The Role of Gut Microbiota in the Development and Treatment of Obesity and Overweight: A Literature Review
Abstract
1. Introduction
2. Composition of the Gut Microbiota
3. Functions of the Gut Microbiota
3.1. Role of Microbiota Metabolites
3.2. Other Metabolites Produced by the Gut Microbiota
3.3. The Role of Microbiome Modulation in Inflammatory States
4. Intestinal Dysbiosis and Obesity
5. Mechanisms of Microbiota Influence on Energy Homeostasis
6. Differences in Microbiota Composition Between Obese and Lean Individuals
7. Differences in Microbiota Composition Depending on Geographical Region
8. Gut Microbiota Influence on Intestinal Hormones
9. Effects of Probiotics and Prebiotics on Microbiota Composition
10. Incretin-Based Medicaments
11. Fecal Microbiota Transplantation
12. Dietary Treatment
12.1. Fiber
12.2. Proteins and Fats
12.3. Adequate Water Supply
13. Impact of Physical Activity
14. Diet and Long-Term Weight Loss
15. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- El-Sayed, A.; Aleya, L.; Kamel, M. Microbiota’s Role in Health and Diseases. Environ. Sci. Pollut. Res. 2021, 28, 36967–36983. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Ni, Q.; Sun, W.; Li, L.; Feng, X. The Links Between Gut Microbiota and Obesity and Obesity Related Diseases. Biomed. Pharmacother. 2022, 147, 112678. [Google Scholar] [CrossRef]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 5 June 2025).
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, M.; Raes, J.; Pelletier, E.; Paslier, D.L.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the Human Gut Microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef]
- Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; Fitzgerald, M.G.; Fulton, R.S.; et al. Structure, Function and Diversity of the Healthy Human Microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.M.; Kennedy, S.; et al. Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Louis, P.; Hold, G.L.; Flint, H.J. The Gut Microbiota, Bacterial Metabolites and Colorectal Cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef]
- Sayin, S.I.; Wahlström, A.; Felin, J.; Jäntti, S.; Marschall, H.U.; Bamberg, K.; Angelin, B.; Hyötyläinen, T.; Orešič, M.; Bäckhed, F. Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-Beta-Muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metab. 2013, 17, 225–235. [Google Scholar] [CrossRef]
- Wang, J.; Thingholm, L.B.; Skiecevičie, J.; Rausch, P.; Kummen, M.; Hov, J.R.; Degenhardt, F.; Heinsen, F.A.; Rühlemann, M.C.; Szymczak, S.; et al. Genome-Wide Association Analysis Identifies Variation in Vitamin D Receptor and Other Host Factors Influencing the Gut Microbiota. Nat. Genet. 2016, 48, 1396–1406. [Google Scholar] [CrossRef]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; et al. Cross-Talk between Akkermansia Muciniphila and Intestinal Epithelium Controls Diet-Induced Obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.; Delzenne, N. The Role of the Gut Microbiota in Energy Metabolism and Metabolic Disease. Curr. Pharm. Des. 2009, 15, 1546–1558. [Google Scholar] [CrossRef] [PubMed]
- Portincasa, P.; Bonfrate, L.; Khalil, M.; De Angelis, M.; Calabrese, F.M.; D’amato, M.; Wang, D.Q.H.; Di Ciaula, A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2022, 10, 83. [Google Scholar] [CrossRef]
- Sze, M.A.; Schloss, P.D. Looking for a Signal in the Noise: Revisiting Obesity and the Microbiome. mBio 2016, 7, e01018-e16. [Google Scholar] [CrossRef]
- Castaner, O.; Goday, A.; Park, Y.M.; Lee, S.H.; Magkos, F.; Shiow, S.A.T.E.; Schröder, H. The Gut Microbiome Profile in Obesity: A Systematic Review. Int. J. Endocrinol. 2018, 2018, 4095789. [Google Scholar] [CrossRef]
- Luo, Y.; Li, M.; Luo, D.; Tang, B. Gut Microbiota: An Important Participant in Childhood Obesity. Adv. Nutr. 2025, 16, 100362. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Knight, R. Dietary Effects on Human Gut Microbiome Diversity. Br. J. Nutr. 2015, 113, S1–S5. [Google Scholar] [CrossRef]
- Nadwaga i Otyłość—Powiatowa Stacja Sanitarno-Epidemiologiczna w Łobzie—Portal Gov.Pl. Available online: https://www.gov.pl/web/psse-lobez/nadwaga-i-otylosc (accessed on 6 June 2025).
