Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,749)

Search Parameters:
Keywords = capacity coordination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1977 KiB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
27 pages, 405 KiB  
Article
Comparative Analysis of Centralized and Distributed Multi-UAV Task Allocation Algorithms: A Unified Evaluation Framework
by Yunze Song, Zhexuan Ma, Nuo Chen, Shenghao Zhou and Sutthiphong Srigrarom
Drones 2025, 9(8), 530; https://doi.org/10.3390/drones9080530 - 28 Jul 2025
Abstract
Unmanned aerial vehicles (UAVs), commonly known as drones, offer unprecedented flexibility for complex missions such as area surveillance, search and rescue, and cooperative inspection. This paper presents a unified evaluation framework for the comparison of centralized and distributed task allocation algorithms specifically tailored [...] Read more.
Unmanned aerial vehicles (UAVs), commonly known as drones, offer unprecedented flexibility for complex missions such as area surveillance, search and rescue, and cooperative inspection. This paper presents a unified evaluation framework for the comparison of centralized and distributed task allocation algorithms specifically tailored to multi-UAV operations. We first contextualize the classical assignment problem (AP) under UAV mission constraints, including the flight time, propulsion energy capacity, and communication range, and evaluate optimal one-to-one solvers including the Hungarian algorithm, the Bertsekas ϵ-auction algorithm, and a minimum cost maximum flow formulation. To reflect the dynamic, uncertain environments that UAV fleets encounter, we extend our analysis to distributed multi-UAV task allocation (MUTA) methods. In particular, we examine the consensus-based bundle algorithm (CBBA) and a distributed auction 2-opt refinement strategy, both of which iteratively negotiate task bundles across UAVs to accommodate real-time task arrivals and intermittent connectivity. Finally, we outline how reinforcement learning (RL) can be incorporated to learn adaptive policies that balance energy efficiency and mission success under varying wind conditions and obstacle fields. Through simulations incorporating UAV-specific cost models and communication topologies, we assess each algorithm’s mission completion time, total energy expenditure, communication overhead, and resilience to UAV failures. Our results highlight the trade-off between strict optimality, which is suitable for small fleets in static scenarios, and scalable, robust coordination, necessary for large, dynamic multi-UAV deployments. Full article
Show Figures

Figure 1

24 pages, 6890 KiB  
Article
Multi-Level Transcriptomic and Physiological Responses of Aconitum kusnezoffii to Different Light Intensities Reveal a Moderate-Light Adaptation Strategy
by Kefan Cao, Yingtong Mu and Xiaoming Zhang
Genes 2025, 16(8), 898; https://doi.org/10.3390/genes16080898 - 28 Jul 2025
Abstract
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive [...] Read more.
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive strategies of A. kusnezoffii under different light intensities through integrated physiological and transcriptomic analyses. Methods: Two-year-old A. kusnezoffii plants were exposed to three controlled light regimes (790, 620, and 450 lx). Leaf anatomical traits were assessed via histological sectioning and microscopic imaging. Antioxidant enzyme activities (CAT, POD, and SOD), membrane lipid peroxidation (MDA content), osmoregulatory substances, and carbon metabolites were quantified using standard biochemical assays. Transcriptomic profiling was conducted using Illumina RNA-seq, with differentially expressed genes (DEGs) identified through DESeq2 and functionally annotated via GO and KEGG enrichment analyses. Results: Moderate light (620 lx) promoted optimal leaf structure by enhancing palisade tissue development and epidermal thickening, while reducing membrane lipid peroxidation. Antioxidant defense capacity was elevated through higher CAT, POD, and SOD activities, alongside increased accumulation of soluble proteins, sugars, and starch. Transcriptomic analysis revealed DEGs enriched in photosynthesis, monoterpenoid biosynthesis, hormone signaling, and glutathione metabolism pathways. Key positive regulators (PHY and HY5) were upregulated, whereas negative regulators (COP1 and PIFs) were suppressed, collectively facilitating chloroplast development and photomorphogenesis. Trend analysis indicated a “down–up” gene expression pattern, with early suppression of stress-responsive genes followed by activation of photosynthetic and metabolic processes. Conclusions: A. kusnezoffii employs a coordinated, multi-level adaptation strategy under moderate light (620 lx), integrating leaf structural optimization, enhanced antioxidant defense, and dynamic transcriptomic reprogramming to maintain energy balance, redox homeostasis, and photomorphogenic flexibility. These findings provide a theoretical foundation for optimizing artificial cultivation and light management of alpine medicinal plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

