.3- and 3.0-fold increases. OM yielded the highest yellow and red pigments (1.24 and 1.35 AU/g CDW in flasks; 1.58 and 1.80 AU/g CDW in fermenters) and the highest lovastatin levels (10.46 and 12.6 mg/g CDW), corresponding to 2.03–3.03-fold improvements. These results highlight the potential of carbohydrate elicitors to stimulate metabolite biosynthesis and facilitate scalable optimisation of fungal fermentation. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

15 pages, 1280 KiB  
Article
The Fermentative and Nutritional Effects of Limonene and a Cinnamaldehyde–Carvacrol Blend on Total Mixed Ration Silages
by Isabele Paola de Oliveira Amaral, Marco Antonio Previdelli Orrico Junior, Marciana Retore, Tatiane Fernandes, Yara América da Silva, Mariany Felex de Oliveira, Ana Carolina Amorim Orrico, Ronnie Coêlho de Andrade and Giuliano Reis Pereira Muglia
Fermentation 2025, 11(7), 415; https://doi.org/10.3390/fermentation11070415 - 18 Jul 2025
Viewed by 450
Abstract
This study evaluated the effects of different doses of limonene essential oil (LEO) and a blend of cinnamaldehyde and carvacrol (BCC) on the fermentative quality and chemical–bromatological composition of total mixed ration (TMR) silages. Two independent trials were conducted, each focused on one [...] Read more.
This study evaluated the effects of different doses of limonene essential oil (LEO) and a blend of cinnamaldehyde and carvacrol (BCC) on the fermentative quality and chemical–bromatological composition of total mixed ration (TMR) silages. Two independent trials were conducted, each focused on one additive, using a completely randomized design with four treatments (0, 200, 400, and 600 mg/kg of dry matter), replicated across two seasons (summer and autumn), with five replicates per treatment per season. The silages were assessed for their chemical composition, fermentation profile, aerobic stability (AS), and storage losses. In the LEO trial, the dry matter (DM) content increased significantly by 0.047% for each mg/kg added. Dry matter recovery (DMR) peaked at 97.9% at 473 mg/kg (p < 0.01), while lactic acid (LA) production reached 5.87% DM at 456 mg/kg. Ethanol concentrations decreased to 0.13% DM at 392 mg/kg (p = 0.04). The highest AS value (114 h) was observed at 203.7 mg/kg, but AS declined slightly at the highest LEO dose (600 mg/kg). No significant effects were observed for the pH, neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), or non-fiber carbohydrates (NFCs). In the BCC trial, DMR reached 98.2% at 548 mg/kg (p < 0.001), and effluent losses decreased by approximately 20 kg/ton DM. LA production peaked at 6.41% DM at 412 mg/kg (p < 0.001), and AS reached 131 h at 359 mg/kg. BCC increased NDF (from 23.27% to 27.73%) and ADF (from 35.13% to 41.20%) linearly, while NFCs and the total digestible nutrients (TDN) decreased by 0.0007% and 0.039% per mg of BCC, respectively. In conclusion, both additives improved the fermentation efficiency by increasing LA and reducing losses. LEO was more effective for DM retention and ethanol reduction, while BCC improved DMR and AS, with distinct effects on fiber and energy fractions. Full article
Show Figures