- LeBlanc, J.G.; Milani, C.; de Giori, G.S.; Sesma, F.; van Sinderen, D.; Ventura, M. Bacteria as Vitamin Suppliers to Their Host: A Gut Microbiota Perspective. Curr. Opin. Biotechnol. 2013, 24, 160–168. [Google Scholar] [CrossRef]
- Magnúsdóttir, S.; Ravcheev, D.; De Crécy-Lagard, V.; Thiele, I. Systematic Genome Assessment of B-Vitamin Biosynthesis Suggests Cooperation among Gut Microbes. Front. Genet. 2015, 6, 129714. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wen, X.L.; Duan, S.L.; Ji, Y.Y. Fecal Microbiota Transplantation in the Metabolic Diseases: Current Status and Perspectives. World J. Gastroenterol. 2022, 28, 2546. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Sommer, F.; Bäckhed, F. The Gut Microbiota-Masters of Host Development and Physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef]
- Chao, J.; Coleman, R.A.; Keating, D.J.; Martin, A.M. Gut Microbiome Regulation of Gut Hormone Secretion. Endocrinology 2025, 166, bqaf004. [Google Scholar] [CrossRef]
- van de Wouw, M.; Boehme, M.; Lyte, J.M.; Wiley, N.; Strain, C.; O’Sullivan, O.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Short-Chain Fatty Acids: Microbial Metabolites That Alleviate Stress-Induced Brain–Gut Axis Alterations. J. Physiol. 2018, 596, 4923–4944. [Google Scholar] [CrossRef]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. Conference on Diet and Digestive Disease Symposium 2: Sensing and Signalling of the Gut Environment: Scfa: Mechanisms and Functional Importance in the Gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef]
- Hays, K.E.; Pfaffinger, J.M.; Ryznar, R. The Interplay Between Gut Microbiota, Short-Chain Fatty Acids, and Implications for Host Health and Disease. Gut Microbes 2024, 16, 2393270. [Google Scholar] [CrossRef]
- Kalkan, A.E.; BinMowyna, M.N.; Raposo, A.; Ahmad, M.F.; Ahmed, F.; Otayf, A.Y.; Carrascosa, C.; Saraiva, A.; Karav, S. Beyond the Gut: Unveiling Butyrate’s Global Health Impact Through Gut Health and Dysbiosis-Related Conditions: A Narrative Review. Nutrients 2025, 17, 1305. [Google Scholar] [CrossRef]
- Blaak, E.E.; Canfora, E.E.; Theis, S.; Frost, G.; Groen, A.K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; van Harsselaar, J.; et al. Short Chain Fatty Acids in Human Gut and Metabolic Health. Benef. Microbes 2020, 11, 411–455. [Google Scholar] [CrossRef]
- Wahlström, A.; Sayin, S.I.; Marschall, H.U.; Bäckhed, F. Intestinal Crosstalk Between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016, 24, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Molinaro, A.; Bel Lassen, P.; Henricsson, M.; Wu, H.; Adriouch, S.; Belda, E.; Chakaroun, R.; Nielsen, T.; Bergh, P.O.; Rouault, C.; et al. Imidazole Propionate Is Increased in Diabetes and Associated with Dietary Patterns and Altered Microbial Ecology. Nat. Commun. 2020, 11, 5881. [Google Scholar] [CrossRef] [PubMed]
- Wlodarska, M.; Luo, C.; Kolde, R.; d’Hennezel, E.; Annand, J.W.; Heim, C.E.; Krastel, P.; Schmitt, E.K.; Omar, A.S.; Creasey, E.A.; et al. Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation. Cell Host Microbe 2017, 22, 25–37.e6. [Google Scholar] [CrossRef] [PubMed]
- Boicean, A.; Ichim, C.; Sasu, S.M.; Todor, S.B. Key Insights into Gut Alterations in Metabolic Syndrome. J. Clin. Med. 2025, 14, 2678. [Google Scholar] [CrossRef]
- Todor, S.B.; Ichim, C. Microbiome Modulation in Pediatric Leukemia: Impact on Graft-Versus-Host Disease and Treatment Outcomes: A Narrative Review. Children 2025, 12, 166. [Google Scholar] [CrossRef]