23 pages, 2443 KiB  
Article
Research on Coordinated Planning and Operational Strategies for Novel FACTS Devices Based on Interline Power Flow Control
by Yangqing Dan, Hui Zhong, Chenxuan Wang, Jun Wang, Yanan Fei and Le Yu
Electronics 2025, 14(15), 3002; https://doi.org/10.3390/electronics14153002 - 28 Jul 2025
Abstract
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow [...] Read more.
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow control over multiple lines during N-1 faults, enhancing grid safety and economy. The paper establishes a steady-state mathematical model based on additional virtual nodes and provides power flow calculation methods to accurately reflect the device’s control characteristics. An entropy-weighted TOPSIS method was employed to establish a quantitative evaluation system for assessing the grid performance improvement after FACTS device integration. To address interaction issues among multiple flexible devices, an optimization planning model considering th3e coordinated effects of UPFC and VSC-HVDC was constructed. Multi-objective particle swarm optimization obtained Pareto solution sets, combined with the evaluation system, to determine the optimal configuration schemes. Considering wind power uncertainty and fault risks, we propose a system-level coordinated operation strategy. This strategy constructs probabilistic risk indicators and introduces topology switching control constraints. Using particle swarm optimization, it achieves a balance between safety and economic objectives. Simulation results in the Jiangsu power grid scenarios demonstrated significant advantages in enhancing the transmission capacity, optimizing the power flow distribution, and ensuring system security. Full article
Show Figures

Figure 1

30 pages, 2922 KiB  
Article
Interaction Mechanism and Coupling Strategy of Higher Education and Innovation Capability in China Based on Interprovincial Panel Data from 2010 to 2022
by Shaoshuai Duan and Fang Yin
Sustainability 2025, 17(15), 6797; https://doi.org/10.3390/su17156797 - 25 Jul 2025
Viewed by 305
Abstract
The sustainable development of higher education exhibits a strong and measurable association with the level of regional innovation capacity. Drawing on panel data covering 31 provincial-level administrative regions in China from 2010 to 2022, we construct evaluation frameworks for both higher education and [...] Read more.
The sustainable development of higher education exhibits a strong and measurable association with the level of regional innovation capacity. Drawing on panel data covering 31 provincial-level administrative regions in China from 2010 to 2022, we construct evaluation frameworks for both higher education and regional innovation capacity using the entropy weight method. These are complemented by kernel density estimation, spatial autocorrelation analysis, Dagum Gini coefficient decomposition, and the Obstacle Degree Model. Together, these tools enable a comprehensive investigation into the spatiotemporal evolution and driving mechanisms of coupling coordination dynamics between the two systems. The results indicate the following: (1) Both higher education and regional innovation capacity indices exhibit steady growth, accompanied by a clear temporal gradient differentiation. (2) The coupling coordination degree shows an overall upward trend, with significant inter-regional disparities, notably “higher in the east and low in the west”. (3) The spatial distribution of the coupling coordination degree reveals positive spatial autocorrelation, with provinces exhibiting similar levels tending to form spatial clusters, most commonly of the low–low or high–high type. (4) The spatial heterogeneity is pronounced, with inter-regional differences driving overall imbalance. (5) Key obstacles hindering regional innovation include inadequate R&D investment, limited trade openness, and weak technological development. In higher education sectors, limitations stem from insufficient social service benefits and efficiency of flow. This study recommends promoting the synchronized advancement of higher education and regional innovation through region-specific development strategies, strengthening institutional infrastructure, and accurately identifying and addressing key barriers. These efforts are essential to fostering high-quality, coordinated regional development. Full article
Show Figures