Figure 1

12 pages, 560 KiB  
Article
Varietal Susceptibility of Yellow Onions to Blanching and Its Impact on Probiotic Fermentation
by Katarzyna Grzelak-Błaszczyk, Robert Klewicki, Sylwia Ścieszka, Lidia Piekarska-Radzik, Michał Sójka, Michalina Jaszczak, Elżbieta Klewicka, Bartosz Fotschki and Jerzy Juśkiewicz
Molecules 2025, 30(14), 3002; https://doi.org/10.3390/molecules30143002 - 17 Jul 2025
Viewed by 260
Abstract
The purpose of this study was to determine the impact of blanching various onion (Allium cepa L.) varieties on the process of lactic fermentation by probiotic strain Levilactobacillus brevis ŁOCK 0944. The materials for the research were twelve varieties of yellow onion: Venecia, [...] Read more.
The purpose of this study was to determine the impact of blanching various onion (Allium cepa L.) varieties on the process of lactic fermentation by probiotic strain Levilactobacillus brevis ŁOCK 0944. The materials for the research were twelve varieties of yellow onion: Venecia, Moondance, Sedona, Alonso, Hysky, Centro, Dormo, Hypark, Hybelle, Armstrong, EXP 2236, and Hysinger. We also studied the resulting changes in bioactive compound content. Acidic bacterial metabolites, the lactic acid bacteria count, and the polyphenol and carbohydrate contents were assessed in both raw onions and onions blanched at 60 °C, before and after fermentation. Onion varieties that showed morphological changes after blanching (Hysky, Centro, Dormo) demonstrated better growth of L. brevis and higher lactic acid production. Blanching loosened the tissue structure, reducing the carbohydrate content in the blanched and fermented onions, particularly Alonso, Centro, Dormo, and Hypark varieties. Although the combined process reduced the polyphenol content, four varieties showed no statistically significant differences, indicating variety-specific responses. The varying susceptibility of onion varieties to thermal treatment highlights the importance of selecting the appropriate variety for further processing. Full article
Show Figures

Graphical abstract

12 pages, 1374 KiB  
Review
Ethanol-Producing Micro-Organisms of Human Gut: A Biological Phenomenon or a Disease?
by Aladin Abu Issa, Yftach Shoval and Fabio Pace
Appl. Biosci. 2025, 4(3), 36; https://doi.org/10.3390/applbiosci4030036 - 15 Jul 2025
Viewed by 344
Abstract
The discovery that human beings may endogenously produce ethanol is not new and dates back at the end of the 19th century; recently, however, it has become clear that through the proliferation of gut microorganisms that produce ethanol from sugars or other substrates, [...] Read more.
The discovery that human beings may endogenously produce ethanol is not new and dates back at the end of the 19th century; recently, however, it has become clear that through the proliferation of gut microorganisms that produce ethanol from sugars or other substrates, blood alcohol level may be greater than 0, despite Homo sapiens sapiens lacking the enzymatic pathways to produce it. Very rarely this can lead to symptoms and/or to a disease, named gut fermentation syndrome or auto-brewery syndrome (ABS). The list of microorganisms (mostly bacteria and fungi) is very long and contains almost 100 different strains, and many metabolic pathways are involved. Endogenous ethanol production is a neglected entity, but it may be suspected in patients in whom ethanol consumption may be firmly excluded. Nevertheless, due to the growing prevalence of NAFLD (now renamed as MAFLD) worldwide, an ethanol-producing microorganism responsible for endogenous ethanol production such as Klebsiella pneumoniae or Saccharomices cerevisiae is increasingly sought in NAFLD patients, or in patients with metabolic diseases such as diabetes mellitus, obesity, or metabolic syndrome, at least in selected instances. In the absence of standard diagnostic and therapeutic guidelines, ABS requires a detailed patient history, including dietary habits, alcohol consumption, and gastrointestinal symptoms, and a comprehensive physical examination to detect unexplained ethanol intoxication. It has been proposed to start the diagnostic protocol with a standardized carbohydrate challenge test, followed, if positive, by the use of antifungal agents or antibiotics; indeed, fecal microbiota transplantation might be the only way to cure a patient with refractory ABS. Scientific societies should produce internationally agreed recommendations for ABS and other conditions linked to excessive endogenous ethanol production. Full article
Show Figures