- Popa, M.L.; Ichim, C.; Anderco, P.; Todor, S.B.; Pop-Lodromanean, D. MicroRNAs in the Diagnosis of Digestive Diseases: A Comprehensive Review. J. Clin. Med. 2025, 14, 2054. [Google Scholar] [CrossRef]
- Brusnic, O.; Onisor, D.; Boicean, A.; Hasegan, A.; Ichim, C.; Guzun, A.; Chicea, R.; Todor, S.B.; Vintila, B.I.; Anderco, P.; et al. Fecal Microbiota Transplantation: Insights into Colon Carcinogenesis and Immune Regulation. J. Clin. Med. 2024, 13, 6578. [Google Scholar] [CrossRef]
- Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Cheng, J.; Duncan, A.E.; Kau, A.L.; Griffin, N.W.; Lombard, V.; Henrissat, B.; Bain, J.R.; et al. Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science 2013, 341, 1241214. [Google Scholar] [CrossRef]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity Alters Gut Microbial Ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef]
- Halabitska, I.; Petakh, P.; Kamyshna, I.; Oksenych, V.; Kainov, D.E.; Kamyshnyi, O. The Interplay of Gut Microbiota, Obesity, and Depression: Insights and Interventions. Cell Mol. Life Sci. 2024, 81, 443. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Q.; Cheng, L.; Buch, H.; Zhang, F. Akkermansia Muciniphila Is a Promising Probiotic. Microb. Biotechnol. 2019, 12, 1109–1125. [Google Scholar] [CrossRef] [PubMed]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia Muciniphila and Improved Metabolic Health During a Dietary Intervention in Obesity: Relationship with Gut Microbiome Richness and Ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef] [PubMed]
- de Vos, W.M. Microbe Profile: Akkermansia Muciniphila: A Conserved Intestinal Symbiont That Acts as the Gatekeeper of Our Mucosa. Microbiology 2017, 163, 646–648. [Google Scholar] [CrossRef]
- The Gut-Brain Axis: Interactions Between Enteric Microbiota, Central and Enteric Nervous Systems—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/25830558/ (accessed on 5 June 2025).
- Clapp, M.; Aurora, N.; Herrera, L.; Bhatia, M.; Wilen, E.; Wakefield, S. Gut Microbiota’s Effect on Mental Health: The Gut-Brain Axis. Clin. Pract. 2017, 7, 987. [Google Scholar] [CrossRef]
- Liu, B.N.; Liu, X.T.; Liang, Z.H.; Wang, J.H. Gut Microbiota in Obesity. World J. Gastroenterol. 2021, 27, 3837–3850. [Google Scholar] [CrossRef]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef]
- Gomes, A.C.; Hoffmann, C.; Mota, J.F. The Human Gut Microbiota: Metabolism and Perspective in Obesity. Gut Microbes 2018, 9, 308–325. [Google Scholar] [CrossRef]
- Yu, E.W.; Gao, L.; Stastka, P.; Cheney, M.C.; Mahabamunuge, J.; Soto, M.T.; Ford, C.B.; Bryant, J.A.; Henn, M.R.; Hohmann, E.L. Fecal Microbiota Transplantation for the Improvement of Metabolism in Obesity: The Fmt-Trim Double-Blind Placebo-Controlled Pilot Trial. PLoS Med. 2020, 17, 1003051. [Google Scholar] [CrossRef]
- Cuevas-Sierra, A.; Ramos-Lopez, O.; Riezu-Boj, J.I.; Milagro, F.I.; Martinez, J.A. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Adv. Nutr. 2019, 10, S17–S30. [Google Scholar] [CrossRef]
- Gérard, P. Gut Microbiota and Obesity. Cell. Mol. Life Sci. 2016, 73, 147–162. [Google Scholar] [CrossRef]
- Koutoukidis, D.A.; Jebb, S.A.; Zimmerman, M.; Otunla, A.; Henry, J.A.; Ferrey, A.; Schofield, E.; Kinton, J.; Aveyard, P.; Marchesi, J.R. The Association of Weight Loss with Changes in the Gut Microbiota Diversity, Composition, and Intestinal Permeability: A Systematic Review and Meta-Analysis. Gut Microbes 2022, 14, 2020068. [Google Scholar] [CrossRef] [PubMed]
- Hemachandra, S.; Rathnayake, S.N.; Jayamaha, A.A.; Francis, B.S.; Welmillage, D.; Kaur, D.N.; Zaw, H.K.; Zaw, L.T.; Chandra, H.A.; Abeysekera, M.E. Fecal Microbiota Transplantation as an Alternative Method in the Treatment of Obesity. Cureus 2025, 17, e76858. [Google Scholar] [CrossRef] [PubMed]