Figure 1

23 pages, 2295 KiB  
Article
A Two-Stage Sustainable Optimal Scheduling Strategy for Multi-Contract Collaborative Distributed Resource Aggregators
by Lei Su, Wanli Feng, Cao Kan, Mingjiang Wei, Rui Su, Pan Yu and Ning Zhang
Sustainability 2025, 17(15), 6767; https://doi.org/10.3390/su17156767 - 25 Jul 2025
Viewed by 186
Abstract
To address the challenges posed by the instability of renewable energy output and load fluctuations on grid operations and to support the low-carbon sustainable development of the energy system, this paper integrates artificial intelligence technology to establish an economic stability dispatch framework for [...] Read more.
To address the challenges posed by the instability of renewable energy output and load fluctuations on grid operations and to support the low-carbon sustainable development of the energy system, this paper integrates artificial intelligence technology to establish an economic stability dispatch framework for distributed resource aggregators. A phased multi-contract collaborative scheduling model oriented toward sustainable development is proposed. Through intelligent algorithms, the model dynamically optimises decisions across the day-ahead and intraday phases: During the day-ahead scheduling phase, intelligent algorithms predict load demand and energy output, and combine with elastic performance-based response contracts to construct a user-side electricity consumption behaviour intelligent control model. Under the premise of ensuring user comfort, the model generates a 24 h scheduling plan with the objectives of minimising operational costs and efficiently integrating renewable energy. In the intraday scheduling phase, a rolling optimisation mechanism is used to activate energy storage capacity contracts and dynamic frequency stability contracts in real time based on day-ahead prediction deviations. This efficiently coordinates the intelligent frequency regulation strategies of energy storage devices and electric vehicle aggregators to quickly mitigate power fluctuations and achieve coordinated control of primary and secondary frequency regulation. Case study results indicate that the intelligent optimisation-driven multi-contract scheduling model significantly improves system operational efficiency and stability, reduces system operational costs by 30.49%, and decreases power purchase fluctuations by 12.41%, providing a feasible path for constructing a low-carbon, resilient grid under high renewable energy penetration. Full article
Show Figures

Figure 1

31 pages, 2271 KiB  
Article
Research on the Design of a Priority-Based Multi-Stage Emergency Material Scheduling System for Drone Coordination
by Shuoshuo Gong, Gang Chen and Zhiwei Yang
Drones 2025, 9(8), 524; https://doi.org/10.3390/drones9080524 - 25 Jul 2025
Viewed by 182
Abstract
Emergency material scheduling (EMS) is a core component of post-disaster emergency response, with its efficiency directly impacting rescue effectiveness and the satisfaction of affected populations. However, due to severe road damage, limited availability of resources, and logistical challenges after disasters, current EMS practices [...] Read more.
Emergency material scheduling (EMS) is a core component of post-disaster emergency response, with its efficiency directly impacting rescue effectiveness and the satisfaction of affected populations. However, due to severe road damage, limited availability of resources, and logistical challenges after disasters, current EMS practices often suffer from uneven resource distribution. To address these issues, this paper proposes a priority-based, multi-stage EMS approach with drone coordination. First, we construct a three-level EMS network “storage warehouses–transit centers–disaster areas” by integrating the advantages of large-scale transportation via trains and the flexible delivery capabilities of drones. Second, considering multiple constraints, such as the priority level of disaster areas, drone flight range, transport capacity, and inventory capacities at each node, we formulate a bilevel mixed-integer nonlinear programming model. Third, given the NP-hard nature of the problem, we design a hybrid algorithm—the Tabu Genetic Algorithm combined with Branch and Bound (TGA-BB), which integrates the global search capability of genetic algorithms, the precise solution mechanism of branch and bound, and the local search avoidance features of Tabu search. A stage-adjustment operator is also introduced to better adapt the algorithm to multi-stage scheduling requirements. Finally, we designed eight instances of varying scales to systematically evaluate the performance of the stage-adjustment operator and the Tabu search mechanism within TGA-BB. Comparative experiments were conducted against several traditional heuristic algorithms. The experimental results show that TGA-BB outperformed the other algorithms across all eight test cases, in terms of both average response time and average runtime. Specifically, in Instance 7, TGA-BB reduced the average response time by approximately 52.37% compared to TGA-Particle Swarm Optimization (TGA-PSO), and in Instance 2, it shortened the average runtime by about 97.95% compared to TGA-Simulated Annealing (TGA-SA).These results fully validate the superior solution accuracy and computational efficiency of TGA-BB in drone-coordinated, multi-stage EMS. Full article
Show Figures