Figure 1

18 pages, 1720 KiB  
Article
In Vitro Preliminary Characterization of Lactiplantibacillus plantarum BG112 for Use as a Starter Culture for Industrial Dry-Fermented Meats
by María Inés Palacio, María Julia Ruiz, María Fernanda Vega and Analía Inés Etcheverría
Fermentation 2025, 11(7), 403; https://doi.org/10.3390/fermentation11070403 - 14 Jul 2025
Viewed by 409
Abstract
The objective of this study was to perform a preliminary in vitro characterization of Lactiplantibacillus plantarum BG112, assessing its safety and technological features for potential application as a culture starter for an industrial fermented dry meat product. In vitro assays assessed its viability, [...] Read more.
The objective of this study was to perform a preliminary in vitro characterization of Lactiplantibacillus plantarum BG112, assessing its safety and technological features for potential application as a culture starter for an industrial fermented dry meat product. In vitro assays assessed its viability, probiotic properties, and safety for use in food formulations. The strain was characterized through morphological and biochemical tests, carbohydrate fermentation profiling, and various in vitro assays based on FAO/WHO criteria for probiotic selection. These included proteolytic activity, auto-aggregation capacity, tolerance to simulated gastric juice and bile salts, antimicrobial activity, and resistance to sodium chloride, nitrite, and low pH. Safety evaluations were also performed by testing antibiotic susceptibility, hemolytic activity, and DNAse production. The results showed that L. plantarum BG112 exhibited strong tolerance to adverse environmental conditions typically found during sausage fermentation and ripening, along with significant inhibitory activity against pathogenic bacteria, such as Escherichia coli O157:H7, Salmonella Typhimurium, and Staphylococcus aureus. The strain also demonstrated no hemolytic or DNAse activity and presented a favorable antibiotic sensitivity profile, meeting key safety requirements for probiotic use. Further studies using meat matrices and in vivo models are needed to validate these findings. This study contributes to the early-stage selection of safe and technologically suitable strains for use in fermented meat products. These findings support the potential application of L. plantarum BG112 as a safe and effective starter culture in the development of high-value, premium fermented meat products, aligned with current consumer demand for health-enhancing and natural foods. Full article
Show Figures

Figure 1

37 pages, 5685 KiB  
Article
Enhanced Biofuel Production from Mixed Marine Microalgae Using UV and UV/H2O2 Pretreatment: Optimization of Carbohydrate Release and Fermentation Efficiency
by Malak Alsarayreh and Fares AlMomani
Fermentation 2025, 11(7), 402; https://doi.org/10.3390/fermentation11070402 - 14 Jul 2025
Viewed by 362
Abstract
The robust structure of algal cell walls presents a major barrier in the recovery of fermentable sugars and intracellular lipids for biofuel production. This study investigates the effectiveness of ultraviolet (UV) radiation and UV-assisted hydrogen peroxide (UV/H2O2) pretreatment on [...] Read more.
The robust structure of algal cell walls presents a major barrier in the recovery of fermentable sugars and intracellular lipids for biofuel production. This study investigates the effectiveness of ultraviolet (UV) radiation and UV-assisted hydrogen peroxide (UV/H2O2) pretreatment on a local mixed marine algal culture to enhance biofuel production through cell wall disruption. Local mixed cultures of marine microalgae (LMCMA) were pretreated with UV for various exposure times (5–30 min) and with UV/H2O2 using H2O2 concentrations ranging from 0.88 to 3.53 mM. The impact of pretreatment was evaluated based on morphological changes (SEM and TEM), elemental composition (C, H, N), sugar release, and downstream fermentation yields of ethanol, methanol, 1-propanol, 1-butanol, and 1-pentanol using Saccharomyces cerevisiae. UV pretreatment at 20–30 min yielded the highest carbohydrate release (up to 0.025 g/gDCW), while UV/H2O2 at 1.76 mM achieved maximum sugar liberation (0.0411 g/gDCW). Fermentation performance was enhanced under optimized conditions, with peak ethanol yields of 0.3668 g ethanol/g carbohydrates (UV, 30 min, 48 h) and 0.251 g ethanol/g (UV/H2O2, 0.88 mM, 24 h). This study also demonstrated selective production of higher alcohols under varying fermentation temperatures (30–37 °C). These findings highlight the potential of combining oxidative pretreatment and process optimization to enhance biofuel recovery from environmentally relevant algal biomass. Full article
(This article belongs to the Special Issue Cyanobacteria and Eukaryotic Microalgae (2nd Edition))
Show Figures