- Medina, D.A.; Li, T.; Thomson, P.; Artacho, A.; Pérez-Brocal, V.; Moya, A. Cross-Regional View of Functional and Taxonomic Microbiota Composition in Obesity and Post-Obesity Treatment Shows Country Specific Microbial Contribution. Front. Microbiol. 2019, 10, 433393. [Google Scholar] [CrossRef] [PubMed]
- De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Children from Europe and Rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef]
- Pesoa, S.A.; Portela, N.; Fernández, E.; Elbarcha, O.; Gotteland, M.; Magne, F. Comparison of Argentinean Microbiota with Other Geographical Populations Reveals Different Taxonomic and Functional Signatures Associated with Obesity. Sci. Rep. 2021, 11, 7762. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, W.; Huang, W.; Lin, Y.; Chan, F.K.L.; Ng, S.C. Gut Microbiota in Patients with Obesity and Metabolic Disorders—A Systematic Review. Genes Nutr. 2022, 17, 2. [Google Scholar] [CrossRef]
- De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhou, D.D.; Gan, R.Y.; Huang, S.Y.; Zhao, C.N.; Shang, A.; Xu, X.Y.; Li, H. Bin Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients 2021, 13, 3211. [Google Scholar] [CrossRef]
- Mackowiak, P.A. Recycling Metchnikoff: Probiotics, the Intestinal Microbiome and the Quest for Long Life. Front. Public Health 2013, 1, 52. [Google Scholar] [CrossRef]
- Salminen, S.; Ouwehand, A.; Benno, Y.; Lee, Y.K. Probiotics: How Should They Be Defined? Trends Food Sci. Technol. 1999, 10, 107–110. [Google Scholar] [CrossRef]
- Yadav, M.K.; Kumari, I.; Singh, B.; Sharma, K.K.; Tiwari, S.K. Probiotics, Prebiotics and Synbiotics: Safe Options for Next-Generation Therapeutics. Appl. Microbiol. Biotechnol. 2022, 106, 505–521. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Ślizewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Oniszczuk, A.; Oniszczuk, T.; Gancarz, M.; Szymańska, J. Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovascular Diseases. Molecules 2021, 26, 1172. [Google Scholar] [CrossRef]
- John, G.K.; Wang, L.; Nanavati, J.; Twose, C.; Singh, R.; Mullin, G. Dietary Alteration of the Gut Microbiome and Its Impact on Weight and Fat Mass: A Systematic Review and Meta-Analysis. Genes 2018, 9, 167. [Google Scholar] [CrossRef]
- Jagielski, P.; Bolesławska, I.; Wybrańska, I.; Przysławski, J.; Łuszczki, E. Effects of a Diet Containing Sources of Prebiotics and Probiotics and Modification of the Gut Microbiota on the Reduction of Body Fat. Int. J. Environ. Res. Public Health 2023, 20, 1348. [Google Scholar] [CrossRef]
- Shang, J.; Liu, F.; Zhang, B.; Dong, K.; Lu, M.; Jiang, R.; Xu, Y.; Diao, L.; Zhao, J.; Tang, H. Liraglutide-Induced Structural Modulation of the Gut Microbiota in Patients with Type 2 Diabetes Mellitus. PeerJ 2021, 9, e11128. [Google Scholar] [CrossRef]
- Sun, L.; Shang, B.; Lv, S.; Liu, G.; Wu, Q.; Geng, Y. Effects of Semaglutide on Metabolism and Gut Microbiota in High-Fat Diet-Induced Obese Mice. Front. Pharmacol. 2025, 16, 1562896. [Google Scholar] [CrossRef]
- Hu, W.; Gong, W.; Yang, F.; Cheng, R.; Zhang, G.; Gan, L.; Zhu, Y.; Qin, W.; Gao, Y.; Li, X.; et al. Dual GIP and GLP-1 Receptor Agonist Tirzepatide Alleviates Hepatic Steatosis and Modulates Gut Microbiota and Bile Acid Metabolism in Diabetic Mice. Int. Immunopharmacol. 2025, 147, 113937. [Google Scholar] [CrossRef]