Figure 1

18 pages, 687 KiB  
Article
A Low-Carbon and Economic Optimal Dispatching Strategy for Virtual Power Plants Considering the Aggregation of Diverse Flexible and Adjustable Resources with the Integration of Wind and Solar Power
by Xiaoqing Cao, He Li, Di Chen, Qingrui Yang, Qinyuan Wang and Hongbo Zou
Processes 2025, 13(8), 2361; https://doi.org/10.3390/pr13082361 - 24 Jul 2025
Viewed by 137
Abstract
Under the dual-carbon goals, with the rapid increase in the proportion of fluctuating power sources such as wind and solar energy, the regulatory capacity of traditional thermal power generation can no longer meet the demand for intra-day fluctuations. There is an urgent need [...] Read more.
Under the dual-carbon goals, with the rapid increase in the proportion of fluctuating power sources such as wind and solar energy, the regulatory capacity of traditional thermal power generation can no longer meet the demand for intra-day fluctuations. There is an urgent need to tap into the potential of flexible load-side regulatory resources. To this end, this paper proposes a low-carbon economic optimal dispatching strategy for virtual power plants (VPPs), considering the aggregation of diverse flexible and adjustable resources with the integration of wind and solar power. Firstly, the method establishes mathematical models by analyzing the dynamic response characteristics and flexibility regulation boundaries of adjustable resources such as photovoltaic (PV) systems, wind power, energy storage, charging piles, interruptible loads, and air conditioners. Subsequently, considering the aforementioned diverse adjustable resources and aggregating them into a VPP, a low-carbon economic optimal dispatching model for the VPP is constructed with the objective of minimizing the total system operating costs and carbon costs. To address the issue of slow convergence rates in solving high-dimensional state variable optimization problems with the traditional plant growth simulation algorithm, this paper proposes an improved plant growth simulation algorithm through elite selection strategies for growth points and multi-base point parallel optimization strategies. The improved algorithm is then utilized to solve the proposed low-carbon economic optimal dispatching model for the VPP, aggregating diverse adjustable resources. Simulations conducted on an actual VPP platform demonstrate that the proposed method can effectively coordinate diverse load-side adjustable resources and achieve economically low-carbon dispatching, providing theoretical support for the optimal aggregation of diverse flexible resources in new power systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

61 pages, 14033 KiB  
Review
The Brain Behind the Grid: A Comprehensive Review on Advanced Control Strategies for Smart Energy Management Systems
by Gowthamraj Rajendran, Reiko Raute and Cedric Caruana
Energies 2025, 18(15), 3963; https://doi.org/10.3390/en18153963 - 24 Jul 2025
Viewed by 148
Abstract
The integration of digital technologies is catalysing a fundamental transformation of modern energy systems, enhancing operational efficiency, adaptability, and sustainability. Despite significant progress, the existing literature often addresses digital innovations in isolation, with limited consideration of their synergistic potential within Advanced Energy Systems [...] Read more.
The integration of digital technologies is catalysing a fundamental transformation of modern energy systems, enhancing operational efficiency, adaptability, and sustainability. Despite significant progress, the existing literature often addresses digital innovations in isolation, with limited consideration of their synergistic potential within Advanced Energy Systems (AES). This paper presents a systematic review of key digital technologies—such as artificial intelligence, the Internet of Things, blockchain, and digital twins—employed in AES, providing a critical assessment of their individual functionalities, interdependencies, and collective contributions to the energy sector. The analysis highlights the capacity of integrated digital solutions to augment system intelligence, strengthen operational resilience, and increase flexibility across various layers of the energy infrastructure. In addressing persistent challenges—including demand-side variability, supply intermittency, and regulatory complexity—the coordinated implementation of these technologies enables real-time optimization, predictive maintenance, and data-informed decision-making. The findings demonstrate that the synergistic deployment of digital technologies not only enhances system performance but also contributes to measurable improvements in reliability, cost-effectiveness, and environmental sustainability. The review concludes that establishing a cohesive and interoperable digital ecosystem is essential for the development of future-ready energy systems that are robust, efficient, and responsive to the evolving dynamics of the global energy landscape. Full article
Show Figures