Figure 1

25 pages, 1644 KiB  
Review
The Role of Gut Microbiota in the Development and Treatment of Obesity and Overweight: A Literature Review
by Gabriela Augustynowicz, Maria Lasocka, Hubert Paweł Szyller, Marta Dziedziak, Agata Mytych, Joanna Braksator and Tomasz Pytrus
J. Clin. Med. 2025, 14(14), 4933; https://doi.org/10.3390/jcm14144933 - 11 Jul 2025
Viewed by 609
Abstract
The gut microbiota, dominated by bacteria from the Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria phyla, plays an essential role in fermenting indigestible carbohydrates, regulating metabolism, synthesizing vitamins, and maintaining immune functions and intestinal barrier integrity. Dysbiosis is associated with obesity development. Shifts in the [...] Read more.
The gut microbiota, dominated by bacteria from the Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria phyla, plays an essential role in fermenting indigestible carbohydrates, regulating metabolism, synthesizing vitamins, and maintaining immune functions and intestinal barrier integrity. Dysbiosis is associated with obesity development. Shifts in the ratio of Firmicutes to Bacteroidetes, particularly an increase in Firmicutes, may promote enhanced energy storage, appetite dysregulation, and increased inflammatory processes linked to insulin resistance and other metabolic disorders. The purpose of this literature review is to summarize the current state of knowledge on the relationship between the development and treatment of obesity and overweight and the gut microbiota. Current evidence suggests that probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) can influence gut microbiota composition and metabolic parameters, including body weight and BMI. The most promising effects are observed with probiotic supplementation, particularly when combined with prebiotics, although efficacy depends on strain type, dose, and duration. Despite encouraging preclinical findings, FMT has shown limited and inconsistent results in human studies. Diet and physical activity are key modulators of the gut microbiota. Fiber, plant proteins, and omega-3 fatty acids support beneficial bacteria, while diets low in fiber and high in saturated fats promote dysbiosis. Aerobic exercise increases microbial diversity and supports growth of favorable bacterial strains. While microbiota changes do not always lead to immediate weight loss, modulating gut microbiota represents an important aspect of obesity prevention and treatment strategies. Further research is necessary to better understand the mechanisms and therapeutic potential of these interventions. Full article
(This article belongs to the Special Issue Metabolic Syndrome and Its Burden on Global Health)
Show Figures

Figure 1

15 pages, 944 KiB  
Article
Harnessing Carrot Discard as a Novel Feedstock for 2,3-Butanediol Bioproduction: A Comparison of Fermentation Strategies and Bacillus Performance
by Juan Carlos López-Linares, Alba Mei González-Galán, Mónica Coca, Susana Lucas and María Teresa García-Cubero
Appl. Sci. 2025, 15(14), 7808; https://doi.org/10.3390/app15147808 - 11 Jul 2025
Viewed by 253
Abstract
This study investigates the valorization of carrot discard, a carbohydrate-rich agricultural residue, for the production of 2,3-butanediol (2,3-BDO). The fermentation process was evaluated using two strains, Bacillus licheniformis DSM 8785 and Bacillus amyloliquefaciens DSM 7. Two process configurations were compared: separate hydrolysis and [...] Read more.
This study investigates the valorization of carrot discard, a carbohydrate-rich agricultural residue, for the production of 2,3-butanediol (2,3-BDO). The fermentation process was evaluated using two strains, Bacillus licheniformis DSM 8785 and Bacillus amyloliquefaciens DSM 7. Two process configurations were compared: separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). Additionally, to determine substrate and product inhibition thresholds, fermentation assays were conducted in semi-defined media with glucose concentrations ranging from 20 to 120 g/L. The SHF strategy proved more effective than the SSF configuration. Under the SHF configuration, B. amyloliquefaciens demonstrated superior performance, yielding 16.7 g/L of 2,3-BDO. In contrast, B. licheniformis was notable for its high capacity for acetoin synthesis, producing 24.2 g/L of acetoin in addition to 10.9 g/L of 2,3-BDO. Therefore, these findings demonstrate that carrot discard is a viable feedstock for the co-production of 2,3-BDO and acetoin. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

Back to TopTop