- Allegretti, J.R.; Kassam, Z.; Mullish, B.H.; Chiang, A.; Carrellas, M.; Hurtado, J.; Marchesi, J.R.; McDonald, J.A.K.; Pechlivanis, A.; Barker, G.F.; et al. Effects of Fecal Microbiota Transplantation with Oral Capsules in Obese Patients. Clin. Gastroenterol. Hepatol. 2020, 18, 855–863.e2. [Google Scholar] [CrossRef]
- Levakov, G.; Kaplan, A.; Meir, A.Y.; Rinott, E.; Tsaban, G.; Zelicha, H.; Blüher, M.; Ceglarek, U.; Stumvoll, M.; Shelef, I.; et al. The Effect of Weight Loss Following 18 Months of Lifestyle Intervention on Brain Age Assessed with Resting-State Functional Connectivity. eLife 2023, 12, e83604. [Google Scholar] [CrossRef]
- Zuppi, M.; Vatanen, T.; Wilson, B.C.; Golovina, E.; Portlock, T.; Cutfield, W.S.; Vickers, M.H.; O’Sullivan, J.M. Fecal Microbiota Transplantation Alters Gut Phage Communities in a Clinical Trial for Obesity. Microbiome 2024, 12, 122. [Google Scholar] [CrossRef] [PubMed]
- Podlesny, D.; Durdevic, M.; Paramsothy, S.; Kaakoush, N.O.; Högenauer, C.; Gorkiewicz, G.; Walter, J.; Fricke, W.F. Identification of Clinical and Ecological Determinants of Strain Engraftment after Fecal Microbiota Transplantation Using Metagenomics. Cell Rep. Med. 2022, 3, 100711. [Google Scholar] [CrossRef] [PubMed]
- Biazzo, M.; Deidda, G. Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. J. Clin. Med. 2022, 11, 4119. [Google Scholar] [CrossRef] [PubMed]
- Koopen, A.M.; Almeida, E.L.; Attaye, I.; Witjes, J.J.; Rampanelli, E.; Majait, S.; Kemper, M.; Levels, J.H.M.; Schimmel, A.W.M.; Herrema, H.; et al. Effect of Fecal Microbiota Transplantation Combined with Mediterranean Diet on Insulin Sensitivity in Subjects with Metabolic Syndrome. Front. Microbiol. 2021, 12, 662159. [Google Scholar] [CrossRef]
- Halaweish, H.F.; Boatman, S.; Staley, C. Encapsulated Fecal Microbiota Transplantation: Development, Efficacy, and Clinical Application. Front. Cell. Infect. Microbiol. 2022, 12, 826114. [Google Scholar] [CrossRef]
- Almeida, C.; Oliveira, R.; Baylina, P.; Fernandes, R.; Teixeira, F.G.; Barata, P. Current Trends and Challenges of Fecal Microbiota Transplantation—An Easy Method That Works for All? Biomedicines 2022, 10, 2742. [Google Scholar] [CrossRef]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Lopetuso, L.R.; Scaldaferri, F.; Pulcini, G.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients 2019, 11, 2393. [Google Scholar] [CrossRef]
- Hughes, R.L.; Holscher, H.D. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv. Nutr. 2021, 12, 2190–2215. [Google Scholar] [CrossRef]
- Perler, B.K.; Friedman, E.S.; Wu, G.D. The Role of the Gut Microbiota in the Relationship Between Diet and Human Health. Annu. Rev. Physiol. 2023, 85, 449–468. [Google Scholar] [CrossRef]
- Cronin, P.; Joyce, S.A.; O’toole, P.W.; O’connor, E.M. Dietary Fibre Modulates the Gut Microbiota. Nutrients 2021, 13, 1655. [Google Scholar] [CrossRef]
- Hills, R.D.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of Diet on the Gut Microbiome and Implications for Human Health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef]
- Campaniello, D.; Corbo, M.R.; Sinigaglia, M.; Speranza, B.; Racioppo, A.; Altieri, C.; Bevilacqua, A. How Diet and Physical Activity Modulate Gut Microbiota: Evidence, and Perspectives. Nutrients 2022, 14, 2456. [Google Scholar] [CrossRef]
- Santangelo, A.; Corsello, A.; Spolidoro, G.C.I.; Trovato, C.M.; Agostoni, C.; Orsini, A.; Milani, G.P.; Peroni, D.G. The Influence of Ketogenic Diet on Gut Microbiota: Potential Benefits, Risks and Indications. Nutrients 2023, 15, 3680. [Google Scholar] [CrossRef]
- Moghaddam, H.S.; Abkar, L.; Fowler, S.J. Making Waves: From Tap to Gut- Exploring the Impact of Drinking Water on Gut Microbiota. Water Res. 2024, 267, 122503. [Google Scholar] [CrossRef]