Figure 1

17 pages, 2181 KiB  
Article
Sustainability Analysis of the Global Hydrogen Trade Network from a Resilience Perspective: A Risk Propagation Model Based on Complex Networks
by Sai Chen and Yuxi Tian
Energies 2025, 18(15), 3944; https://doi.org/10.3390/en18153944 - 24 Jul 2025
Viewed by 152
Abstract
Hydrogen is being increasingly integrated into the international trade system as a clean and flexible energy carrier, motivated by the global energy transition and carbon neutrality objectives. The rapid expansion of the global hydrogen trade network has simultaneously exposed several sustainability challenges, including [...] Read more.
Hydrogen is being increasingly integrated into the international trade system as a clean and flexible energy carrier, motivated by the global energy transition and carbon neutrality objectives. The rapid expansion of the global hydrogen trade network has simultaneously exposed several sustainability challenges, including a centralized structure, overdependence on key countries, and limited resilience to external disruptions. Based on this, we develop a risk propagation model that incorporates the absorption capacity of nodes to simulate the propagation of supply shortage risks within the global hydrogen trade network. Furthermore, we propose a composite sustainability index constructed from structural, economic, and environmental resilience indicators, enabling a systematic assessment of the network’s sustainable development capacity under external shock scenarios. Findings indicate the following: (1) The global hydrogen trade network is undergoing a structural shift from a Western Europe-dominated unipolar configuration to a more polycentric pattern. Countries such as China and Singapore are emerging as key hubs linking Eurasian regions, with trade relationships among nations becoming increasingly dense and diversified. (2) Although supply shortage shocks trigger structural disturbances, economic losses, and risks of carbon rebound, their impacts are largely concentrated in a limited number of hub countries, with relatively limited disruption to the overall sustainability of the system. (3) Countries exhibit significant heterogeneity in structural, economic, and environmental resilience. Risk propagation demonstrates an uneven pattern characterized by hub-induced disruptions, chain-like transmission, and localized clustering. Accordingly, policy recommendations are proposed, including the establishment of a polycentric coordination mechanism, the enhancement of regional emergency coordination mechanisms, and the advancement of differentiated capacity-building efforts. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 244
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

20 pages, 2847 KiB  
Article
Oxidative Stress Disrupts Gill Function in Eriocheir sinensis: Consequences for Ion Transport, Apoptosis, and Autophagy
by Wenrong Feng, Qinghong He, Qiqin Yang, Yuanfeng Xu, Gang Jiang, Jianlin Li, Jun Zhou, Rui Jia and Yongkai Tang
Antioxidants 2025, 14(8), 897; https://doi.org/10.3390/antiox14080897 - 22 Jul 2025
Viewed by 217
Abstract
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O [...] Read more.
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O2)-induced oxidative stress, integrating antioxidant defense, ion transport regulation, and stress-induced cell apoptosis and autophagy. Morphological alterations in the gill filaments were observed, characterized by septum degeneration, accumulation of haemolymph cells, and pronounced swelling. For antioxidant enzymes like catalase (CAT) and glutathione peroxidase (GPx), activities were enhanced, while superoxide dismutase (SOD) activity was reduced following 48 h of exposure. Overall, the total antioxidant capacity (T-AOC) showed a significant increase. The elevated concentrations of malondialdehyde (MDA) and H2O2 indicated oxidative stress. Ion transport genes displayed distinct transcription patterns: Na+-K+-2Cl co-transporter-1 (NKCC1), Na+/H+ exchanger 3 (NHE3), aquaporin 7 (AQP7), and chloride channel protein 2 (CLC2) were significantly upregulated; the α-subunit of Na+/K+-ATPase (NKAα) and carbonic anhydrase (CA) displayed an initial increase followed by decline; whereas vacuolar-type ATPase (VATP) consistently decreased, suggesting compensatory mechanisms to maintain osmotic balance. Concurrently, H2O2 triggered apoptosis (Bcl2, Caspase-3/8) and autophagy (beclin-1, ATG7), likely mediated by MAPK and AMPK signaling pathways. These findings reveal a coordinated yet adaptive response of crab gills to oxidative stress, providing new insights into the mechanistic basis of environmental stress tolerance in crustaceans. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health—2nd Edition)
Show Figures