- Vanhaecke, T.; Bretin, O.; Poirel, M.; Tap, J. Drinking Water Source and Intake Are Associated with Distinct Gut Microbiota Signatures in US and UK Populations. J. Nutr. 2022, 152, 171–182. [Google Scholar] [CrossRef]
- Sato, K.; Hara-Chikuma, M.; Yasui, M.; Inoue, J.; Kim, Y.G. Sufficient Water Intake Maintains the Gut Microbiota and Immune Homeostasis and Promotes Pathogen Elimination. iScience 2024, 27, 109903. [Google Scholar] [CrossRef]
- Clauss, M.; Gérard, P.; Mosca, A.; Leclerc, M. Interplay Between Exercise and Gut Microbiome in the Context of Human Health and Performance. Front. Nutr. 2021, 8, 637010. [Google Scholar] [CrossRef]
- Bonomini-Gnutzmann, R.; Plaza-Díaz, J.; Jorquera-Aguilera, C.; Rodríguez-Rodríguez, A.; Rodríguez-Rodríguez, F. Effect of Intensity and Duration of Exercise on Gut Microbiota in Humans: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 9518. [Google Scholar] [CrossRef]
- Li, X.; Perelman, D.; Leong, A.K.; Fragiadakis, G.; Gardner, C.D.; Snyder, M.P. Distinct Factors Associated with Short-Term and Long-Term Weight Loss Induced by Low-Fat or Low-Carbohydrate Diet Intervention. Cell Rep. Med. 2022, 3, 100870. [Google Scholar] [CrossRef] [PubMed]
- Boscaini, S.; Leigh, S.J.; Lavelle, A.; García-Cabrerizo, R.; Lipuma, T.; Clarke, G.; Schellekens, H.; Cryan, J.F. Microbiota and Body Weight Control: Weight Watchers Within? Mol. Metab. 2022, 57, 101427. [Google Scholar] [CrossRef] [PubMed]
- Grembi, J.A.; Nguyen, L.H.; Haggerty, T.D.; Gardner, C.D.; Holmes, S.P.; Parsonnet, J. Gut Microbiota Plasticity Is Correlated with Sustained Weight Loss on a Low-Carb or Low-Fat Dietary Intervention. Sci. Rep. 2020, 10, 1405. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Nguyen, N.K.; Seethaler, B.; Beisner, J.; Kügler, P.; Stefan, T. Gut Microbiota Patterns Predicting Long-Term Weight Loss Success in Individuals with Obesity Undergoing Nonsurgical Therapy. Nutrients 2022, 14, 3182. [Google Scholar] [CrossRef]
- Stanislawski, M.A.; Frank, D.N.; Borengasser, S.J.; Ostendorf, D.M.; Ir, D.; Jambal, P.; Bing, K.; Wayland, L.; Siebert, J.C.; Bessesen, D.H.; et al. The Gut Microbiota during a Behavioral Weight Loss Intervention. Nutrients 2021, 13, 3248. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Li, J.; Wu, Q.; Qian, L.; He, J.; Ni, Y.; Kovatcheva-Datchary, P.; Yuan, R.; Liu, S.; et al. Resistant Starch Intake Facilitates Weight Loss in Humans by Reshaping the Gut Microbiota. Nat. Metab. 2024, 6, 578–597. [Google Scholar] [CrossRef]
Life Stage | Dominant Microbial Groups | Characteristics |
---|---|---|
👶 Newborn | Enterobacteriaceae, other aerobic bacteria | Low diversity, predominance of aerobic bacteria |
👦 Child (~3 yrs) | Increasing numbers of Bacteroides, Firmicutes, Bifidobacterium | Gradual transition to adult-like microbiota |
🧍♀️ Adult | Firmicutes, Bacteroidetes (~90%), Actinobacteria, Proteobacteria | High diversity, stable composition |
👵 Older Adults | Decreased Bifidobacterium, reduced diversity | Higher risk of dysbiosis, impaired immune function |
Diet | Effect on Microbiota | |
🥦 High-fiber diet, vegetables, fermented foods | Increase in Lactobacillus, Bifidobacterium | |
🍔 Western diet (saturated fats, sugar) | Decreased diversity, dysbiosis, predominance of potentially pathogenic bacteria | |
💊 Antibiotic therapy, stress, low physical activity | Disruption of microbiota balance, increased risk of metabolic diseases |
Aspect | Description | References/Examples |
---|---|---|
Main SCFA of interest | Butyrate | Major energy source for colonocytes |
Role in intestinal barrier | Strengthens barrier integrity by upregulating tight junction proteins and stimulating mucin secretion; reduces intestinal permeability | Prevents pathogen/toxin translocation |
Anti-inflammatory effects | Inhibits NF-κB activation; decreases pro-inflammatory cytokines (TNF-α, IL-6); promotes regulatory T-cell differentiation | Modulates immune responses via GPR43, GPR109a, FFAR3 |
Role in gut–brain axis | Influences microglial activity, neurotransmission; reduces stress and anxiety-like behavior | Supports neuroimmune regulation |
Changes in disease states | Reduced butyrate production and decreased butyrate-producing bacteria (e.g., Faecalibacterium prausnitzii, Roseburia spp.) in obesity, T2D, IBD | Associated with inflammation and metabolic dysregulation |
Therapeutic strategies | High-fiber diets, probiotics, fecal microbiota transplantation | Aim to increase butyrate levels and restore gut homeostasis |
Disease Condition | Microbiota Changes | Inflammatory/Clinical Consequences |
---|---|---|
Obesity, Metabolic Syndrome | ↓ Lactobacillus, Bifidobacterium; ↑ LPS-producing bacteria | Insulin resistance, chronic inflammation, metabolic disturbances |
Non-Alcoholic Fatty Liver Disease (NAFLD) | ↓ Microbial diversity; ↓ Lactobacillus, Bifidobacterium; ↑ Ruminococcus, Escherichia | Increased hepatic inflammation and fibrosis progression |
Colorectal Cancer (CRC) | ↑ Fusobacterium nucleatum | Local inflammation, tumor progression, poor therapeutic response |
Pediatric Leukemia (post chemotherapy/HSCT) | ↓ Bacteroides, Ruminococcaceae, butyrate-producing bacteria | Gut barrier dysfunction, increased risk of GvHD and infections |
Feature/Bacterial Group | Lean Individuals | Obese/Overweight Individuals |
---|---|---|
Microbiota diversity | High | Reduced |
Firmicutes/Bacteroidetes ratio | Lower or balanced | Often increased (though data are inconsistent) |
Firmicutes | Moderate presence | Often increased |
Bacteroidetes | Moderate to high presence | Often reduced (but not in all studies) |
Faecalibacterium | Higher level (e.g., F. prausnitzii) | Reduced level |
Akkermansia | Higher level (A. muciniphila) | Reduced level |
Alistipes | Higher level | Reduced level |
Oscillibacter | Higher level | Reduced level |
Lactobacillus reuteri | Low level | Increased level, associated with obesity |
Lactobacillus casei/plantarum | Associated with weight loss | Less common |
Prevotella | Population-dependent (West—obesity, East—leanness) | Often higher in Western populations |
Ruminococcus | Context-dependent | Often associated with obesity in Western countries |
Methanobrevibacter smithii (Archaea) | More common, associated with normal weight | Less prevalent |
Bifidobacterium | Linked to leanness (especially in Eastern populations) | Less common |
Roseburia | Linked to leanness (in Eastern populations) | Less common |
Staphylococcus spp. | Low presence | Increased levels, correlated with higher energy intake and CRP |
Bacteroides | Moderate presence | No consistent differences |
Type | What Is It? | Examples | Main Benefits |
---|---|---|---|
Probiotics | Live beneficial bacteria | Lactobacillus, Bifidobacterium | Boost immunity, lower cholesterol, help with obesity and diabetes |
Prebiotics | Nutrients that feed beneficial bacteria | Inulin, fructooligosaccharides | Promote growth of good bacteria, support weight control and gut health |
Synbiotics | Combination of probiotics and prebiotics | Combinations of both | Synergistic effects, support weight loss and metabolic health |