Figure 1

30 pages, 1981 KiB  
Article
Stochastic Control for Sustainable Hydrogen Generation in Standalone PV–Battery–PEM Electrolyzer Systems
by Mohamed Aatabe, Wissam Jenkal, Mohamed I. Mosaad and Shimaa A. Hussien
Energies 2025, 18(15), 3899; https://doi.org/10.3390/en18153899 - 22 Jul 2025
Viewed by 270
Abstract
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green [...] Read more.
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green hydrogen, generated via proton exchange membrane (PEM) electrolyzers, offers a scalable alternative. This study proposes a stochastic energy management framework that leverages a Markov decision process (MDP) to coordinate PV generation, battery storage, and hydrogen production under variable irradiance and uncertain load demand. The strategy dynamically allocates power flows, ensuring system stability and efficient energy utilization. Real-time weather data from Goiás, Brazil, is used to simulate system behavior under realistic conditions. Compared to the conventional perturb and observe (P&O) technique, the proposed method significantly improves system performance, achieving a 99.9% average efficiency (vs. 98.64%) and a drastically lower average tracking error of 0.3125 (vs. 9.8836). This enhanced tracking accuracy ensures faster convergence to the maximum power point, even during abrupt load changes, thereby increasing the effective use of solar energy. As a direct consequence, green hydrogen production is maximized while energy curtailment is minimized. The results confirm the robustness of the MDP-based control, demonstrating improved responsiveness, reduced downtime, and enhanced hydrogen yield, thus supporting sustainable energy conversion in off-grid environments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

23 pages, 346 KiB  
Article
Thirst for Change in Water Governance: Overcoming Challenges for Drought Resilience in Southern Europe
by Eleonora Santos
Water 2025, 17(15), 2170; https://doi.org/10.3390/w17152170 - 22 Jul 2025
Viewed by 193
Abstract
This article investigates the institutional and informational foundations of water governance in Southern Europe amid escalating climate stress. Focusing on Portugal, Spain, Italy, and Greece, it develops a multi-level analytical framework to explore how information asymmetries and governance fragmentation undermine coordinated responses to [...] Read more.
This article investigates the institutional and informational foundations of water governance in Southern Europe amid escalating climate stress. Focusing on Portugal, Spain, Italy, and Greece, it develops a multi-level analytical framework to explore how information asymmetries and governance fragmentation undermine coordinated responses to water scarcity. Integrating theories of information economics, polycentric governance, and critical institutionalism, this study applies a stylized economic model and comparative institutional analysis to assess how agents—such as farmers, utilities, regulators, and civil society—respond to varying incentives, data access, and coordination structures. Using secondary data, normalized indicators, and scenario-based simulations, the model identifies three key structural parameters—institutional friction (θi), information cost (βi), and incentive strength (αi)—as levers for governance reform. The simulations are stylized and not empirically calibrated, serving as heuristic tools rather than predictive forecasts. The results show that isolated interventions yield limited improvements, while combined reforms significantly enhance both equity and effectiveness. Climate stress simulations further reveal stark differences in institutional resilience, with Greece and Italy showing systemic fragility and Portugal emerging as comparatively robust. This study contributes a flexible, policy-relevant tool for diagnosing governance capacity and informing reform strategies while also underscoring the need for integrated, equity-oriented approaches to adaptive water governance. Full article
22 pages, 3283 KiB  
Article
Optimal Configuration of Distributed Pumped Storage Capacity with Clean Energy
by Yongjia Wang, Hao Zhong, Xun Li, Wenzhuo Hu and Zhenhui Ouyang
Energies 2025, 18(15), 3896; https://doi.org/10.3390/en18153896 - 22 Jul 2025
Viewed by 181
Abstract
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering [...] Read more.
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering the maximization of the investment benefit of distributed pumped storage as the upper goal, a configuration scheme of the installed capacity is formulated. Second, under the two-part electricity price mechanism, combined with the basin hydraulic coupling relationship model, the operation strategy optimization of distributed pumped storage power stations and small hydropower stations is carried out with the minimum operation cost of the clean energy system as the lower optimization objective. Finally, the bi-level optimization model is solved by combining the alternating direction multiplier method and CPLEX solver. This study demonstrates that distributed pumped storage implementation enhances seasonal operational performance, improving clean energy utilization while reducing industrial electricity costs. A post-implementation analysis revealed monthly operating cost reductions of 2.36, 1.72, and 2.13 million RMB for wet, dry, and normal periods, respectively. Coordinated dispatch strategies significantly decreased hydropower station water wastage by 82,000, 28,000, and 52,000 cubic meters during corresponding periods, confirming simultaneous economic and resource efficiency improvements. Full article
Show Figures

Figure 1

Back to TopTop