Intervention | Description/Application | Effects | Evidence Strength |
---|---|---|---|
Probiotics | Supplementation with strains such as Lactobacillus, Bifidobacterium, Enterococcus | Reduction in BMI, body weight, cholesterol, immune support; effect weaker than drugs, but fewer side-effects | Confirmed in numerous clinical studies, moderate effectiveness [67] |
Prebiotics | Dietary components (e.g., inulin, FOS) stimulating the growth of beneficial bacteria | Reduction in body and fat mass (especially in animal studies); confirmed effect on microbiota | Weaker effect than probiotics, confirmed [66,67] |
Synbiotics | Combination of probiotics and prebiotics | Supporting reduction of body weight and BMI | Confirmed effectiveness, moderate effect [67] |
FMT (Fecal Microbiota Transplantation) | Microbiota transplantation from a lean donor to an obese person | In animals: improvement of metabolic parameters; in humans: change in microbiota, BUT: no effect on BMI/metabolic parameters in the short term | Well-documented efficacy for C. difficile; limited and inconclusive for obesity and metabolic diseases [55,72,74] |
High-fiber diet | Increased fiber intake (plants, whole grains) | Increased microbiota diversity, lower long-term risk of weight gain | Many studies confirm positive effects on microbiota and weight [83] |
Varied protein sources | More plant, less animal protein | Increase in beneficial bacteria, SCFA production | Confirmed microbiota changes, less certain effect on weight [83] |
Fats | More unsaturated, less saturated fat | Unsaturated: increase in beneficial bacteria; saturated: dysbiosis | Effects on microbiota documented, impact on weight depends on fat type [19,80] |
Ketogenic diet | Very low carbohydrate, high fat | Changes in microbiota, inconclusive results, effect on weight documented | Effect on microbiota and weight: inconclusive, mixed results [81,86,87,88] |
Proper hydration | Amount and source of drinking water | Impact on microbiota diversity, pathogenic bacteria | Studies in humans and animals—confirmed effect [89,90,91] |
Physical activity | Regular, moderate exercise | Increased diversity and beneficial bacteria, positive effect on metabolism | Confirmed positive effect on microbiota [92,93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augustynowicz, G.; Lasocka, M.; Szyller, H.P.; Dziedziak, M.; Mytych, A.; Braksator, J.; Pytrus, T. The Role of Gut Microbiota in the Development and Treatment of Obesity and Overweight: A Literature Review. J. Clin. Med. 2025, 14, 4933. https://doi.org/10.3390/jcm14144933
Augustynowicz G, Lasocka M, Szyller HP, Dziedziak M, Mytych A, Braksator J, Pytrus T. The Role of Gut Microbiota in the Development and Treatment of Obesity and Overweight: A Literature Review. Journal of Clinical Medicine. 2025; 14(14):4933. https://doi.org/10.3390/jcm14144933
Chicago/Turabian StyleAugustynowicz, Gabriela, Maria Lasocka, Hubert Paweł Szyller, Marta Dziedziak, Agata Mytych, Joanna Braksator, and Tomasz Pytrus. 2025. "The Role of Gut Microbiota in the Development and Treatment of Obesity and Overweight: A Literature Review" Journal of Clinical Medicine 14, no. 14: 4933. https://doi.org/10.3390/jcm14144933
APA StyleAugustynowicz, G., Lasocka, M., Szyller, H. P., Dziedziak, M., Mytych, A., Braksator, J., & Pytrus, T. (2025). The Role of Gut Microbiota in the Development and Treatment of Obesity and Overweight: A Literature Review. Journal of Clinical Medicine, 14(14), 4933. https://doi.org/10.3390/jcm14144933